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Abstract

Vulnerability classification is a crucial task
in software security analysis, essential for
identifying and mitigating potential security
risks. Learning-based methods often perform
poorly due to the long-tail distribution of vul-
nerability classification datasets. Recent ap-
proaches try to address the problem but treat
each CWE class in isolation, ignoring their re-
lationships. This results in non-scalable code
vector representations, causing significant per-
formance drops when handling complex real-
world vulnerabilities. We propose a hierarchi-
cal contrastive learning framework for multi-
class code vulnerability type classification to
bring vector representations of related CWEs
closer together. To address the issue of class
collapse and enhance model robustness, we
mix self-supervised contrastive learning loss
into our loss function. Additionally, we em-
ploy max-pooling to enable the model to han-
dle longer vulnerability code inputs. Exten-
sive experiments demonstrate that our pro-
posed framework outperforms state-of-the-art
methods by 2.97%−17.90% on accuracy and
0.98%−22.27% on weighted-F1, with even bet-
ter performance on higher-quality datasets. We
also utilize an ablation study to prove each
component’s contribution. These findings un-
derscore the potential and advantages of our
approach in the multi-class vulnerability classi-
fication task.

1 Introduction

Nowadays, software is ubiquitous in people’s lives,
permeating nearly every aspect of daily activities.
However, as software systems continue to grow in
scale and complexity, the types of vulnerabilities
are becoming more diverse (Alaoui and Nfaoui,
2022). Common Weakness Enumeration (CWE)
is a comprehensive vocabulary for describing and
classifying weaknesses in software. Maintained by
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MITRE1, its purpose is to aid security experts in
identifying and addressing software security vul-
nerabilities. For example, the standardized termi-
nology provided by CWE enables security experts
to accurately report discovered vulnerabilities, of-
fer specific repair recommendations, and determine
the severity of vulnerabilities, which helps priori-
tize and address high-risk vulnerabilities first.

Classifying vulnerability code according to
CWE is a challenging task that requires security
experts to manually analyze the code and identify
the specific types of vulnerabilities. While manual
classification provides detailed analysis, it also has
several significant drawbacks. First, it relies on
the knowledge and experience of security experts.
Second, manual analysis is typically slow, making
it difficult to meet the demands of large-scale code
reviews. For example, among the 28,902 Common
Vulnerabilities and Exposures (CVE) entries newly
published in 2023 in the National Vulnerability
Database (NVD)2, 4,113 cases still have unidenti-
fied types. This underscores the need for automated
tools to quickly classify potential vulnerabilities.

Existing Approaches. Many methods have been
proposed to classify software vulnerabilities. Tra-
ditional methods include static analysis (Lipp et al.,
2022) or dynamic analysis (Zaddach et al., 2014;
Chen et al., 2016; Zheng et al., 2023). However,
they still face issues such as manual feature de-
sign, high false positives, and incomplete cover-
age. Given the significant success of deep learning
methods in image recognition and natural language
processing(NLP) tasks (Vaswani et al., 2017; De-
vlin et al., 2018), particularly in terms of automated
feature extraction, handling complex patterns, and
understanding code semantics, researchers are now
exploring their application to the task of classifying
code vulnerability types. Some researchers applied

1https://cwe.mitre.org
2https://nvd.nist.gov/vuln/data-feeds
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Figure 1: CWE type distribution of the newly published
vulnerabilities by NVD in 2023, which follows a long-
tailed distribution. (Top 22 CWEs selected)

deep learning to software vulnerability detection
tasks(Li et al., 2018; Zhou et al., 2019; Chakraborty
et al., 2021; Li et al., 2021). However, these meth-
ods mostly focus on whether a given code contains
vulnerabilities without providing extra information
like vulnerability types. Therefore, security re-
searchers still cannot obtain effective information
about vulnerabilities from the above models.

Recently, several studies have been proposed
(Das et al., 2021; Fu et al., 2023; Wen et al., 2024)
to address this issue by leveraging learning-based
methods to predict the types of vulnerabilities (i.e.,
CWE-ID). According to Figure 1, the distribution
of CWE-IDs follows a long-tail pattern. Most vul-
nerabilities belong to a small subset of CWE-IDs,
while most CWE-IDs have only a small portion of
samples. Zhout et al. (2023) indicated that data
with long-tail distributions can significantly impair
the effectiveness of learning-based methods. Fu
et al. (2023) introduces a transformer-based hier-
archical distillation model to handle highly imbal-
anced CWE labels, while Wen et al. (2024) em-
ploys a GNN-based model with an adaptive re-
weighting module to better predict the vulnerability
types at the tail.

Challenges. Although the above methods have
achieved success in the multi-class vulnerability
classification tasks, some problems still remain.
Challenge 1: These works usually target the long-
tail distribution problem, but they all treat each
CWE class as an isolated class and ignore the rela-
tionship between them. In a high-quality code vec-
tor space, not only should vectors of the same class
be closer together, but vectors of similar classes
should also exhibit proximity. This results in the
code vector representation obtained by their learn-
ing not being scalable. When encountering com-
plex vulnerabilities in real-world scenarios, the per-
formance of the model significantly diminishes.
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Figure 2: The refinement chain of CWE-415 from
higher to lower abstraction type, according to the
amount of specific information in the CWE.

(Ding et al., 2024). Challenge 2: Transformer-
based models face input length limitation, while
current work tends to truncate inputs arbitrarily (Fu
and Tantithamthavorn, 2022; Fu et al., 2023). How-
ever, according to the dataset (Fan et al., 2020) they
used, 73% of the vulnerability codes were longer
than the limit their model could accept. This trun-
cation can hinder the model’s ability to effectively
learn from vulnerabilities whose features exceed
the input length limitation.

Solutions. In this paper, we propose a hierarchi-
cal contrastive learning framework, combined with
geometric spread and max-pooling optimization,
to address the above challenges. To address chal-
lenge 1, we use hierarchical contrastive learning to
learn the hierarchical characteristics of CWEs. In
the MITRE standard, CWE-IDs are organized hier-
archically3. This structure is designed to facilitate
research on CWEs. Figure 2 illustrates the hier-
archical relationships. We use CWE-415 (Double
Free) as the lowest level as an example. A precise
CWE will have a parent CWE that is more abstract.
The highest level of abstraction is called Pillar, in
the example CWE-664. Then the lower abstraction
is Class and Base. V ariant is the most detailed
and the lowest abstraction level. It is important
to note that these abstract classes do not strictly
adhere to a four-level hierarchy. For instance, a
V ariant CWE-ID can be a child of a Pillar and is
not necessarily restricted to being a child of a Base.
However, higher-level classes cannot be children
of lower-level classes. In recent years, researchers
have increasingly favored contrastive learning to
achieve better vector representations (Khosla et al.,
2020; Gao et al., 2021) in multi-class classification
tasks. The central idea of contrastive learning is to
obtain a sample representation and pull it closer to
the representations of similar samples (positives)

3https://cwe.mitre.org/data/definitions/1000
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while pushing it away from the representations of
other samples (negatives). It aims to ensure that the
representations themselves are meaningful rather
than merely optimizing the loss function. However,
according to Islam et al. (2021), supervised con-
trastive learning can lead to the problem of class
collapse — when every sample from the same class
has the same embedding. We use geometric spread,
which combines self-supervised contrastive loss
(He et al., 2020) with supcon loss (Khosla et al.,
2020) in supervised contrastive learning to get a
more transferable and robust representation. To ad-
dress challenge 2, we employ max-pooling (Ding
et al., 2020) to increase the length that the model
can accept. By using max pooling, richer feature
representations can be extracted from each data
segment to make up for the length limitation.

Evaluation. We conducted extensive experi-
mental evaluations of our framework. Similar
to previous work, we performed experiments on
the Big-Vul dataset (Fan et al., 2020). The re-
sults demonstrate that our framework improves
accuracy by 2.97%−17.90% and weighted-F1 by
0.98%−22.27% compared to the baselines. To as-
sess the performance of our framework in more
realistic scenarios, we utilized a more recent and
precise dataset, PrimeVul (Ding et al., 2024). On
this dataset, our framework achieved an accuracy
improvement of 4.98%−15.97% and a weighted-
F1 improvement of 2.92%−18.94%. These results
indicate that the model performs significantly better
under near-realistic conditions.

In summary, our contributions are as follows:

• Based on the relationships between CWE
types, we use hierarchical supervised con-
trastive learning to achieve a higher-quality
code representation.

• We implement geometric spread by merging
self-supervised contrastive loss with super-
vised contrastive learning to address the class-
collapse problem, resulting in more robust
representations.

• We use max-pooling to increase the input
length, allowing it to learn features of vulner-
abilities hidden beyond the transformer-based
model’s input length limitation.

• We conduct extensive experiments to demon-
strate that our model achieves significant im-
provements compared to baseline methods

and performs even better by using newer,
higher-quality datasets.

2 Related Work

2.1 Contrastive Learning

Contrastive learning focuses on identifying com-
mon features among similar instances and distin-
guishing differences between dissimilar instances.
Compared to general supervised learning, con-
trastive learning does not need to focus on intricate
details of instances. Instead, it only needs to learn
to distinguish data at an abstract semantic level in
the feature space. Initially, contrastive learning em-
ployed a self-supervised approach (Wu et al., 2018;
Oord et al., 2018; He et al., 2020), transforming
the samples themselves to obtain positive samples,
with other samples serving as negatives. Khosla
et al. (2020) showed that supervised contrastive
learning (where positives are from the same class
labels) could be a better approach when it has la-
beled datasets. Graf et al. (2021) pointed out that
supervised contrastive learning can lead to class
collapse. Islam et al. (2021) combined supervised
contrastive loss with self-supervised contrastive
loss to achieve geometric spread, resulting in im-
proved inferability. According to the characteristics
of multi-label data, Guo et al. (2022); Wang et al.
(2022) also used hierarchical contrast learning to
solve the problem of multi-label classification.

Currently, contrastive learning is widely applied
in computer vision (Chen et al., 2021) and natural
language processing (Gao et al., 2021), and there is
substantial work on its application in vulnerability
detection (Du et al., 2022, 2023) and commit-level
vulnerability type prediction (Pan et al., 2023; Zhou
et al., 2023). However, no work has applied it to
CWE classification yet.

2.2 Code Vulnerability Type Classification

The vulnerability classification task predicts the
vulnerability type based on a given vulnerability
statement or related information. Aota et al. (2020);
Das et al. (2021) have focused on automatically
classifying vulnerability types from textual descrip-
tions, but these descriptions may not always be
available. In the early stages of software develop-
ment, security analysts typically only have access
to the source code itself. Our main objective is to
propose an end-to-end approach that relies solely
on source code statements for vulnerability classifi-
cation.
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Recently, various deep learning methods have
been proposed to address the problem of vulnerabil-
ity classification (Fu and Tantithamthavorn, 2022;
Hin et al., 2022). However, most of the existing
work focuses on binary classification to predict
whether source code is vulnerable or not. Our ap-
proach, in contrast, is a multi-class classification
based on CWE categories. Fu et al. (2023) have
introduced a transformer-based hierarchical distil-
lation model to tackle the highly imbalanced vul-
nerability types. Wen et al. (2024) have employed
a model based on Graph Neural Network with an
adaptive re-weighting module. However, these ap-
proaches have not considered whether the vectors
produced by the models are semantically meaning-
ful, that is, whether similar types of samples are
closer in the vector space.

3 Methodology

In this section, we present the details of our novel
framework that uses hierarchical supervised con-
trastive learning to enhance the performance of a
transformer-based model in vulnerability classifi-
cation. The overview of the proposed method is
illustrated in Figure 3 and the model architecture is
detailed in Section 3.3.

3.1 Problem Formulation

We formalize vulnerability classification as a
multi-class classification problem. Let D =
{(xi, yi)}Ni=1 denotes the set of vulnerability code
including N code samples (xi, yi). In each sample,
xi = {wi, ..., wn} denotes the i-th vulnerable func-
tion in the form of raw source code and yi ∈ {0, 1}l
denotes the corresponding label where l is the to-
tal number of labels. It aims to learn a mapping
f : xi 7→ yi to predict the class of vulnerability.

3.2 Contrastive Loss Function

In supervised learning, cross-entropy loss is com-
monly employed to train model. In the context
of multi-class scenarios, the cross-entropy loss is
formulated as follows:

LCE = − log
exp(pi)∑C
c=1 exp(pc)

(1)

where C is the number of classes. However, as
previously discussed, numerous studies have in-
vestigated the limitations of this loss function, par-
ticularly when dealing with data characterized by
long-tailed distributions. This loss function may

lead to poor generalization and instability under
such conditions. A high-quality vector representa-
tion should bring vectors of similar classes closer
together on the hypersphere. Motivated by this intu-
ition, we use a supervised contrastive learning loss
function hierarchically, tailored to the hierarchical
characteristics of CWEs.

Contrastive learning derives positive and nega-
tive samples through certain proxy tasks. For in-
stance, the seminal work of self-supervised con-
trastive learning InstDisc (Wu et al., 2018), as-
sumes that each image represents a unique class,
with all other images belonging to different classes.
Subsequently, a model is used to extract features,
and the contrastive learning loss function is applied
to these features.

3.2.1 Self-Supervised Contrastive Loss
Contrastive learning was first widely used as un-
supervised (self-supervised) learning in computer
vision (He et al., 2020). Unsupervised contrastive
learning first divides the training sample into
batches of length n. Let one batch be defined as
{xi, yi}i=1...n. Then it performs data augmenta-
tion twice on each sample to obtain the augmented
batch {xi, yi}i=1...2n. Therefore, the batch size of
each training is 2n, which is called multiviewed
batch.

In each multiviewed batch, let j(i) be the index
of the corresponding augmented sample originat-
ing from the same i-th source sample. Then the
self-supervised contrastive loss can be described as
follows:

Lself = −
∑

i∈I
log

exp
(
zi · zj(i)/τ

)
∑

a∈A(i) exp (zi · za/τ)
(2)

Here z means the output of the model, τ is a scalar
temperature parameter and A(i) ≡ I \ {i}. This
loss function considers each sample as an anchor,
its corresponding augmented sample as positive,
and all other samples as negative.

3.2.2 Supervised Contrastive Loss
In order to make the features of similar images
close to each other, we need to use class infor-
mation to determine which samples belong to the
same class. Therefore, self-supervised contrastive
loss changes to supervised contrastive loss. The
basis of supervised contrastive learning changed
from "whether they come from the same sample"
to "whether they belong to the same class." The
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Figure 3: The architecture of our hierarchical contrastive learning framework.

loss function takes the following form:

Lsup
i =

−1

2Nỹi − 1

2N∑

j=1
j ̸=i

log
exp(zi · zj/τ)∑2N
k=1
k ̸=i

exp(zi · zk/τ)

where ỹi = ỹj
(3)

Here, loss will only be calculated when i and j
have the same class. Therefore, samples that have
the same class will have closer distances on the
hypersphere.

3.3 Model Architecture
Now we present the architecture of our hierarchical
contrastive learning framework. First, we expand
the CWE labels in the dataset into five levels ac-
cording to the MITRE standard, with the first level
being the most abstract one. Then, we input the
source code using Byte Pair Encoding (BPE) for
subword tokenization. We employ max-pooling to
allow the pretrained model, originally limited to
510 tokens, to process longer sequences. Once the
source code is processed through the model to ob-
tain representation vectors, we apply hierarchical
contrastive learning to bring the representation vec-
tors of similar classes closer within the hypersphere
while pushing the vectors of unrelated classes fur-
ther apart. Finally, after obtaining the enhanced
code representation vector, it passes through the
classification head to get the final CWE.

3.3.1 Label Expanding
Given that the CWE labels within the dataset span
multiple abstract levels in the MITRE standard, we

need a method to assign a set of five-level labels
to each sample to facilitate hierarchical contrastive
learning. Based on our research, the deepest CWE
level of the MITRE standard reaches 5. For exam-
ple, consider CWE-119: its parent is CWE-118,
and its grandparent is CWE-664, which is at the
most abstract level, Pillar. Thus, the five-level
labels for CWE-119 would be {664, 118, 119, 119,
119}. Note that for the lower levels of the original
label, the labels remain the same. This approach
allows the model to progressively refine from ab-
stract categories down to the specific current label.

3.3.2 Max-Pooling for Long-Text

Next, we input the source code into a pretrained
model. Transformer-based models have a limita-
tion on input length, and previous works (Fu and
Tantithamthavorn, 2022; Fu et al., 2023; Li et al.,
2018) have typically employed truncation meth-
ods. The main drawback of truncation is that it
discards the extra part of the text, which can ad-
versely affect the model’s performance. Pooling,
on the other hand, involves replacing the features
of one text with the most significant features from
that text, thereby receiving longer texts. Initially,
we segment the long text into several chunks based
on the model’s input limitation and place them in
the same batch. After obtaining the representation
vectors from the model, we apply pooling to the
vectors from the same group. Specifically, we use
max-pooling to retain the most prominent features,
resulting in a final vector that represents the long
text.
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3.3.3 Hierarchical Contrastive Learning
After obtaining the representation vectors, we first
perform contrastive learning based on the first-level
CWE labels for each sample. After several epochs,
the model totally learns the first-level CWE classes,
which do not exhibit a long-tail distribution. Next,
the model undergoes contrastive learning with the
second-level CWE labels, ensuring that samples
with the same first-level label converge and sepa-
rate mutually. Simultaneously, samples within the
same first-level labels maintain a close distance. Af-
ter five iterations, the model can separate all CWEs
in the hyperspace using contrastive learning.

However, pure supervised contrastive learning
can lead to the problem of class collapse, where
the model learns to distinguish between classes but
fails to differentiate between individual samples
within a class. To address this issue, we incor-
porate the cross entropy Loss and self-supervised
contrastive loss into the supervised contrastive loss,
following the approach of Islam et al. (2021). Thus,
the overall loss is a weighted average of these
losses, formulated as follows:

L = (1− λ− µ)LCE + λLsup
i + µLself (4)

Through hierarchical contrastive learning, we
obtain a higher-quality code vector representation.
The representation is then fed into a classification
head composed of a fully-connected layer. At last,
the framework output the final CWE through soft-
max.

4 Experiments

4.1 Experimental Settings
4.1.1 Datasets
In current learning-based code vulnerability tasks,
C/C++ have been major focuses due to their
widespread use in system-level programming and
the presence of well-known vulnerabilities like
buffer overflows. So, similar to previous studies
(Fu and Tantithamthavorn, 2022; Fu et al., 2023),
we use the Big-Vul dataset (Fan et al., 2020) for
experimental evaluation. Big-Vul extracts vulner-
ability statements from the Common Vulnerabil-
ities and Exposures (CVE) database by mining
348 open-source GitHub projects. Each vulner-
ability statement is accompanied by detailed infor-
mation, such as the CWE-ID, CVSS score (which
describes the relative severity of software flaw vul-
nerabilities), and even the location of the vulnera-
bility statement. Big-Vul comprises approximately

150,000 C/C++ functions, both vulnerable and non-
vulnerable. Given that our task is the classification
of vulnerability types, we derived a dataset of 8,782
vulnerable functions spanning 88 different CWE
categories. However, according to recent research
(Croft et al., 2023), popular vulnerability datasets,
including Big-Vul, suffer from issues like poor data
quality, high redundancy, and low label accuracy,
which significantly impact the evaluation of mod-
els. Therefore, we utilize a higher-quality dataset,
PrimeVul (Ding et al., 2024), to provide a more
accurate assessment of model performance under
real-world conditions. PrimeVul employs a novel
data labeling technique, achieving label accuracy
comparable to manual verification benchmarks. It
aims to obtain a more accurate assessment of the
performance of code pretrained models under real-
world conditions.

4.1.2 Baselines
We will compare our approach with several large
code pretrained language models, such as Code-
BERT (Feng et al., 2020), GraphCodeBERT (Guo
et al., 2020) and CodeGPT (Lu et al., 2021), since
our framework is based on these code language
models. Additionally, we will compare our method
with other vulnerability classification models, such
as VulExplainer (Fu et al., 2023) and LIVABLE
(Wen et al., 2024). VulExplainer introduces a
transformer-based hierarchical distillation model to
handle highly imbalanced CWE labels, while LIV-
ABLE employs a GNN-based model with an adap-
tive re-weighting module. Furthermore, we will
also compare our approach with models designed
for binary vulnerability detection tasks, including
Devign (Zhou et al., 2019) and ReGVD (Nguyen
et al., 2022) to verify whether these methods can be
transferred to the vulnerability classification task.

4.1.3 Hyperparameter Setting
We divided the dataset into training, validation, and
test sets in an 8:1:1 ratio. For the hyperparameters
of the baseline approaches, we followed the opti-
mal settings specified by the original authors. Re-
garding our hierarchical contrastive learning frame-
work, each level was trained for 300 epochs. Due
to GPU memory limitations and to ensure that the
batch size was not too small, we split the source
code into two segments, each 512 tokens in length.
These segments were then processed using max-
pooling before being fed into the model, effectively
doubling the model’s length limit. For the propor-
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Accuracy of 5 Levels (Big-Vul) Weighted F1 Accuracy Weighted F1Methods
Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 (Big-Vul) (PrimeVul) (PrimeVul)

CodeBERT 71.26 68.55 66.08 64.56 63.19 43.07 48.98 28.54
GraphCodeBERT 70.01 69.87 65.73 63.04 62.27 62.74 45.77 35.90

CodeGPT 69.23 69.06 67.13 64.23 63.08 62.30 48.13 36.01
VulExplainer 72.21 70.55 69.16 66.85 66.09 62.93 53.14 38.32

LIVABLE 71.90 70.04 68.31 66.52 64.01 64.36 53.04 36.02
Devign 62.11 58.42 55.02 53.14 51.16 48.71 42.15 22.30
ReGVD 65.24 60.40 59.77 58.67 57.52 56.45 48.35 24.04

Ours (CodeBERT) 75.76 73.94 72.81 70.91 69.06 65.34 58.12 41.24
Ours (GraphCodeBERT) 73.26 71.12 71.08 69.42 67.13 62.94 56.60 38.07

Ours (CodeGPT) 72.13 70.14 69.87 68.16 66.43 63.86 54.35 40.98

Table 1: Results of our hierarchical contrastive learning method compared with the baselines. Tier 1-5 means the
five-level CWE labels. Ours (CodeBERT) means we use CodeBERT to be the pretrained code language model.

Model HCL USCL MP Acc(B) Acc(P)

CodeBERT

× × × 63.19 48.98
✓ × × 66.92 53.13
✓ ✓ × 68.31 57.10
× × ✓ 63.24 49.42
✓ × ✓ 67.03 53.49
✓ ✓ ✓ 69.06 58.12

Table 2: Experimental results of ablation study. HCL
denotes hierarchical contrastive learning. USCL denotes
the extra unsupervised contrastive learning loss. MP
denotes max-pooling to expand input length. Acc(B)
denotes the accuracy in Big-Vul, and Acc(P) means the
accuracy in PrimeVul.

tions of the components in the loss function, we
set λ to 0.3 and µ to 0.2, ensuring that the cross-
entropy loss accounted for 50% of the total loss. τ
is assigned a value of 0.5. Our experiments were
conducted on a server equipped with an NVIDIA
RTX 3090 GPU with 24GB of RAM.

4.1.4 Evaluation Metric
We use Accuracy and the weighted F1 score to
evaluate the model’s performance. Accuracy rep-
resents the proportion of correctly classified in-
stances among the total instances. Let TP (True
Positive) represent the number of positive exam-
ples predicted by the model, and the actual label is
also positive, so as FP (False Positive), TP (True
Positive), and FN (False Negative). The Accuracy
is expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

The F1 score is a commonly used metric for eval-
uating the predictive performance of a model in
binary classification tasks, considering both preci-
sion (P = TP

TP+FP ) and recall (P = TP
TP+FN ). F1

score is the harmonic mean of precision and recall
(F1 = 2 · PR

P+R ). The weighted F1 score calculates
the F1 score for each class independently and then
takes a weighted average based on the number of
instances in each class. This approach addresses
class imbalance issues and is defined as:

Weighted-F1 =
N∑

i=1

wi · F1i, wi =
Ni

N
(6)

4.2 Results
Table 1 presents our experimental results. We ap-
plied the proposed hierarchical contrastive learning
framework to three pretrained code language mod-
els and compared their performance with previous
baseline methods on two datasets. The comparison
metrics include Accuracy and weighted F1 Score.
On the Big-Vul dataset, our hierarchical contrastive
learning based on CodeBERT achieved a final ac-
curacy of 69.06%, outperforming all baselines by
2.97%−17.90%. Additionally, we evaluated the ac-
curacy at each level, finding that each level reached
optimal performance. The weighted F1 score also
reached the highest value of 65.34%, surpassing all
baselines by 0.98%−22.27%.

Furthermore, we conducted experiments on the
PrimeVul dataset, which is of higher quality. Since
PrimeVul partially tackles the problems of poor
data quality, low label accuracy, and high duplica-
tion rates found in Big-Vul, the model outcomes
are less inflated by these issues and better represent
real-world conditions. While the performance of
all models decreased on this dataset, the accuracy
of the framework applied to CodeBERT reached
58.12%, exceeding baselines by 4.98%−15.97%.
The weighted F1 score was 41.24%, which was
2.92%−18.94% higher than existing baselines,
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showing a more significant improvement compared
to the results on Big-Vul.

4.3 Ablation Study
In this section, we conduct an ablation study to
systematically evaluate the contribution of each
component in our proposed model and to under-
stand their impact on overall performance. As
shown in Table 2, we performed ablation exper-
iments on the three key components of the model:
hierarchical contrastive learning, max-pooling, and
self-supervised contrastive learning for class col-
lapse optimization. It is important to note that
self-supervised contrastive learning is built on top
of hierarchical contrastive learning. We use accu-
racy as the metric to highlight changes in model
performance.

Hierarchical Contrastive Learning: By cpmpar-
ing row 2 to 1 and row 5 to 4 in Table 2, it can
be observed that adding hierarchical contrastive
learning increases the accuracy on the Big-Vul and
PrimeVul datasets by 3.73% and 4.15%, respec-
tively, without max-pooling. With max-pooling,
the increases are 3.79% and 4.07%, respectively,
which is a significant improvement. This indicates
that hierarchical contrastive learning greatly en-
hances the model’s performance.

Max-Pooling: By comparing row 4 to 1, row 5 to 2,
and row 6 and 3 in Table 2, it is evident that the use
of max-pooling improves the average accuracy by
0.47%. This demonstrates that max-pooling also
contributes positively to the model’s effectiveness.

Class Collapse Optimization: By comparing row
3 to 2 and row 6 to 5 in Table 2, it can be seen
that adding the self-supervised contrastive learning
loss increases the accuracy by an average of 1.71%
on the Big-Vul dataset and by 4.3% on the higher-
quality PrimeVul dataset. This improvement sug-
gests that self-supervised contrastive learning helps
to better disperse code vectors, thereby avoiding
the problem of class collapse.

Additionally, we tested the model’s sensitivity to
hyperparameters. As shown in Figure 4, we first
determined the optimal value for the hyperparame-
ter λ, which represents the proportion of the con-
trastive learning loss in the total loss function. We
found that a value of 0.5 yields the highest accu-
racy, and other values do not significantly impact
the model’s performance. Since the hyperparam-
eter µ is an enhancement based on the supervised
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Figure 4: Model’s sensitivity to loss weights λ and µ.

Prompt Setting R(Acc) T(Acc) F(Acc)

Zero-shot 22% 25% 16%
Two-shot 34% 23% 27%

Chain-of-Thought 24% 30% 25%

Table 3: Experimental results of GPT-4o by using
zero-shot prompting, two-shot prompting and chain-of-
thought prompting. R(random) denotes 100 randomly
selected samples from the entire dataset, T(true) repre-
sents 100 randomly selected samples correctly predicted
by our model, and F(false) indicates 100 randomly se-
lected samples that were incorrectly predicted.

contrastive learning loss, we only tested its effect
in the range of 0 to 0.5. The results show that the
value of µ between 0.1 and 0.5 does not greatly
affect the performance of the model. The results
indicate that our model is robust to hyperparameter
settings.

The ablation study demonstrates that each com-
ponent of our proposed model contributes to its
performance. Hierarchical contrastive learning
is particularly crucial, while self-supervised con-
trastive learning and max-pooling also play signif-
icant roles in enhancing model performance. We
also verified that the model is not sensitive to the
hyperparameter ratio of the contrastive learning
loss.

4.4 Prompt Learning
Given the recent advancements in large language
models, in this section, we compare our model with
the popular large language model ChatGPT (GPT-
4o) (OpenAI, 2023) to evaluate the effectiveness
of zero-shot learning for the vulnerability classifi-
cation task. we conducted experiments with three
settings: zero-shot prompting, two-shot prompting
and chain-of-thought prompting. We use the same
samples as those in our paper. We selected 100
samples each. We used the following prompt(zero-
shot): "Please identify the CWE type of the follow-
ing vulnerable function: {code}". The other two
prompts will show in the appendix.
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As shown in Table 3, GPT-4o only successfully
predicted 22%, 25% and 16% of the samples in the
R, T and F sample sets by using zero-shot prompt-
ing. After the simple prompt design, the accuracy
of LLM predictions did improve compared to zero-
shot. However, the accuracy remains poor. The re-
sults show that the state-of-the-art language model,
without fine-tuning specifically for the vulnerabil-
ity classification task, does not perform well. This
demonstrates that our model has a significant ad-
vantage in this specific task.

5 Conclusion

We propose a multi-class vulnerability type clas-
sification framework based on hierarchical con-
trastive learning to bring the vector representations
of highly related CWEs closer together. Addi-
tionally, we employ geometric spread to address
the class collapse problem and max-pooling to re-
ceive a longer input length, thereby enhancing the
model’s robustness. The results demonstrate that
our hierarchical contrastive learning framework
outperforms current baseline methods across vari-
ous metrics. This improvement is primarily due to
advancements in code representation provided by
our method and these better quality vectors can be
used in subsequent works.

Limitations

Finally, we outline the current limitations of our
approach to guide future improvements. First,
learning-based methods are highly dependent on
the quality of the dataset. Existing vulnerability
classification datasets still suffer from high error
rates and significant redundancy, indicating an ur-
gent need for the release of a high-quality dataset.
Additionally, about 26% of the code samples ex-
ceed the 1024 token length limit we set, according
to our statistics. So our method still struggles with
these very long vulnerability codes, suggesting that
a better solution should be designed to address the
issue of handling long texts in transformer-based
models. In the future, we plan to process source
code in a way that effectively exposes information
related to vulnerabilities, allowing large language
models to better learn the relevant features. Also,
we aim to utilize other information related to vul-
nerability code, such as CVE descriptions when
available. By integrating multiple sources of in-
formation, it could be possible for the model to
distinguish between different CWEs more accu-

rately.
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A Appendix

The following is the two-shot prompting template:

You are a security expert that is good at static
program analysis.
——–
Please analyze the following code:
static char *clean_path(char *path)
{...}
Please indicate which CWE type this vulnerable
code belongs to (Only reply with CWE-ID. Do not
include any further information):
CWE-119
——–
Please analyze the following code:
int64 ClientUsageTracker::GetCachedHostUsage
{...}
Please indicate which CWE type this vulnerable
code belongs to (Only reply with CWE-ID. Do not
include any further information):
CWE-118
——–
Please analyze the following code:
<INSERT NEW CODE HERE>
Please indicate which CWE type this vulnerable
code belongs to (Same as above):

The following is the chain-of-thought prompting
template:

You are a security expert that is good at static
program analysis.
——–
Please analyze the following code:
<INSERT NEW CODE HERE>
Please indicate which CWE type this vulnerable
code belongs to (Only reply with CWE-ID. Do not
include any further information):
——–
Let’s think step-by-step.
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