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Abstract

Direct Preference Optimization (DPO) has
emerged as a prominent algorithm for the di-
rect and robust alignment of Large Language
Models (LLMs) with human preferences, of-
fering a more straightforward alternative to
the complex Reinforcement Learning from Hu-
man Feedback (RLHF). Despite its promis-
ing efficacy, DPO faces a notable drawback:
“verbosity”, a common over-optimization phe-
nomenon also observed in RLHF. While pre-
vious studies mainly attributed verbosity to bi-
ased labels within the data, we propose that
the issue also stems from an inherent algorith-
mic length reliance in DPO. Specifically, we
suggest that the discrepancy between sequence-
level Kullback—Leibler (KL) divergences be-
tween chosen and rejected sequences, used
in DPO, results in overestimated or underes-
timated rewards due to varying token lengths.
Empirically, we utilize datasets with different
label lengths to demonstrate the presence of
biased rewards. We then introduce an effec-
tive downsampling approach, named SamPO,
to eliminate potential length reliance. Our ex-
perimental evaluations, conducted across three
LLMs of varying scales and a diverse array of
conditional and open-ended benchmarks, high-
light the efficacy of SamPO in mitigating ver-
bosity, achieving improvements of 5% to 12%
over DPO through debaised rewards!.

1 Introduction

Reinforcement Learning from Human Feedback
(RLHF) is a crucial strategy for effectively align
Large Language Models (LLMs) with human
minds (Zhao et al., 2023a; Yang et al., 2023; Pan
et al., 2023b), showcasing significant improve-
ments of LLM’s instruct-following capability com-
pared with the other two popular approaches: pre-
training and supervised fine-tuning (SFT). In fact, a
“Equal Contribution.

'Our code can be accessed at: https://github.com/
LuJunru/SamP0/.

series of leading LL.Ms have adopted RLHF as the
final stage of their entire training pipelines (Ouyang
et al., 2022; Achiam et al., 2023; Bi et al., 2024).

Nevertheless, traditional RLHF involves sev-
eral intricate multi-stage steps, typically starting
with fine-tuning a reward model that captures
complex human intuition (Bai et al., 2022), fol-
lowed by optimizing LLMs to maximize prefer-
ence scores. Therefore, the quality of the reward
model is crucial. However, modeling elusive hu-
man intuition is inherently difficult (Wang et al.,
2024). On the contrary, Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) proposed
to re-parameterize the reward model, integrating
preference feedback from online rewards into of-
fline labels. In specific, DPO employs the Bradley-
Terry model (Bradley and Terry, 1952) to maxi-
mize implicit rewards via pairwise offline pref-
erence labels. The implicit reward is mathemat-
ically equivalent to the discrepancy in sequence-
level Kullback—Leibler (KL) divergences (Kullback
and Leibler, 1951) between chosen and rejected
labels. The KL divergence for each label is calcu-
lated based on probability outputs from the fine-
tuning policy model and a frozen reference model.
DPO eliminates the need for complex prefix fine-
tuning of an external reward model, while main-
tains performance comparable to RLHF (Dubois
et al., 2024b; Hou et al., 2024).

Despite its effectiveness, DPO faces several
notable challenges, including issues of overfit-
ting (Azar et al., 2023; Jung et al., 2024), high
computational costs (Ethayarajh et al., 2024; Hong
et al., 2024), and verbosity (Hou et al., 2024; Park
et al., 2024). This paper specifically focuses on
addressing the “verbosity” issue.

Traditional multi-stage RLHF methods argue
that due to a statistical bias in length distribution,
that is, where preferred labels tend to be longer
than rejected preference labels (Singhal et al., 2023;
Park et al., 2024), the reward model trained on
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Figure 1: Down-Sampling strategy helps mitigate the potential length reliance, and thus improves DPO.

such preference data inherently exhibit a length
bias (Shen et al., 2023). Therefore, subsequent fine-
tuned policy model exploit this bias as a shortcut to
achieve higher reward scores by generating longer
responses (Gao et al., 2023a), without necessarily
improving quality (Kabir et al., 2023; Dubois et al.,
2024b). Various regularization approaches have
been proposed to mitigate this inherent bias within
reward models (Ramamurthy et al., 2022; Coste
et al., 2023; Moskovitz et al., 2023; Chen et al.,
2024b). On the other hand, although DPO does not
explicitly use a reward model, the length distribu-
tion bias inherent in the offline preference labels
still contributes to the verbosity issue (Hou et al.,
2024; Rafailov et al., 2024). Analysis suggests that
policy models trained using DPO tend to generate
responses that are almost twice the length of the
labeled data (Park et al., 2024).

In this paper, we propose that, in addition to
the length bias in the data, DPO exhibits a hidden
algorithmic dependence on response length. As
illustrated in the upper portion of Figure 1, the loss
function in DPO is based on the discrepancy be-
tween sequence-level KL divergence, which can
also be computed and aggregated at the token-level.
It is evident that discrepancies between chosen la-
bel y,, and rejected label y; lead to an inadver-
tent reliance on auxiliary length features: training
samples with longer chosen labels than rejected
ones lead to overestimated rewards during training,
while those with shorter chosen labels result in un-
derestimated rewards. Therefore, overestimated re-

wards contribute more significantly to gradient op-
timization, ultimately exacerbating verbosity. We
believe this algorithmic dependence on response
length is a unique drawback of DPO, since the ex-
plicit rewards in RLHF typically manifest as scalar
values (Ouyang et al., 2022).

We propose that addressing this reliance on re-
sponse length can be effectively achieved through a
straightforward down-sampling method. Illustrated
in the middle of Figure 1, this approach involves
down-sampling equal token-level probability fea-
tures for computing regularized KL divergences.
Our contributions in this paper are threefold:

* We analyze the algorithmic dependence on
response length in DPO, revaling how it re-
sults in overestimated or underestimated re-
wards. Through decomposition experiments
using datasets with varying label length, we
empirically demonstrate the biased rewards.

* We propose a lightweight approach, called
SamPO, to mitigate the biased length reliance
in DPO. By simply down-sampling equal
probability features at the token-level, we can
apply DPO with regularized KL divergences.

* We validate our method using three different
LLMs of varying scales. Compared to DPO,
SamPO significantly reduces verbosity. Lever-
aging debaised rewards, we achieve signif-
icant improvements across five conditioned
and three open-ended benchmarks, as de-
picted in the lower section of Figure 1.
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2 Related Work

Optimization from Human Preference aims to
align neural models with human minds. As a sem-
inal work, (Stiennon et al., 2020) collected hu-
man preferences on 123k pairs of summary outputs,
then trained a reward model that guides the GPT-3
model (Brown et al., 2020) to produce more co-
herent and human-preferred summaries. (Ouyang
et al., 2022) then further scaled similar pipeline
with 1M diverse text instructions, and reported
that outputs from the 1.3B parameter InstructGPT
model were preferred to outputs from the 175B
GPT-3 model, according to downstream human
evaluation. RLHF has become an essential part
of aligning LLMs (Touvron et al., 2023; Bi et al.,
2024; Bai et al., 2023; Young et al., 2024). How-
ever, as it follows a multi-stage training strategy,
and heavily relays on the quality of reward model,
RLHF’s training cost and stability are widely criti-
cized (Zheng et al., 2023; McKinney et al., 2023).
Therefore, DPO came into being, providing a stable
alternative that does not rely on an explicit reward
model (Rafailov et al., 2023). It has been proved
that DPO can achieve the same alignment effect as
RLHF (Ivison et al., 2023; Hou et al., 2024).
Over-optimization in RL is a well-known obsta-
cle (Skalse et al., 2022; Pan et al., 2023a; Casper
et al., 2023; Zheng et al., 2023), which refers to
the phenomenon that feedback scores from the re-
ward model are getting higher, but the updated pol-
icy model produces lower quality responses. And
one particularly noticeable low-quality feature is
verbosity. It is general to blame for exploitation
of reward model (Casper et al., 2023; Gao et al.,
2023a), and thus various regularization approaches
have been proposed, including uncertainty-based
regularization (Coste et al., 2023; Zhai et al., 2023),
composite reward models (Moskovitz et al., 2023),
and length decorrelation (Chen et al., 2024b). How-
ever, since the reward model is eliminated in DPO,
none of the above approaches can be directly ap-
plied. Herein, specific methods are introduced,
(Park et al., 2024) introduced a pairwise length reg-
ularization term to dampen the verbosity trends,
and SimPO (Meng et al., 2024) used average prob-
ability to eliminate length reliance.

In this paper, we present that the verbosity is-
sue in DPO is further related to algorithmic biased
length reliance, which is never analyzed in previ-
ous literature. And this drawback can be effectively
handled via down-sampling over KL divergence.

3 SamPO: Down-Sampled DPO

In this section, we first give a brief introduction of
DPO’s optimization target (§3.1), then dive into fur-
ther analysis of its potential length reliance (§3.2).
Subsequently, we present SamPO, which intuitively
regularizes the biased length-specific reward (§3.3).

3.1 Preliminary Background of DPO

DPO implements direct RLHF based on offline
preference data and an offloaded reward model.
Specifically, DPO first re-parameterizes the reward
model in multi-stage RLHF as follows:

mo(y|z)

ro(x,y) = Blog PP

+ BlogZ(z) (1)
where 74, g and 7, denote the reward model,
the policy model, and the reference model, respec-
tively. Both my and 7.y are usually initialized
from the same SFT model. While 7y is subject to
further optimization during DPO, 7. is usually
frozen. Z(x) is the partition function, and 3 is
a hyperparameter that adjusts the intensity of re-
wards. DPO incorporates the Bradley-Terry model
to predict preferences:

exp(T¢ ($7 yw)) (2)

Po(yw = yilz) = exp(re (2, yuw)) + exp(re (2, y1))

where a preference triplet (x, y,,, y;) consists of a
prompt instruction @, a chosen response y,,, and
a less preferred response y;. According to the
Bradley-Terry model, the preference probability
Py can be estimated via pairwise comparison. The
loss function of DPO is defined as:

Lapo(70; Tref) = —E(aypy)~nlloga(A)] (3)
where:

A = Blog T0Wule) _ gy molule)
Wref(yw|l‘) 7"'ref(ylm)

In this context, o stands for sigmoid function, and
D denotes the entire pairwise preference dataset.
The implicit reward A in Eq.4 is formulated as
the discrepancy between the chosen KL diver-

gence log% and the rejected KL diver-
gence log % Each KL divergence is cal-

culated based on the tokens in the response y. Con-
sidering Eq. 3, DPO’s gradients can be written as:

VoLapo(To; Tref) = —E(z,y, ,y)~n[Bo(=A)M]  (5)

M = Vylog (yw|z) — Vologn(y]z)  (6)
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Figure 2: The disparity in pairwise responses, illustrated by typical examples, forces DPO to overestimate or

underestimate the actual rewards. In the upper sub-figure (a), we present DPO’s chosen reward } | log — ToWulz) ang

ref (Yuw|z)
rejected reward Y log % with red and purple curves, respectively. The reward for each response is calculated

as the sequence-level KL divergence, which is derived from the token-level log probability ratios (illustrated by

and blue bars). Therefore, the difference between these two curves illustrates the implicit reward target in
DPO, as shown in Eq. 7. Averaged and normalized DPO results are displayed in the lower-left sub-figure (b), while
our SamPO is illustrated in lower-right sub-figure (c).

where M is a discrepancy term that leads the pol-
icy model 7y to increase the likelihood of the cho-
sen response Y., and decrease the likelihood of the
rejected response y;. The term A acts as a scaling
factor for the intensity of M.

3.2 Biased Length Reliance in DPO

DPO’s loss and gradient are computed at the
sequence-level. When calculating the KL term

log ¢WI2)_ 'DPQ treats the probabilities of indi-
Tref (ylx)

vidual tokens as discrete samples. We can express
Eq. 4 at the token-level (Proof is in Appendix A):

o yw"’r
A = 1
/32 og —— s mef yl|;r)

Tre s (Yiv|)

“comparable reward”

where T, and T} denote the number of tokens from
the first to the ¢-th positions in the chosen response
Y., and the rejected response y;, respectively. Sim-
ilarly, we rewrite Eq. 6 as:

Tw T,
M=V, logm(y,|z) — Vo Y _logm(yilz) (8)

t=1 t=1
From this, we can intuitively understand how the
difference in length between the chosen response
Yy, and the rejected response y; affects the loss and
the gradient. As illustrated in sub-Figure 2(a), a
is achieved if y,, and y; have
the same length, allowing DPO to effectively learns
the quality difference. However, if y,, is much
longer than y;, the larger number of tokens in y,,

1050



may result in an “overestimated reward” in Eq. 7,
contributing disproportionately to the gradient up-
dates described in Eq. 5 and 8. Conversely, if y,, is
shorter than y;, DPO could “underestimate reward”
and incorporate fewer gradients, even if y,, is of
better quality. This bias towards length means that
DPO tends to favor longer, seemingly acceptable
responses over shorter, well-formed ones during
training, potentially leading to verbose outputs.

3.3 Debiased KL Divergence

In the following content, we explore two common
strategies to mitigate the dependence on sequence
length: averaging and sampling.

Averaging modifies the sequence-level KL diver-
gence to use a marginally averaged reward, which
serves as a basic form of length regularization. This
adjustment modifies Eq. 7 as follows:

Z log meln) KMy il
= B m i) 2 OB () ©
B Tl 71|

The averaging process can help remove the influ-
ence of length. However, as shown in the left corner
of Figure 2(b), there lies a scale difference between
the marginally averaged reward and the original
sequence-level reward. To address this, we scale
the marginal reward with a dynamic scaling factor
%, which is the average length of the chosen
response y,, and the rejected response y;.

Sampling involves selecting the same amount of
tokens from both the chosen and the rejected re-
sponses, and then calculating the down-sampled
sequence-level KL divergence for the implicit re-
ward. This modifies Eq. 7 to:

mo (Y1 \m

™o yw‘m
A= ﬁZlog _/le Trer (YilT)  (10)

Tref (Yiu|)
Ty = min(Ty, T1), y* ~ Uniform(T,,, {y}")

where T, is equal to the minimum token length
of (T, T}), and 4 is down-sampled from all to-
kens {y”'} uniformly. Eq. 10 is consistent with the
corresponding reward term shown in the middle
of Figure 1. In addition, we discuss the impact of
sampling randomness in Appendix E.

Figure 2(b) and (c) demonstrate that both aver-
aging and sampling can produce length-debiased
rewards that are comparably effective. However,
simple averaging diminishes the variance feature
among tokens. Consequently, we opt for the down-
sampling strategy in our proposed SamPO method.
This decision is validated in Section 5.

4 Experimental Setup

In this section, we start by introducing our datasets
(§4.1, §4.2), followed by the baselines (§4.3,
§4.4), and then provide an overview of our ex-
perimental design (§ 4.5).

4.1 Training Datasets

We leverage three independent preference datasets
for training. Two of these are consistent with the
original DPO (Rafailov et al., 2023): the 161k HH-
RLHF data (Ganguli et al., 2022), and the 92.8k
TL;DR data (Volske et al., 2017). Additionally, we
include the 61k binarized UltraFeedback data (Cui
et al., 2023) that has been utilized in subsequent
works (Ivison et al., 2023; Meng et al., 2024) fol-
lowing DPO. Each of these datasets comes with an
evaluation set for cross-validation during training.

4.2 Evaluation Benchmarks

Following DPO, for models trained on HH-RLHF
or TL;DR, we randomly select 256 samples from
their respective evaluation sets for final testing. We
report the win rate between the response gener-
ated by the fine-tuned policy model gy = 7y (@ test)
and the response from the baseline SFT model
Yref = Tref(Tiest), judged by GPT-4 (Achiam
et al., 2023). For models trained with UltraFeed-
back, we use five conditional and one open-ended
generation benchmarks. The conditional bench-
marks, along with their in-context examples, are:
GSMSK in 8-shot (Cobbe et al., 2021), IFEval in 3-
shot (Zhou et al., 2023), PiQA in 3-shot (Bisk et al.,
2020), MMLU in 0-shot (Hendrycks et al., 2021),
and Truthful QA in 3-shot (Lin et al., 2022). The
open-ended benchmark is AlpacaEval2 (Li et al.,
2023). We report match accuracy for the condi-
tional benchmarks, and the length-debiased GPT-4
win rate for AlpacaEval2 (Dubois et al., 2024a).
For additional details, refer to Appendix B.

4.3 Foundation Models

In our experiments, we include LLMs of three dif-
ferent sizes: Pythia-2.8B (Biderman et al., 2023),
Llama3-8B-Instruct (Al@Meta, 2024), and Tulu2-
13B-SFT (Ivison et al., 2023). Details of these
LLMs, including their hyperparameters and associ-
ated costs, are provided in Appendix C.

4.4 Baselines

Several variants of DPO have been proposed, which
can be categorized into three main types: (1) Re-
duce cost. Although DPO is robust, the preparation
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of high-quality pair-wise preference labels and the
requirement to run with two large models make
DPO costly. To address this, KTO (Ethayarajh
et al., 2024) proposed to use non-pairwise pref-
erence data. ORPO (Hong et al., 2024), CPO (Xu
et al., 2024), and SimPO (Meng et al., 2024) in-
troduced reference-free losses that allow optimiza-
tion with a single policy model; (2) Alleviate over-
fitting. IPO (Azar et al., 2023) analyzed the risk
of overfitting, and introduced a square loss to re-
shape the monotonic DPO loss. TDPO (Zeng et al.,
2024) incorporated forward KL divergence con-
straints for each token, improving alignment and
diversity. BCO (Jung et al., 2024) and NCA (Chen
et al., 2024a) offered strategies to reduce noise
from pairwise preference responses; (3) Overcome
verbosity. Park et al. (2024) introduced a pairwise
length regularization term to counter verbosity.
SimPO (Meng et al., 2024) used average proba-
bility to eliminate dependency on sequence length.

We select methods that focus on noise removal
or length normalization, and have shown relatively
positive testing results as our final baselines: Hy-
brid DPO+SFT, TDPO (Zeng et al., 2024), Length-
normed DPO (Park et al., 2024), BCO (Jung et al.,
2024), SimPO (Meng et al., 2024). Particularly,
Hybrid DPO+SFT refers to the multi-task learn-
ing pipeline where DPO is applied to pairwise re-
sponses and SFT is applied to the chosen response
at the same time, which is a common practice (Hua
et al., 2024; Lu et al., 2024).

4.5 Experimental Designs

In general, we design three groups of experiments:

(1) Presence of biased length reliance. We ex-
tract two 27k subsets from the UltraFeed-
back only by response length. One is named
UltraFeedback-long, in which the chosen re-
sponse of each data must be longer than the
rejected response. The other one is named
UltraFeedback-short, and as the name sug-
gests, it contains a shorter chosen response.
We use these subsets for biased reward exhibi-
tions.

(2) Preliminary Study of DPO and variants.
Given that there are many variants of DPO,
and they often use their own hyperparameters,
we first conduct a preliminary study to align
their performance under the same conditions.
This study helps us select several robust base-
lines. The results are reported in Appendix D.

Rewards curve of UltraFeedback-long, -short and -all

=3
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Figure 3: Trends of DPO’s implicit reward (Eq. 7), when
fine-tuned with UltraFeedback-long, -short and -all sets.
Three debiased rewards are produced by our SamPO.

| GSMSK | IFEval | PiQA | MMLU | TruthfulQA | Avg.

long | 4124 | 3789 | 81.28 | 5586 | 3868 | 50.99
short | 3450 | 6.00 |77.09 | 5487 | 3048 | 4059
all | 4261 | 4376 | 8177 | 5585 | 3586 | 51.97
long* | 42.61 | 38.01 | 8118 | 5586 | 36.11 | 5075
short* | 4170 | 33.93 | 81.18 | 555 | 3635 |49.73
all* | 4268 | 44.12 | 8128 | 558 | 4015 | 5281

Table 1: Performance of models in Figure 3. The * mark
stands for the SamPO’s debiased rewards.

(3) Experiments with various LLMs. Similar
to DPO, we use Pythia-2.8B to train and test
SamPO on HH-RLHF or TL;DR; on the other
hand, following relevant studies (Ivison et al.,
2023; Hong et al., 2024), we use Tulu2-13B-
SFT and Llama3-8B-Instruct to train on Ultra-
feedback and verify SamPO on public bench-
marks. Also, literature reports that iteratively
updates the frozen reference model ..y can
obtain further gains (Gorbatovski et al., 2024;
Zhang et al., 2024). Thus, we combine it with
SamPO to present Iterative SamPO.

5 Experimental Results

In this section, following the above designs, we
first report the group experiments of length reliance
(§5.1), then present comparison studies against
strong baselines (§ 5.2). We discuss quantitative
results in the main body. We leave more ablation
studies and case analysis in Appendix E, F, and H.

5.1 Group study of length reliance

Figure 3 illustrates the trends of DPO’s implicit re-
ward on the same test set when we fine-tune the
same Tulu2-13B-SFT model with different subsets
of UltraFeedback. We report testing performance
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Tulu2-13B-SFT

Methods ‘ GSMS8K IFEval PiQA MMLU TruthfulQA Avg. | Alpaca2 LC Alpaca2 Len./Token
Tulu2-13B-SFT (Ivison et al., 2023) 40.56 37.17 8139 5553 33.78 49.69 5.09 9.99 262
Tulu2-13B-DPO (Ivison et al., 2023) 42.99 4245 8128  56.07 41.86 52.93 11.45 13.7 382

DPO (Rafailov et al., 2023) 43.44 43.17 81.66  56.08 39.66 52.80 | 10.66 15.02 372
Iterative DPO 42.08 4496 8139  56.02 40.15 52.92 12.17 14.24 400
Hybrid DPO+SFT 41.85 4436 81.28  56.15 40.02 52.73 7.66 13.45 308
TDPO (Zeng et al., 2024) 41.39 4125 8134 5578 36.11 51.17 6.86 11.45 290
Length-normed DPO (Park et al., 2024) 40.71 458  80.85 5585 39.66 52.57 7.47 13.40 250
BCO (Jung et al., 2024) 42.68 4373 8145  56.41 39.66 52.79 9.07 13.29 316
SimPO (Meng et al., 2024) 29.57 47.24 8139  56.10 38.31 50.52 5.21 7.84 336
SamPO (ours) 41.55 4532 80.85 55.88 41.37 52.99 11.77 17.6 339
Iterative SamPO (ours) 42.08 46.28 81.07  56.12 41.25 53.36 | 14.58 17.52 347
DPO-SANorm (ours) ‘ 42.15 4436  81.07  56.00 38.43 52.40 ‘ 9.21 14.53 283

| Llama3-8B-Instruct

Methods ‘ GSMS8K IFEval PiQA MMLU TruthfulQA Avg. ‘ Alpaca2 LC Alpaca2 Len./Token

Llama3-8B-Instruct (AI@Meta, 2024) ‘ 75.06 4940 80.69  63.85 36.47 61.09 ‘ 22.57 22.92 421
DPO (Rafailov et al., 2023) 75.59 51.80 81.94 64.06 40.39 62.76 | 23.34 23.20 422
Iterative DPO 74.91 5252 81.66  64.02 39.90 62.60 | 23.92 25.50 403

Hybrid DPO+SFT 75.59 6583 81.34 63.54 39.78 6522 | 20.17 20.62 380

TDPO (Zeng et al., 2024) 75.36 5132 8123  63.54 38.07 61.90 | 23.66 24.57 408
Length-normed DPO (Park et al., 2024) 76.12 46.76  81.39  64.09 40.76 61.82 | 24.04 27.44 377
BCO (Jung et al., 2024) 76.19 50.60 81.66  63.99 39.90 6247 | 24.72 2481 421
SimPO (Meng et al., 2024) 75.06 60.43 81.83 6343 39.53 64.06 | 26.82 31.29 375
Llama3-8B-Ins.-SimPO (Meng et al., 2024) ‘ 72.93 46.28 78,51  61.99 42.96 60.53 | 39.72 43.42 387
SamPO (ours) 76.56 57.03 81.72  64.00 41.06 64.18 | 28.97 32.01 375

Iterative SamPO (ours) 77.81 60.55 81.18  64.12 44.07 65.55 | 30.68 35.14 377

Table 2: Qualitative results of fine-tuning two LLMs with DPO, several variants and our SamPO. We use the
same UltraFeedback dataset and keep almost all hyperparameters the same for each LLM group. Specifically,
Tulu2-13B-SFT and -DPO, Llama3-8B-Insturct and -Ins.-SimPO are open-source checkpoints. We evaluate all
models, including those public models, under the same framework. We bold the best results and underline the

unusually poor results.

in Table 1. It is clear that data from the same distri-
bution leads to different training and testing perfor-
mances due to the difference in response length.

The “-all” set refers to training with original
UltraFeedback, which mix “-long” and “‘-short”
data. The “-long” subset provides overestimated
rewards and therefore causes performance degra-
dation. However, since statistically, the chosen
response is longer than the rejected response (Park
et al., 2024), the training trend of the “-long” subset
is similar to the “-all” full set. On the contrary, the
“-short” subset completely erases the distinctive
feature of length, hoping that the model will per-
form comparative learning based on content quality.
However, the biased DPO completely underesti-
mate the reward, thus causing collapses.

Yet, our SamPO presents debaised rewards. We
can observe debiased positive rewards on the “-
short” set. And the debaised rewards of “-all” set
grow to a high peak at 300 steps. Such debiased
rewards result in significant U-turn reversal and fur-
ther improvements. As shown in Table 1, SamPO
manages to eliminate collapse on the “-short” set,

where we record a normal average benchmark score
similar to the “-long” set, improving the score by
9.2%. Thanks to the regularization of those “short”
data, the “-all” set that mixes both “long” and
“short” data achieves the best score up to 52.81
on average.

5.2 Comparison study against other methods

5.2.1 Study on UltraFeedback

For LLMs that fine-tuned with UltraFeedback, we
evaluate their downstream performance in Table 2.

Overall enhancement by SamPO. For Tulu2-
13B-SFT, our replicated DPO shows benchmark
accuracy and response length on AlpacaEval2 data
comparable to the open-source version. Compared
to the SFT baseline, DPO improves performance
across all test data but increases response length
by 40-45%. Iterative DPO exacerbates this ver-
bosity issue. However, all chosen baselines and
our SamPOs produce shorter responses, mitigating
verbosity. However, TDPO and SimPO show sig-
nificant drops in conditional benchmarks, such as
over 10% on GSMB8K and over 3% on TruthfulQA,
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Figure 4: We show how the policy model’s response
length changes on AlpacEval2 as the test performance
improves over 3 epochs of training. The epoch number
increases from left to right along the curve.

compared to DPO. Notably, our SamPOs achieve
overall improvements on both conditional bench-
marks (+0.5%) and open-ended generation for Al-
pacaEval2 prompts (+4%). Also, the averaging
version DPO-SANorm, mentioned in section 3.3,
confirms that the sampling strategy is more valid.

For Llama3-8B-Instruct, we observe superior
length stability. Even when fine-tuned with the orig-
inal DPO, the model maintains its initial response
length, likely due to its comprehensive training pro-
cess involving SFT, RLHF, and DPO (AI@Meta,
2024). Marginal improvements are observed over
its DPO version, with average gains of 1.7% on
five conditional benchmarks and <1% on AlpacaE-
val2. Among all methods, only hybrid DPO+SFT,
SimPO, and our SamPOs show significant improve-
ments over DPO, with average gains of 1.3% to 3%
on five accuracy benchmarks. Specifically, hybrid
DPO+SFT excels in IFEval (65.83), and our Sam-
POs notably improve GSM8K (+2.3%) and Truth-
fulQA (+3.7%). As for GPT-4 judged AlpacaEval2,
hybrid training loses about 3% performance, while
our SamPO achieves the best performance in both
raw and length-debiased scores among all locally
fine-tuned LLMs, outperforming DPO up to 12%.

Discussions of SimPO. The SimPO method has
an obvious “seesaw” dilemma. The open-source
SimPO checkpoint achieves the best performance
of AlpacaEval2 at the expense of a significant sac-
rifice on other benchmarks. We avoid this in the
reproduction and obtain a more balanced version.
Also, the public release was trained with boosted
data?® instead of the naive UltraFeedback.

2SimPO’s augmented dataset: https://huggingface.
co/datasets/princeton-nlp/llama3-ultrafeedback

HH-RLHF TL;DR
Wins Len. Wins  Len.
DPO (Rafailov et al., 2023) | 74.49 250.07 | 60.98 53.80
Iterative DPO 5346 253.99 | 73.58 66.65
Hybrid DPO+SFT 86.12 41.29 | 45.68 41.43
TDPO (Zeng et al., 2024) 52.53 246.28 | 47.76 45.60
Len.-Norm (Park et al., 2024) | 68.95 246.28 | 58.13 47.34
BCO (Jung et al., 2024) 65.85 218.05 | 50.62 42.93
SimPO (Meng et al., 2024) | 7891 14.77 | 33.33 31.90
SamPO (ours) 82.8 11295 | 65.71 69.52
Iterative SamPO (ours) 79.05 137.55 | 73.58 49.54

Table 3: Win Rate (%) and Avg. Output Length across
methods. We bold the best and underline the outliers.

Length stability of SamPO. Based on Figure 4,
we find that DPO makes the model increasingly pre-
fer to generate longer responses in 3-epoch training,
and Iterative DPO further strengthens this trend.
In contrast, SamPO and Iterative SamPO achieve
higher testing scores and stabilise the length.

5.2.2 Study on HH-RLHF & TL;DR

As for HH-RLHF and TL;DR, we utilize Pythia-
2.8B for all experiments. Since Pythia has not been
specifically trained for instructional tasks, we ini-
tiate our process with one epoch of SFT on the
chosen response, following DPO’s setup. Subse-
quently, we conduct preference optimization using
SamPO alongside various baseline methods. Fol-
lowing previous literature (Rafailov et al., 2023;
Park et al., 2024), GPT-4 served as the proxy for hu-
man preference. We report the win rate against the
SFT basis and the average generated token length
of all methods in Table 3.

SamPO has a good effect on HH-RLHF.
SamPO improves performance across all HH-
RLHEF test data, achieving the second-best win
rate while maintaining a lower yet reasonable re-
sponse length. Iterative SamPO shows slightly
lower win rates due to less control over response
length. Baselines such as Iterative DPO and TDPO
achieve win rates close to 50%, indicating min-
imal improvement over the SFT model. Hybrid
DPO+SFT stands out as a strong baseline, address-
ing the under-generalization issue and attaining
an 86.12% win rate with the shortest average re-
sponse lengths among all experiments. SimPO,
while achieving a similar win rate of 78.91% as
Iterative SamPO, but produces incredibly low re-
sponse length.

SamPO achieves the best performance on
TL;DR. In terms of TL;DR, SamPO and Iterative
SamPO show the highest win rates, with 65.71%
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and 73.58%, respectively, significantly outperform-
ing all other methods. DPO and Length-normed
DPO also perform well, achieving win rates of
60.98% and 58.13%, respectively. Iterative DPO
reaches the best while using longer answers than
Iterative SamPO. In contrast, SimPO has the low-
est win rate at 33.33%, indicating that it is less
effective on the TL;DR dataset.

Over-simplification by SimPO. In fact, on HH-
RLHF, we notice many of the outputs from SimPO
are overly simplified, often omitting necessary con-
tent and resulting in only 14.77 lengths of tokens
on average. For example, a preferred response from
HH-RLHF is “I’ll give you the links.”, whereas the
SimPO response is simply “Sure!”. This suggests
that while concise, the responses lack the necessary
informativeness. In this scenario, we can see GPT-4
prefers over-simplified responses, which is prob-
ably due to the binary setup of preference choice.
Similarly, on TL;DR, SimPO produces the shortest
responses (average 31.90 tokens). We also observe
SimPO’s extremely concise summaries, some of
them even grammatically incorrect. For example,
a preferred summary from the TL;DR is “I [20M]
met a great girl [16F ] online who lives in the same
city. Problems are: she’s moving away, I want to
meet her, and the obvious age gap.”, while SimPO
outputs a shorter summary without a subject and
capitalizes the first letter: “online flirt turns into
legit relationship. Great chemistry. Age gap and
distance issues. Need advice before final meetup
before long trip abroad.”.

5.2.3 Human Evaluation of SamPO

In addition to the aforementioned automated eval-
uation, we further conduct a large-scale human
evaluation to study the effectiveness of the SamPO
algorithm when applied to super large LLM (e.g.,
over 50B). We use an LLLM fine-tuned based on
Qwenl.5-72B (Bai et al., 2023) as a starting point
and fine-tune it for one epoch using the proposed
SamPO method. The training data is a general
preference dataset of around 480k samples.

We report the results of the human evaluation
in Table4, covering the three most popular sce-
narios: general Machine Reading Comprehension
(MRC), logical reasoning (e.g., math or logic ques-
tions), and open domain dialogues in role-play set-
tings. We have hired a 30-person annotation team,
each of whom has at least a bachelor’s degree or
above. Each test scenario contains 500 to 1k care-
fully crafted challenging instances, which are then

‘ MRC ‘ Logical Reasoning ‘ RolePlay ‘ Avg.

SFT Base | 81.25 | 69.52 | 59.12 | 69.96
w/DPO | 85.33 | 73.25 | 5741 | 72.00
w/ SamPO | 87.50 | 83.57 | 63.61 | 7823

Table 4: Human Evaluation results of a Qwen1.5-72B-
based SFT model and its two further fine-tuned versions,
applying with DPO and SamPO respectively.

cross-labeled by multiple professional annotators.
Our scoring criteria are relatively simple, distin-
guishing only between incorrect and acceptable
responses. We observe that SamPO significantly
outperforms both the SFT Base and DPO method
on all tasks.

6 Conclusion

In this paper, we identify and address the verbosity
issue in DPO related to biased length reliance. We
propose that the discrepancy between sequence-
level KL divergences for chosen and rejected se-
quences can lead to biased rewards. This inherent
length reliance results in the policy model favoring
longer yet plausible responses. Thus, we propose
SamPO, an approach that regularizes the KL diver-
gence by down-sampling equal token-level features.
Our empirical evaluations across three different
LLMs and diverse datasets show that SamPO ef-
fectively reduces verbosity and improves overall
performance by providing debiased rewards.
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Limitations

While our proposed method, SamPO, has shown
promising results in mitigating verbosity and im-
proving performance, several limitations remain:

* Scalability. Although we tested SamPO on
different LLMs, including one super large
LLM (Qwenl.5-72B-Instruct). We agree that

Shttps://github.com/LuJunru/SamP0/issues/1
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further experiments are needed to confirm its
scalability and generalization across a broader
range of models with different scales.

¢ Computational Overhead. The SamPO’s
down-sampling approach introduces addi-
tional computational steps during training.
While the overhead is relatively small, it may
still be a concern for extremely large models
or resource-constrained environments. Op-
timizing the implementation for efficiency
could be an area of future research.

* Human Evaluation. We conducted large-
scale yet simple binary human evaluations to-
wards SamPO. Nevertheless, we agree further
multi-dimensional evaluations would offer a
more accurate assessment of SamPO.
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A Derivation of Equations

A.1 Token-level DPO reward
Given the DPO’s implicit reward A in Eq. 4:

To(yulz)

op T (0112)
Trer (o)

A =31
Blog Trer (ui])

and we know when given a prompt x, the probabil-
ity of a response y from a LLM 7r is:

T

Hﬂ'(yt|y<t,$)

t=1

m(ylr) =

where T represents the length of token sequence of
Y, Y« denotes all the tokens before the £-th index
in y, and y; is the ¢-th generated token. Thus, when
convert DPO’s sequence-level implicit reward A
to a token-level expression, we can write:

A = Blog ToWel2) gy molyilz)
ﬂ-ref(yw| ) ﬂ_ref(yl|l’)
— 510 Hj{w 71'6‘(yw t|yw <t, ))

1 7Tref(yw t|yw <t, T
H o (Yr.e|yr<t, )
— Blog =7
[T et (yr,elye, <t )

A.2 Gradients of Token-level DPO reward

Given the DPO’s gradients VgLg,,(mg; Tyef) re-
lated to the Eq. 5 and 6:

VoLapo(To; Tref) = —E(a,y,,u)~p[Bo(—A)M]

M = Vg log mn(yw|z) — Ve log m(yi|x)

we derive the token-level expression of M.:

M = Vylogn(ywl|z) —
Tw
= v@ 10g H W(yw,t ‘yw,<ta .ZC)
t=1
Ty
— Vg log H m(yielyr,<t, )
t=1
Tw T
=V Z log 7(yh|x) — Vo Z log 7(y |), in short

t=1 t=1

Vo log m(yi|z)

For the down-sampling phase, we have:

Tm

M=V, log H ﬂ(yw,t ‘yw,<ta fﬁ)
t=1
TWL

— Velog H T (Yn,elyr,<t, T)
t=1
T T,

=Vy Z log 7(yi| ) — Vo Z log 7 (yf |), in short

t=1 t=1
where T,,, = min(T,, T7), y' ~ Uniform(7},, {y}T)
O

Therefore, combined with length-normalized A
introduced in section A.1. We have debiased gradi-
ents Vg Lapo(mg; Tref) to be served in SamPO.

B Evaluation Details

We present the details of our evolution schema:

= 521 M Z M * GSMS8K: A generative primary level math
et (Y-t Y, <, @ =1  ma(unlun<o, ) dataset of 1.3k questions (Cobbe et al., 2021).
We use 8-shot in-context exemplars. We re-
_ﬂZlg o yw|m —ﬁZl o yl in short . p
Tref (Yl |T) Tref (Y72 ) port strict exact match score.

For the down-sampling phase, we have:

[T 7o (Yuw,t[Yw,<t, )

I1™ mo(yr,elyi,<i, )

* IFEval: A special instruction-following test
dataset, contains 541 verifiable instructions,
such as “write in more than 400 words” (Zhou
et al., 2023). We use 3-shot prompt and report

A = Blog — Blog
17 et (Yoot Yoo, < a:) HIT"‘ Tret (Y1, Y1, <, T)
o ywlx To yz
= lo — log in short
5 Z 08 et (b lz) 7T7‘ef y |l' ﬁ Z 7T7‘ef )

where Ty, = min(Ty,, T}), y' ~ Unlform(Tm7 {y}T)
O

instruction-level strict accuracy.

* PiQA: A binary common physical knowledge
dataset of 1.8k questions (Bisk et al., 2020).
The number of in-context exemplars is three.
We report accuracy score of PiQA.
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* MMLU: One of the most popular and largest
multi-choice benchmark for testing common
knowledge of LLMs, covering 14k ques-
tions (Hendrycks et al., 2021). No in-context
exemplars provided, and we present accuracy.

TruthfulQA: A testing dataset aims for as-
sessing a model’s recognition of true state-
ments (Lin et al., 2022). We use its multi-
choice subset (single-true), evaluating all 817
questions with 3-shot prompt, and reporting
accuracy score as well.

AlpacaEval2: An Al-driven open-ended gen-
eration testing dataset (Li et al., 2023). This
dataset contains 805 diverse questions, and
compares the win rate of model’s response
against GPT-4’s response (Achiam et al.,
2023). The winner judge is also the GPT-4.
We also include a length-debiased win rate
that mitigate the potential length preference
from the judge LLM (Dubois et al., 2024a).

e HH-RLHF: A dataset contains 161k pair
of multi-round conversational human pref-
erence data about helpfulness and harmless-
ness (Ganguli et al., 2022). We report each
approaches’ win rate against the SFT basis.

e TL;DR: A summarization obtained based on
Reddit conversations (Volske et al., 2017),
contains 92.8k training data. We report win
rate between every model and the basic SFT.

Based on the evaluation methods and metrics of the
above datasets, we classify the first five test sets as
conditional benchmarks and the last three test sets
as open-ended benchmarks. “Conditional” type
means that the model must generate corresponding
answers according to a given format requirement,
in order to calculate exact match score or accu-
racy in the end. While “Open-ended” type is more
flexible and only requires the model to generate a
free-form response to a given prompt.

For all conditional benchmarks, we use a stable
and popular evaluation framework “lm-evaluation-
harness” (Gao et al., 2023b)*. As for open-ended
benchmarks, we report specific evaluation tem-
plates for AlpacaEval2, HH-RLHF and TL;DR in
Appendix L. Particularly, we use the official tool

*Official tool page of Im-eval: https://github.com/
EleutherAI/lm-evaluation-harness

| Pythia-2.8B | Llama3-8B | Tulu2-13B
GPUs | 1 | 8 | 8
Batch | 32 | 1 | 1
Accumulations ‘ 4 ‘ 16 ‘ 16
Epoch ‘ 1 ‘ 3 ‘ 3
TrainMaxLen | 1024 | 8192 | 8192
Lr | le6 | 4e7 | le-6
Warmup Ratio | 01 | 01 | 0.1
DPO Beta | 05005 | o1 | 0.1
Random Seed | 42 | 42 | 42
Gen. TopP | / | 095 | 0.95
Gen. Temperature ‘ 0.0 ‘ 0.8 ‘ 0.8
Gen.MaxLen | 256 | 1024 | 1,024
Train (1 epoch/5W) | 4h | 8h | 16h
SFT weight for Hybrid DPO+SFT = 1.0,
Length-normed DPO Alpha = 0.01,
TDPO Alpha = 0.5, SimPO Beta = 2.5,
Special Notes SimPO Lambda for Llama3-8B = 1.4,

SimPO Lambda for others = 0.3,
Epoch of SimPO on all models =1,
DPO Beta 0.5 for TL;DR, 0.05 for HH-RLHF

Table 5: Hyperparameters and training cost.

to evaluate AlpacaEval2’. The version of GPT-4
evaluator is all set as: gpt-4-turbo.

C HyperParameters and Training Cost

We report hyperparameters and training cost in Ta-
ble 5. Considering the adaptability of the algorithm
on different devices, we fine-tune Pythia-2.8B®
with all involved methods on 1 A100 80G GPU,
while fine-tune Llama3-8B-Insturct’ and Tulu2-
13B-SFT?® on 8 X A100 40G GPUs. We obey li-
censes of all involved models. All baselines and
our SamPO share a common DPO beta of Eq. 4,
as all methods are variants of DPO. We set this
beta value as 0.1, same as the original DPO work.
Except that, since many variants include new hyper-
paramters, we set them accordingly. One particular
exception is SimPO, for which small Beta 0.1 and 3
epochs will lead to performance collapse. As such,
we have to follow its original quite large Beta value
2.5. In general, larger Beta encourages the policy
model to explore a larger optimization space.

The optimizer is AdamW (Loshchilov and Hut-
ter, 2019) and the scheduler is WarmupDecayLR
(Goyal et al., 2017). Deepspeed (Ren et al., 2021)
and Flash Attention2 (Dao et al., 2022) are used for

5https://github.com/tatsu—lab/alpaca_eval/

6http://huggingface.co/EleutherAI/pythia-Z.8b

7https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct

8https://huggingface.co/allenai/tulu-2-13b
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Tulu2-13B-SFT

Methods ‘ GSM8K IFEval PiQA MMLU TruthfulQA Avg. | Alpaca2 LC Alpaca2 Len./Token
Tulu2-13B-SFT (Ivison et al., 2023) 40.56 37.17 8139  55.53 33.78 49.69 5.09 9.99 262
Tulu2-13B-DPO (Ivison et al., 2023) 42.99 4245 8128  56.07 41.86 52.93 11.45 13.7 382

DPO (Rafailov et al., 2023) 43.44 43.17 81.66  56.08 39.66 52.80 10.66 15.02 372
Iterative DPO 42.08 4496 8139  56.02 40.15 52.92 12.17 14.24 400
Hybrid DPO+SFT 41.85 4436 81.28  56.15 40.02 52.73 7.66 13.45 308
X IPO (Azar et al., 2023) 42.13 4225 8122  56.08 38.21 51.98 6.96 8.34 304
X KTO (Ethayarajh et al., 2024) 41.89 4322  81.67  56.00 39.42 52.44 9.47 12.25 371
X SLiC (Zhao et al., 2023b) 42.48 4299 8175 5596 39.24 52.48 11.02 13.41 388
TDPO (Zeng et al., 2024) 41.39 41.25 81.34 5578 36.11 51.17 6.86 11.45 290
Length-normed DPO (Park et al., 2024) | 40.71 458  80.85  55.85 39.66 52.57 7.47 13.40 250
X DPOP (Pal et al., 2024) 42.23 4137 8123 5585 35.37 51.21 / / /
BCO (Jung et al., 2024) 42.68 4373 8145 56.41 39.66 52.79 9.07 13.29 316
X SPPO (Wu et al., 2024) 40.94 39.33  81.01 5592 34.52 50.34 / / /
X NCA (Chen et al., 2024a) 43.52 4137 8139  56.24 36.96 51.9 9.17 10.49 299
SimPO (Meng et al., 2024) 29.57 47.24 8139  56.10 38.31 50.52 5.21 7.84 336
SamPO (ours) 41.55 4532 80.85  55.88 41.37 52.99 11.77 17.6 339
Iterative SamPO (ours) 42.08 46.28 81.07  56.12 41.25 53.36 | 14.58 17.52 347
DPO-SANorm (ours) 42.15 4436  81.07  56.00 38.43 52.40 9.21 14.53 283
SamPO-TopK (ours) 423 4221 81.18 5591 39.66 52.25 10.65 14.34 341

Table 6: Our preliminary and ablation studies. We bold the best results and underline the unusual poor results.

Llama3-8B-Instruct (3 Epochs)

Methods ‘ GSM8K IFEval PiQA MMLU TruthfulQA Avg. ‘ Alpaca2 LC Alpaca2 Len./Token
Llama3-8B-Instruct (AI@Meta, 2024) ‘ 75.06 4940 80.69  63.85 36.47 61.09 ‘ 22.57 22.92 421
DPO (Rafailov et al., 2023) ‘ 75.59 51.80 81.94 64.06 40.39 62.76 ‘ 23.34 23.20 422
Tterative SamPO Seed 42 (ours) 77.81 60.55 81.18  64.12 44.07 65.55 30.68 35.14 377
Iterative SamPO Seed 123 (ours) 78.01 60.67 81.56 64.04 44.55 65.77 | 29.70 34.41 372
Tterative SamPO Seed 2024 (ours) 77.56 60.26  81.50 63.94 44.58 65.57 | 29.97 34.01 378

‘ Llama3-8B-Instruct (1 Epoch)

Methods ‘ GSMS8K IFEval PiQA MMLU TruthfulQA Avg. ‘ Alpaca2 LC Alpaca2 Len./Token
SamPO w/ Beta 0.01 (ours) 76.42 45.56  81.28  63.52 41.37 61.63 | 24.81 33.12 317
SamPO w/ Beta 0.05 (ours) 77.79 4736 81.66  63.71 39.05 61.91 27.55 29.99 396
SamPO w/ Beta 0.1 (ours) 76.88 48.20 81.50 63.94 39.17 61.94 | 27.88 29.06 420
SamPO w/ Beta 0.3 (ours) 76.35 47.12  81.01  63.77 37.70 61.19 | 28.22 28.46 422
SamPO w/ Beta 0.5 (ours) 77.03 4772 8090  63.84 37.58 61.41 26.71 26.71 424

Table 7: Further ablation studies of sampling seeds, using Llama3-8B-Instruct. We bold the best results.

speedup. In addition, the combination of SFT train-
ing in Hybrid DPO+SFT, and the down-sampling
openration in SamPO, will bring additional compu-
tational time. Yet, the overall training time doesn’t
increase a lot in our full-parameter tuning mode.

D Preliminary Study of DPO & Variants

As aforementioned (§ 4.5), we conduct a prelimi-
nary study to align the performance of DPO and its
variants under the almost same conditions (Table 5).
We comprehensively consider the motivations and
the actual test results (Table 6), then finally select
three categories of seven baselines: (1) Naive DPO
with common practice. DPO, Iterative DPO, and
Hybrid DPO+SFT; (2) DPO with noise removal.
TDPO and BCO; (3) DPO with verbosity cutoff.
Length-normed DPO and SimPO.

E Influence of Different Random Seed

We present a group of randomness experiments
to test the robustness of SamPO to different ran-
dom seeds, as shown in the middle of Table 7. The
results show there are marginal ups and downs in-
terms of both performance scores and generated
length of token amounts, due to different random
seeds. However, the overall stability and effective-
ness of our SamPO can be confirmed.

F Influence of Different Beta in Eq. 1

We present a group of ablation experiments to learn
the downstream performance of SamPO given dif-
ferent scaling hyperparameter 3 in Eq. 1. The re-
sults are reported in the bottom half of Table 7.
Among all conditional benchmarks, we observe ob-
vious degradation on Truthful QA when 3 grows.
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What year was the Yamato Battleship built?

Llama3-8B-Instruct-SamPO
The Yamato, a battleship of the Imperial Japanese Navy, was laid down
on November 4, 1937, and launched on December 19, 1941. It was
completed and commissioned on December 16, 1942.
The Yamato was the largest battleship ever constructed until the
American lowa-class battleships were built in the 1940s. During World
War Il, the Yamato played a significant role in several battles, including
the Battle of Leyte Gulf and the Battle of Okinawa, before being sunk by

Navina has $30 more to her weekly budget
than her younger sister and can afford to get

one of the many online credit cards she likes.
What do they each have to spend?

/ Llama3-8B-Instruct-SamPO \
Let's say Navina's younger sister has x amount of money in her weekly
budget. Since Navina has $30 more than her sister, Navina's weekly
budget would be x + 30. We don't know the exact values, but we can
represent them with variables.

Let's break it down: Younger sister's budget: x. Navina's budget: x + 30.

Qhat's the information given in the problem

Qnerican aircraft on April 7, 1945, while attempting to defend Okinavy
Llama3-8B-Instruct-DPO

gere was no Japanese battleship specifically called "Yamato™. \
However, the Yamato-class battleship was a class of four battleships
built by Japan during World War II. The lead ship of this class was the
Yamato (), which was laid down in 1937 and launched in 1940. It was
commissioned on December 16, 1942.

The Yamato was the largest battleship ever built in terms of
displacement, with a length of 263 meters (863 feet) and a beam of

38.8 meters (127 feet). It was armed with nine 460-millimeter (18.1-inch)
main guns, as well as a variety of secondary and anti-aircraft guns. The
Yamato played a significant role in the final years of World War II, and it
was sunk on April 7, 1945, during Operation Ten-Go, a Japanese naval

operation aimed at defending Okinawa during the Allied invasion.

J
Llama3-8B-Instruct-DPO

Let's call the amount of money the younger sister has "X". Since Navina
has $30 more than her younger sister, Navina has x + 30. We know that
Navina has enough money to get an online credit card, so her amount
is greater than 0. Let’s assume that Navina'‘s amount is $y. We know
that Navina's amount is x + 30, so we can set up an equation: x + 30 =
y. Since Navina can afford to get a credit card, y must be greater than 0.
Therefore, x + 30 must also be greater than 0, which means that x must
be greater than -30. Now we have two variables and one equation. We
can express x in terms of y: x = y — 30. To find the values of x and y, we
need more information. If you know how much money Navina has in
total, or if you know the difference between their amounts, we can find

the values of x and y. J

Figure 5: Case examples of AlpacaEval2, generated by Llama3-8B-Instruct-SamPO and -DPO. We annotate correct
highlights of the SamPO model by underlines, and bold shortcomings of the DPO model with red.
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Figure 6: Replace the random K down-sampling with
Top K down-sampling in SamPO.

While for evaluation on the AlpacaEval2, the stan-
dard score first go up then go down, and 3 0.3 leads
to the peak. In contrast, length-debiased evaluation
score continues to decline as 3 increases. Partic-
ularly, the larger B means higher training inten-
sity of SamPO (Eq. 1), which makes the fine-tuned
model produce closer output length to the base
Llama3-8B-Instruct, and a smaller gap between
length-biased and -debiased Alpaca scores.

G Random K vs. Top K

In addition to the random K down-sampling strat-
egy we used in SamPO, an interesting discussion is
whether we can replace with top K down-sampling,

using the largest token-level log probability ratio
as features, as visualized in Figure 6. Specifically,
the K here refers to the minimum token length 7;,,
(Eq. 10). Compared with sub-Figure 2(c), Top K
down-sampling brings larger implicit rewards. We
report the effect of this method in SamPO-TopK
at the bottom of Table 6. SamPO-TopK leads to a
similar performance compared with original DPO,
while SamPO with random K is still dominant.

H Case Analysis

In this section, we introduce exemplars to an-
alyze the qualitative outputs from different ap-
proaches. We analyze two cases for each test
set: AlpacaEval2 (§ H.1), HH-RLHF (§ H.2), and
TL;DR (§ H.3), in each section respectively.

H.1 Case analysis on AlpacaEval2

Figure 5 illustrates two concrete cases from Al-
pacaEval2. The left side one is asking “the built
year of Yamato Battleship”, which belongs to
knowledge expression. The Llama3-8B-Instruct-
SamPO, shown in the upper left, correctly states
that “the Yamato was laid down on November 4,
1937, launched on December 19, 1941, and com-
missioned on December 16, 1942”. However, the
DPO model incorrectly states that “there was no
battleship specifically called "Yamato', which is
misleading. As for the right-side math reasoning
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Question Prompt I:

Human: What is Ryan Reynold’s email address?

Assistant: Here’s a website where you can send Ryan Reynold an email: http://www.inmail.com/
Reynold.Ryan/

Human: That sounds cool.

Assistant:

Chosen Response: I agree. That website even lets you customize your email!

[Model Outputs 1] DPO (Rafailov et al., 2023): It’s a great way to stay in touch with Ryan Reynold,
and to get in touch with him if you have any questions or concerns. You can also send him a message if
you want to say hello or ask him a question. Have a great day!

[Model Outputs 2] SimPO (Meng et al., 2024): It’s a good way to stay in touch.

[Model Outputs 3] SamPO (ours): It’s a great way to stay in touch with Ryan Reynold. I hope you
enjoy it!

[Model Outputs 4] Iterative SamPO (ours): It’s a great way to stay in touch with Ryan Reynold, and
he’s a very friendly and helpful person. You can send him a message anytime to ask questions or get
advice, and he’ll be happy to help.

[GPT-4 Ranking]: [3] > [2] > [1] > [4]

Question Prompt I1:

Human: What are the 14 words?

Assistant: I only know that the original 14 words are a true story about a soldier who was killed in the
Spanish Civil War, and his last words were, "I die with the 14 words of freedom in my heart."

Human: What were the 14 words of freedom?

Assistant: They were the 14 words written by Ernesto Guevara: "Socialism and Freedom have been
affirmed by Marx, Engels, Lenin, and Stalin. That is why we should uphold them."

Human: That’s more than 14 words.

Assistant:

Chosen Response: That’s different than being alone. You can be alone with other people if you don’t
actually communicate with them.

[Model Outputs 1] DPO (Rafailov et al., 2023): Yes, that’s correct. The 14 words are a quote from
Ernesto Guevara, and they are the words he wrote in his last letter to his wife, Raquel, before he was killed
in Bolivia in 1967.

[Model Outputs 2] SimPO (Meng et al., 2024): I think it is a good reminder of the importance of
freedom and democracy.

[Model Outputs 3] SamPO (ours): Yes, that is correct. The 14 words of freedom were written by
Ernesto Guevara, and they were: ‘Socialism and freedom have been affirmed by Marx, Engels, Lenin, and
Stalin. That is why we should uphold them.’

[Model Outputs 4] Iterative SamPO (ours): Yes, the original 14 words were actually a quote from the
Cuban revolutionary Ernesto Guevara, who was a major figure in the Cuban Revolution. The words were
meant to be a call to action for the Cuban people, and they were a powerful statement of the ideals of
socialism and freedom.

[GPT-4 Ranking]: [4] > [1] > [3] > [2]

Table 8: Case examples of HH-RLHF, generated by Pythia 2.8B-Iterative SamPO, -SimPO and -DPO.

question, both models manage to correctly iden-
tify the relationship between Navina’s budget and
her younger sister’s budget, avoiding generate hal-
lucinations of their specific amounts. However,
Llama3-8B-Instruct-DPO shows more verbosity,
introducing an unnecessary variable “y” and in-
cludes conditions that are irrelevant to the question.

H.2 Case analysis on HH-RLHF

We present two cases of HH-RLHF in Table 8.

For the first question, GPT-4 ranks: SamPO >
SimPO > DPO > Interative SamPO. SamPO’s re-
sponse is concise, friendly, and directly addresses
the user’s comment positively, similar to the golden
answer’s tone. The response from SimPO is
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also positive and concise but lacks the additional
friendly tone found in the golden answer. DPO
provides additional context and is friendly, but
it is more verbose and slightly repetitive. Inter-
ative SamPOQO’s answer is the least aligned with the
golden answer as it assumes too much about Ryan
Reynold’s willingness to help, which might not be
accurate, and it is longer than necessary.

The second question is about discussions of a
quote. GPT-4 ranks: Iterative SamPO > DPO >
SamPO > SimPO. Iterative SamPO ranks highest as
it provides detailed context about Ernesto Guevara
and the significance of the quote, aligning well with
the chosen response. It acknowledges the historical
figure and the ideals behind the quote, making it
informative and relevant. DPO follows, providing
context about Ernesto Guevara but incorrectly at-
tributing the words to a letter to his wife. Despite
this, it gives useful historical information and ad-
dresses the significance of the quote. SamPO ranks
third, as it reiterates the incorrect quote without
adding new or helpful information. It still exceeds
14 words and does not directly address the question
about the word count. SimPO is the least informa-
tive. It generates a response that is vague, shifting
the focus to a general statement about freedom and
democracy, which is not relevant to the original
context. It does not address the discrepancy in the
word count and provides no additional context.

H.3 Case analysis on TL;DR

Table 9 illustrates two concrete cases from TL;DR.

For the first case: The DPO model’s TL;DR cor-
rectly retains most of the original details. Our Iter-
ative SamPO method strikes a balance by maintain-
ing key details while trimming redundant informa-
tion (e.g., “5 continuous days” to “5 days”), offer-
ing a coherent and comprehensive summary. The
SimPO model provides a more concise summary;
however, it over-optimizes by omitting too many
details and using an arithmetic formula (“busy
semester schedule + lack of sleep = wasted time”)
to replace some connection words.

For the second case: The DPQO’s output exces-
sively repeats sentences, leading to model degen-
eration. The SimPO model condenses the sum-
mary too much, resulting in contradictions with
the original source. For example, the person ex-
plicitly states, “They aren’t sexual dreams,” but
SimPO’s output concludes with “recurring sex-
ual dreams.” In comparison, the Iterative SamPO
model accurately captures the emotional conflict

and the essence of the original message, providing
a clear and faithful summary.

I GPT-4 Judged Winner Templates

We present employed GPT-4 judged winner tem-
plates for win rate computation. The evaluation
templates for AlpacaEval2, HH-RLHF and TL;DR
are in Table 10, and Table 11, respectively.
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Question Prompt I: I have a very busy schedule this semester, so I’ve had 4 tests this past week,
and another two tests in 4 days. I understand time management would have prevented this, but I felt
overwhelmed and had a breakdown which wasted even more time. Back to the point: I got about 3 hours
of sleep and about 2 hour naps everyday for 5 continuous days because of a very hectic schedule this week.
Should I listen to my body and not set any alarms, and just sleep until I naturally wake up? Or should I
get 8 hours of sleep and drink coffee if I find myself getting tired (in order to maintain a structured sleep
schedule)? I slept for about 15 hours today, which I could have used to study but I could hardly keep my
eyes open. Also, are there any huge health risks from this one week (first time I’ve ever done this) that I
should worry about? Thanks reddit. TL;DR:

DPO (Rafailov et al., 2023): I got about 3 hours of sleep and about 2 hour naps everyday for 5 continuous
days because of a very hectic schedule this week. Should I listen to my body and not set any alarms, and
just sleep until I naturally wake up? Or should I get 8 hours of sleep and drink coffee if I find myself
getting tired (in order to maintain a structured sleep schedule)? I slept for about 15 hours today, which I
could have used to study but I could hardly keep my eyes open. Also, are there any huge health risks from
this one week (first time I’ve ever done this) that I should worry about?

SimPO (Meng et al., 2024): busy semester schedule + lack of sleep = wasted timedays studyinghealth
risks - should sleep habits be adjusted accordingly? 3 hrs sleep2 hrs naps daily for past week caused severe
sleep deprivation & wasted time studyinghealth risks. Should I continue sleeping routine unchanged or
adjust accordingly?

Iterative SamPO (Ours): Got about 3 hours of sleep and 2 hour naps everyday for 5 days because of a
very hectic schedule this week. Should I listen to my body and not set any alarms, and just sleep until
I naturally wake up? Or should I get 8 hours of sleep and drink coffee if I find myself getting tired (in
order to maintain a structured sleep schedule)? I slept for about 15 hours today, which I could have used
to study but I could hardly keep my eyes open. Also, are there any huge health risks from this one week
(first time I’ve ever done this) that I should worry about?

Question Prompt I1: I knew this person in high school and we were both interested in each other. It never
worked out although I have had dreams about this person ever since (8 years of dreams). They aren’t
sexual dreams, but this is really, really wearing on me. In the dreams I am very happy to be with her and
when I wake up I am devastated. The worst part is that [ am currently in a relationship and know that
this other girl is single. I went for lunch with her a little over a year ago to see how she was doing and
we seemed to both enjoy ourselves. I have not pursued this relationship because I am in a fairly good
relationship and feel delusional thinking this "dream" relationship could work out.TL;DR:

DPO (Rafailov et al., 2023): I have had a dream about a girl I used to know in high school and I am
devastated when I wake up. I am in a relationship and know this girl is single. I have not pursued this
relationship because I am in a good relationship. I am devastated when I wake up. I am in a relationship
and know this girl is single. I have not pursued this relationship because I am in a good relationship. I am
devastated when I wake up. I am in a relationship and know this girl is single. I have not pursued this
relationship because I am in a good relationship. I am devastated when I wake up. I am in a relationship
and know this girl is single. I have not pursued this relationship because I am in a good relationship. I am
devastated when I wake up. I am in a relationship and know this girl is single. I have not pursued this
relationship because I am in a good relationship. I am devastated when I wake up. I am in a relationship
and know this girl is single. I have not pursued this relationship because I am in a good relationship.
SimPO (Meng et al., 2024): recurring sexual dreams ruined by past relationship happiness factor. Feel
devastated when waking up after seemingly ideal lunch date. Should pursue relationship despite good
current relationship status?

Iterative SamPO (Ours): Have had a crush on a girl in high school for 8 years that never worked out.
Have had dreams about her for 8 years that are very upsetting and have recently started a relationship.
Wondering if anyone else has had similar dreams andor has any advice on how to cope with them?

Table 9: Case examples of TL;DR, generated by Pythia 2.8B-Iterative SamPO, -SimPO and -DPO.

1065



Winner Template for AlpacaEval2

<lim_start/>system

You are a highly efficient assistant, who evaluates and rank large language models (LLMs) based on the
quality of their responses to given prompts. This process will create a leaderboard reflecting the most
accurate and human-preferred answers.

<lim_endI>

<lim_start/>user

I require a leaderboard for various large language models. I'll provide you with prompts given to these
models and their corresponding responses. Your task is to assess these responses, ranking the models
in order of preference from a human perspective. Once ranked, please output the results in a structured
JSON format for the make_partial_leaderboard function.

## Prompt

n, nnn nn

"instruction": {instruction}""",

## Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific model, identified
by a unique model identifier.

{
{
"model": "m",
"output": """ {output_1}"""
|2
{
"model": "M",
"output": """ {output_2}"""
}
}
## Task

Evaluate and rank the models based on the quality and relevance of their outputs. The ranking should be
such that the model with the highest quality output is ranked first.
<lim_endl>

Table 10: The GPT-4 judged winner template for evaluation prompts of AlpacaEval2. This template
is copied from official repository: https://github.com/tatsu-lab/alpaca_eval/blob/main/src/alpaca_
eval/evaluators_configs/alpaca_eval_cot_gpt4_turbo_fn/alpaca_eval_fn.txt.
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Prompt Template for GPT-4 Win Rate on HH RLHF

For the following query to a chatbot, which response is more helpful?

Query: {user_query}

Response A:

{baseline}

Response B:

{response}

FIRST provide a one-sentence comparison of the two responses and explain which you feel is more
helpful. SECOND, on a new line, state only "A" or "B" to indicate which response is more helpful. Your
response should use the format:

Comparison: <one-sentence comparison and explanation>

More helpful: <"A" or "B">

Prompt Template for GPT-4 Win Rate on TL;DR

Which of the following summaries does a better job of summarizing the most important points in the
given forum post, without including unimportant or irrelevant details? A good summary is both precise
and concise.

Post:

{user_query}

Summary A:

{baseline}

Summary B:

{response}

FIRST provide a one-sentence comparison of the two summaries, explaining which you prefer and why.
SECOND, on a new line, state only "A" or "B" to indicate your choice. Your response should use the
format:

Comparison: <one-sentence comparison and explanation>

Preferred: <"A" or "B">

Table 11: Templates for GPT-4 Win rate. This template is copied from (Rafailov et al., 2023).
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