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Abstract
Large language models demonstrate reasonable
multilingual abilities, despite predominantly
English-centric pretraining. However, the spon-
taneous multilingual alignment in these models
is shown to be weak, leading to unsatisfactory
cross-lingual transfer and knowledge sharing.
Previous works attempt to address this issue
by explicitly injecting multilingual alignment
information during or after pretraining. Thus
for the early stage in pretraining, the alignment
is weak for sharing information or knowledge
across languages. In this paper, we propose
PREALIGN, a framework that establishes mul-
tilingual alignment prior to language model pre-
training. PREALIGN injects multilingual align-
ment by initializing the model to generate sim-
ilar representations of aligned words and pre-
serves this alignment using a code-switching
strategy during pretraining. Extensive experi-
ments in a synthetic English to English-Clone
setting demonstrate that PREALIGN signifi-
cantly outperforms standard multilingual joint
training in language modeling, zero-shot cross-
lingual transfer, and cross-lingual knowledge
application. Further experiments in real-world
scenarios further validate PREALIGN’s effec-
tiveness across various languages and model
sizes. 1

1 Introduction

Large language models (Brown et al., 2020; Tou-
vron et al., 2023a,b) have drastically changed the
research paradigm of multilingual language pro-
cessing. Despite being trained on mainly English
texts, they still exhibit reasonable ability for other
languages (Touvron et al., 2023a,b; Wang et al.,
2024), and have established multilingual alignment
to some extent (Devlin et al., 2019; Conneau and
Lample, 2019; Lin et al., 2022). However, re-
searchers (Wang et al., 2024; Gao et al., 2024;

† The Corresponding author.
1The code of this paper is available at https://github.

com/NJUNLP/PreAlign

Figure 1: The illustration of PREALIGN. Words in blue,
red and green represent translations of piano, guitar and
violin, respectively.

Zhang et al., 2023; Qi et al., 2023) have found
the spontaneous alignment between languages in
these model is still relatively weak, leading to weak
cross-lingual factual knowledge retrieval (Wang
et al., 2024; Gao et al., 2024) and inconsistency
behaviors given the same input (Qi et al., 2023;
Zhang et al., 2023).

A handful of works (Reimers and Gurevych,
2020; Cao et al., 2020; Wu and Dredze, 2020;
Chaudhary et al., 2020; Yang et al., 2021; Tang
et al., 2022; Feng et al., 2022; Gao et al., 2024)
try to mitigate the problem by explicitly injecting
alignment information using existing supervision
data. They either construct cross-lingual prediction
tasks (Chaudhary et al., 2020; Yang et al., 2021) or
train models to produce similar representations of
aligned words or sentences (Tang et al., 2022; Wu
and Dredze, 2020; Reimers and Gurevych, 2020).
However, the improvements are somewhat mixed
and the establishment of multilingual alignment
requires a long training process either during or af-
ter pretraining (Dufter and Schütze, 2020), which
prevents the model from effectively performing
cross-lingual transfer at earlier stage in pretraining.

In this paper, we introduce PREALIGN, a frame-
work designed to enhance the alignment of pre-
trained language models. PREALIGN differs from
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prior methods by integrating the multilingual align-
ment information before extensive language pre-
training and maintaining it throughout the pretrain-
ing process. This proactive alignment effectively
enhances the learning of cross-lingual knowledge
in the pretraining corpus, therefore advancing cross-
lingual transfer. Therefore, model’s proficiency in
target languages at early training stage is enhanced,
leading to improvement of model’s ability to ac-
quire knowledge at that stage.

More specifically, before large-scale language
pretraining, PREALIGN first collects multilingual
translation pairs between English and languages
to be transferred, and inject this information into
the model by pre-pretraining it to produce simi-
lar representations of aligned pairs. In order to
maintain the established multilingual alignment
across the pretraining phase, we propose an input-
only codeswitching strategy, which only substitutes
words in the input text to its aligned words, and op-
timizes model using language modeling objective.
The illustration of PREALIGN is shown in Figure 1.

We firstly conduct experiments on an English
to English-Clone setting (K et al., 2020; Dufter
and Schütze, 2020; Schäfer et al., 2024), where
English-clone is a synthetic language that shares
identical grammar and vocabulary distribution with
English, but has no vocab overlap. This allows
us to study cross-lingual transfer on a more con-
trolled environment. Experiments demonstrate that
PREALIGN improves language ability on English-
Clone by strengthening the cross-lingual transfer
of knowledge and abilities from English. Further
analysis shows that the early established multilin-
gual alignment can be kept throughout large-scale
language pretraining and generalize to other un-
aligned words. Experiments on real-world settings
(including Chinese, German, Arabic and Russian)
validate the effectiveness of PREALIGN across dif-
ferent languages and model scales.

2 Related Work

2.1 Understanding Cross-lingual Ability of
Pretrained language models

Many works attempt to analyze the cross-lingual
ability of LLMs. Dufter and Schütze (2020); Con-
neau et al. (2020) try to explain factors that con-
tributes to spontaneous multilingual alignment de-
veloped in pretrained language models, including
under-parameterization, shared model architectures
and pivot words across languages. Other works in-

vestigate the working mechanism of multilingual
representations. Wendler et al. (2024) find that
English-centric models works on a concept space
that is close to English when processing other lan-
guages. Gaschi et al. (2023); Hämmerl et al. (2024)
discuss the relationship between multilingual align-
ment and cross-lingual transfer. Recently, Gao
et al. (2024); Qi et al. (2023) analyze multilingual
knowledge alignment in existing LLMs, and find
that multilingual training and instruction tuning
can only lead to shallow alignment, i.e. LLMs
can achieve similar task performances and consis-
tent responses across languages, yet cannot apply
knowledge across languages.

Our paper differs from theirs in that we focus on
improving models’ cross-lingual ability and suc-
cessfully unlocks the ability of cross-lingual knowl-
edge transferring.

2.2 Enhancing Cross-lingual Ability of
Pretrained Language Models

Other studies also seek to enhance the cross-lingual
capabilities of pretrained language models. These
typically utilize explicit alignment signals, such as
parallel sentences and dictionaries. They can be
categorized based on when the alignment occurs:
during pretraining or post-pretraining.

On the first category, Yang et al. (2020); Chaud-
hary et al. (2020) perform codeswitching on the
monolingual data to make model better capture
cross-lingual relation and dependency. Hu et al.
(2021) train the model to produce consistent word
alignment matrices between source and target lan-
guage and similar representations for parallel sen-
tences. Chi et al. (2022) explores multilingual re-
placed token detection and translation replaced to-
ken detection task. Tang et al. (2022) further maxi-
mize the cosine similarity of aligned word embed-
dings to explicitly inject multilingual alignment.

On the second category, researchers enhance
the multilingual alignment after pretraining. Ear-
lier works either optimizes pretrained models to
produce similar representations for parallel sen-
tences (Reimers and Gurevych, 2020; Pan et al.,
2021; Feng et al., 2022) or parallel words (Cao
et al., 2020; Wu and Dredze, 2020). Recent works
on large language models typically train the model
to produce consistent responses (She et al., 2024)
or performing cross-lingual instruction-following
tasks (Zhu et al., 2024b,a).

PREALIGN differs from all above works in that it
establishes multilingual alignment before language
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pretraining, therefore facilitating the cross-lingual
transfer at early pretraining stage.

3 The PreAlign Method

In this section, we present PREALIGN, a simple
and effective framework that advances the estab-
lishment of multilingual alignment before language
pretraining.

3.1 Injecting Multilingual Alignment before
Language Pretraining

PREALIGN aims to inject multilingual alignment
information before large-scale language model pre-
training, which facilitates cross-lingual transfer as
soon as possible. This involves two stages: collec-
tion of multilingual alignment table and alignment
injection via contrastive learning.

Collection of multilingual alignment table The
collection of multilingual alignment table can ei-
ther leverage the off-the-shelf multilingual dictio-
naries such as MUSE, or rely on machine trans-
lation models. In this paper, we take the second
method: we first extract from an English monolin-
gual corpus D the collections of all unique words
W = {w}Ni , where N is the number of unique
words. For each word w, we translate it to all con-
sidered target languages, and denote the translation
results as T (w). We collect diverse translations for
each word using GPT-4. More details can be found
in Appendix A.

Alignment injection via contrastive learning
After the multilingual alignment table is collected,
PREALIGN initializes models’ parameters using a
contrastive alignment objective, which optimizes
the model to produce similar representations for
aligned words. Specifically, given an English word
wi and its available translations across other lan-
guages T (wi), PREALIGN firstly obtains represen-
tations of each layer for each w ∈ T (wi):

hlw = MeanPool(f(w, l)) (1)

where l = 0, 1, · · · , L, L+ 1; f(w, l) for 1 ≤ l ≤
L denotes the l-th Transformer layer representa-
tions of the model’s encoding of w; f(w, 0) and
f(w,L+ 1) denotes the word embedding and out-
put embedding of w, respectively. Note that since
w could be tokenized to multiple subwords, PRE-
ALIGN aggregates them into a single representation
using mean-pooling operator.

PREALIGN then leverages a contrastive learning
objective (Khosla et al., 2021) to establish align-
ments between words in different languages:

Ll
align =

∑

wj∈W
wi∈T (wj)

log
exp( d(hlwi

, hlwj
)/τ)

∑
wk∈B exp( d(hlwj

, hlwk
)/τ)

(2)
where B is the set of all words in current mini-
batch, τ is the temperature parameter. cos(·, ·) is
the cosine similarity function. The final learning
objective is the sum of contrastive loss of all layers:

Lalign =
L+1∑

l=0

Ll
align (3)

To prevent the initialization from being trapped
in a local minima that is not suitable for the subse-
quent language modeling, we also add an auxiliary
language modeling loss beside the contrastive ob-
jective in practice 2:

Ljoint = αLalign + LLM (4)

Note that, the LLM objective in the pre-alignment
stage only serves to regularize the optimization
process, rather than performing large-scale pre-
training. In practice, this stage only consumes 5%
pretraining data.

3.2 Maintaining Multilingual Alignment via
Input-only Codeswitching

PREALIGN injects multilingual alignment informa-
tion before language pretraining. However, it is
possible that this information could be quickly for-
gotten if not continuously reinforced. Inspired by
prior research (Chaudhary et al., 2020; Yang et al.,
2021) demonstrating that codeswitching effectively
promotes multilingual alignment, we propose using
the codeswitching technique to sustain this align-
ment throughout the pretraining process.

Originally, codeswitching was applied to both
the input sequence and the target tokens in raw
data, which can exacerbate the issue of multilin-
gual script mixing in the outputs of decoder-only
models. To address this, we propose an input-only
codeswitching strategy that affects only the input.
The distinction between the traditional codeswitch-
ing and our input-only codeswitching is illustrated
in Figure 2.

2The training data for Lalign and LLM are independently
sampled in each mini-batch.
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Figure 2: Comparison between vanilla codeswitching
and the proposed input-only codeswitching. The orig-
inal English sentence is He plays the piano well, and
Klavier is the German translation of piano.

Formally, given a subword sequence
X<i, x

1
i , · · · , xim, X>i, where X<i and X>i

are the subword sequences before and after the
i-th word, respectively; x1i , · · · , xmi is the subword
sequence of the i-th words. Suppose the i-th word
is substituted by y1i , · · · , yni after codeswitching,
then the language modeling objective after the
original codeswitching is

Lvanilla_CS = p(X<i) · p(X>i|X<i, y
1
i , · · · , yni )

· p(y1i |X<i)

·
n∏

j=2

p(yji |X<i, y
1
i , · · · , yj−1

i )

(5)

In Equation 5, the item p(y1i |X<i) requires the
model to generate words in one language given
prefixes in another language. To mitigate this, our
input-only codeswitching modifies the objective to
be

Linput_only_CS = p(X<i) · p(X>i|X<i, y
1
i , · · · , yni )

· p(x1i |X<i). (6)

Equation 6 omits the prediction objective of sub-
words in the word after codeswitching (p(y1i |X<i)),
therefore preventing the generation results contain
scripts from other languages. In this paper, we use
a codeswitching ratio of 5%.

4 Evaluation of Cross-Lingual Transfer

To investigate the cross-lingual transfer effects that
is close to situations in current LLMs, we design

Figure 3: Illustration of the creation of English-Clone.

the evaluation in an English-dominated setting,
where most of the pretraining data is English. For
the examined target language, the amount of pre-
training data is much less than English. Intuitively,
the language ability of the target language will be
much weaker than English. However, it is still inter-
esting to know to what extent the language abilities
and knowledge could transfer from English to the
target language.

4.1 Languages

4.1.1 Synthetic Language: En-Clone
We construct a synthetic language called En-Clone,
by cloning all English tokens by a one-to-one map-
ping. En-Clone shares the same linguistic proper-
ties with English, such as vocabulary distribution,
subword segmentation, grammar and syntax, yet
they have no word overlapping. See Figure 3 for
an illustration.

This synthetic setting provides many benefits.
Firstly, the English to En-Clone setting arguably
forms the easiest setting for testing the cross-
lingual transferring ability of LLMs, since it does
not involve the discrepancy of word ordering and
possibly complex one-to-many/many-to-one align-
ments between real-world languages. Therefore,
this setting can serve as a sanity-check for cross
lingual transferring methods.

Secondly, since the golden alignment between
English and En-Clone is trivial to get, we can eas-
ily achieve perfect alignment at the initialization
stage by setting the input and output embedding
of aligned tokens to be identical. In this way, hid-
den states of all intermediate layers would also be
identical. This provides us a chance to analyze the
upper-bound performance of our method.

4.1.2 Real-World Languages
We also experiment with real-world languages to
examine the effect of PREALIGN in more complex
situations. We select Chinese, Russian, German
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and Arabic as our target languages, which spans
four different language families, serving as good
representatives of world languages. Note that in
this case, the alignment is established for 4 target
languages at the same time.

4.2 Evaluation Metrics

The cross-lingual transfer effects are evaluated in
the following 3 aspects:

Target Language Modeling (LM) The first eval-
uation metric is the language modeling perfor-
mance (perplexity) of the target language. Given
the same amount of target language data, this can
reflect the extent of language ability transferred
from English to the target language.

Zero-shot Cross-lingual Transfer (ZS-CLT)
Another common way to evaluate model’s cross-
lingual ability is zero-shot cross-lingual transfer,
where we finetune models with training data of a
given task in the source language, and test model’s
ability on the same task in target languages. We use
the commonly-used XNLI (Conneau et al., 2018)
dataset for ZS-CLT evaluation.

Cross-lingual Knowledge Application (CLKA)
Large language models acquire extensive world
knowledge from their pretraining corpora, which
might be described in different languages. It is
ideal for LLMs to learn knowledge from texts in
one language and apply it across other languages.

In order to evaluate models’ ability to perform
such cross-lingual knowledge application, we pro-
pose a setting where the model is trained with cer-
tain English texts describing synthetic knowledge,
and test the injected knowledge in the target lan-
guage. Each synthetic knowledge is a triplet like
(subject, relation, object), where relations are ex-
tracted from WikiData (Vrandečić and Krötzsch,
2014), and subjects and objects are artificial enti-
ties. We assess the model’s knowledge retention by
comparing the likelihood of different statements,
including one correct statement and three distrac-
tors generated by randomly substituting named-
entities for the original object in the knowledge
statement. See Appendix A for examples of syn-
thesized knowledge.

4.3 Experiment Settings in General

Pretraining Dataset We adopt Cul-
turaX (Nguyen et al., 2023) as the pretraining
dataset. CulturaX is a multilingual pretraining

corpus that has been rigorously cleaned. For
English, we randomly select 10 billion tokens
from CulturaX as the pretraining data. For each
language to be transferred to (Zh, De, Ru and
Ar in the real-world setting, and En-Clone in the
synthetic setting), we randomly select 100 million
tokens, which is 1% of the data in English.

Model Configuration We adopt the GPT-2 style
Transformer architecture for our model. As the de-
faulting setting, our model contains 12 Transformer
layers with a hidden dimension of 1024. The num-
ber of total non-embedding parameters is about
150 million. We use AdamW (Kingma and Ba,
2017) optimizer with a global batch size of about 1
million tokens. The learning rate is decayed from
3e− 4 to 3e− 5 following a cosine scheduler.

Baselines We compare PREALIGN ’s perfor-
mance with the following methods:

• Joint Training, where we pretrain the model
on the mix of 10 billion English tokens and
100 million tokens in the target language.

• Only Target, where we only pretrain the model
on 100 million tokens in the target language.

• Full Target, where we pretrain the model on
10 billion tokens in the target language. This
can serve as an upper-bound performance for
the target language.

5 Experiments on Synthetic Setting

We start our evaluation on the English to En-Clone
setting, which allows us to better control the rela-
tionship between the source and target language.

5.1 General Results
We present results on LM, ZS-CLT and CLKA in
Table 1.

Joint Training achieves spontaneous multilin-
gual transfer to some extent. Table 1 shows that
compared to Only-Target, Joint training achieves
notable improvements on LM despite there are nei-
ther parallel signal or pivot words between English
and English-clone. Surprisingly, the model could
successfully transfer the ability to perform NLI task
from English (79.8) to English-Clone (74.9). How-
ever, this transfer does not work well on CLKA,
which is consistent with previous findings (Gao
et al., 2024) that cross-lingual knowledge transfer
is hard to achieve by multilingual pretraining.
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#Tokens LM (ppl. ↓) ZS-CLT (acc. ↑) CLKA (acc. ↑)
En En-Clone En En-Clone En En-Clone En-Clone

Only Target - 0.1B - 47.2 - - -
Joint Training 10B 0.1B 16.1 21.6 79.8 74.9 26.5

PREALIGN 10B 0.1B 15.9 16.5 80.1 79.3 90.3

Full Target - 10B - 16.2 - - -

Table 1: Performance of PREALIGN and other methods on language modeling, zero-shot cross-lingual transfer
(ZS-CLT) and cross-lingual knowledge application (CLKA).

PREALIGN improves over Joint Training on
all evaluation tasks. We can also see that PRE-
ALIGN significantly outperforms Joint Training on
all three evaluation metrics. On the LM evaluation,
PREALIGN even achieves performance comparable
to Full-Target, using only 1% data. For ZS-CLT,
the performance gap between two languages are
narrowed. For the CLKA the accuracy is greatly im-
proved (from 27.7 to 64.6). All the results demon-
strate the effectiveness of PREALIGN for facilitat-
ing cross-lingual transfer. It is worth noticing that
the performance of English are also improved, sug-
gesting the learning of English-Clone also helps
English as well.

PREALIGN outperforms methods that establish
alignment during and post pretraining. We ex-
periment with performing contrastive alignment
during and post the pretraining process (Wu and
Dredze, 2020), and compared them to PREALIGN

in Table 2. For the post-pretraining alignment, we
add an additional LM loss to reduce catastrophic
forgetting. It can be seen that on-the-fly alignment
can degrade model’s performance, which we hy-
pothesize that excessively optimizing the model on
the limited size of word-level multilingual align-
ment during pretraining might have a negative im-
pact on language ability. For post-pretraining align-
ment, we can observe a improvement over Joint
Training on LM and ZS-CLT, but nearly no effect
on CLKA. However, PreAlign outperforms both
on-the-fly alignment and post alignment on all three
evaluation protocols.

5.2 In-Depth Investigation for CLKA

As the performance for CLKA varies for different
methods, we further examine the learning dynam-
ics of CLKA. We segment the pretraining process
into shorter periods, each consisting of 250 training
steps, and evaluate the CLKA accuracy for each pe-
riod. More specifically, for each period, knowledge
of different frequence are provided to the model,

LM ZS-CLT CLKA

Joint Training 21.6 74.9 26.5
On-the-fly alignment 22.1 74.3 26.5
Post alignment 19.7 75.5 28.4
PreAlign 16.5 79.3 90.3

Table 2: Comparison of performing contrastive align-
ment at different stage. On-the-fly alignment: perform-
ing alignment during the pretraining. Post alignment:
performing alignment when the pretraining is done.

and assessment occurs immediately after each pe-
riod using the corresponding model checkpoint.
For comparison, we evaluate all four combinations
of languages for training and testing the knowledge.
Figure 4 shows the results.

Knowledge learning ability correlates with lan-
guage ability. We can see from the top-left of Fig-
ure 4, where we test English knowledge in English
language, models’ knowledge completion accuracy
after each learning period rapidly grows as the pre-
training goes on. This indicates that the models’
ability to acquire knowledge correlates with their
language modeling ability. The final performance
also correlates with the knowledge frequency in the
learning period as expected.

Early cross-lingual transfer enhance target lan-
guage ability, facilitating knowledge learning.
In the top-right of Figure 4 where we test English-
Clone knowledge in English-clone language, we
observe a similar trend as the top-left figure. How-
ever, the growing rate of PREALIGN is higher com-
pared to Joint Training especially when frequency
of knowledge is low, thanks to better transfer of
language ability from English to English-Clone.

PREALIGN unlocks CLKA. From the bottom
two figures in Figure 4, we can see the CLKA abil-
ity of Joint Training is greatly weaker than PRE-
ALIGN, close to the random guessing performance.
This renders PREALIGN a promising method for
learning truly multilingual knowledge alignment.
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Figure 4: Knowledge application accuracy at each training period of different models. f indicates the frequency of
the test knowledge.

5.3 Ablation Study

In this section, we present an ablation study of the
proposed methods. The results are in Table 3.

Solely input-only CS helps LM and ZS-CLT,
but not CLKA. Comparing Line #1 and Line #2,
we can see that adding input-only CS to the pre-
training stage can bring improvements to language
modeling and downstream cross-lingual transfer-
ring performance, which is consistent with findings
in previous works (Chaudhary et al., 2020; Yang
et al., 2021). However, the improvement on CLKA
is much smaller (27.7 → 32.6).

Multilingual alignment initialization signifi-
cantly facilitates CLT, especially CLKA. By es-
tablishing multilingual alignment before language
model pretraining, all considered metrics that eval-
uating cross-lingual transfer are significantly im-
proved (Line #1 vs. Line #3 and Line #2 vs. Line
#4). Notably, this brings a much better CLKA
performance, highlighting the importance of early
multilingual alignment for knowledge transferring.

Combining Multi-Align Init with input-only
codeswitching achieves the best performance.
Finally, by comparing Line #4 vs. Line #2 and

Line #3, we can see the proposed two strategies
all contributes to the good performance that PRE-
ALIGN achieves.

Input-only codeswitching causes less mixed-
script problem. We also compare the proposed
input-only codeswitching strategy with the vanilla
codeswitching strategy in Table 4, in terms of both
English language modeling performance and the
ratio that generation results contains En-clone to-
kens. It can be seen that when the training time
codeswitching ratio is to 5%, adopting vanilla
codeswitching strategy would result in 4.17% sen-
tences contains En-clone tokens, which would
significantly decrease the generation quality in
real-world settings. However, the input-only
codeswitching strategy proposed in this paper ef-
fectively decrease the ratio to 0.02%, and achieves
better English LM perplexity.

5.4 Maintaining Multilingual Alignment
across Pretraining.

In order to understand how the injected multilin-
gual alignment information evolves during pretrain-
ing, we compute the similarity of aligned word
embedding at different training period (every 250
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Joint Training Multi-Align Init Input-only CS LM (ppl. ↓) ZS-CLT (acc. ↑) CLKA (acc. ↑)

#1 ! 21.6 74.9 26.5
#2 ! ! 19.7 76.1 30.2
#3 ! ! 17.1 77.8 85.7
#4 ! ! ! 16.5 79.3 90.3

Table 3: Ablations of PREALIGN. Multi-Align Init: using multilingual alignment objective to initialize LM.
Input-only CS: the proposed data augmentation method by only codeswitching the input words. All reported
performance are evaluated in English-Clone.

LM Mixed-Script Ratio

Original CS 17.1 4.17%
Input-only CS 16.5 0.02%

Table 4: Comparison of the original codeswitching strat-
egy and the proposed input-only codeswitching strat-
egy. Note the mixed-script ratio in the table refers to
the portion of random English samples that contains
English-clone scripts during inference.

Figure 5: The evolution of word embeddings’ cosine
similarity between aligned words from different models.

training steps). Figure 5 illustrates the results.
Firstly, we can see that despite there are no

vocabulary overlap between English and English-
clone, the embedding similarity of aligned words
still grows during Joint-Training, which is consis-
tent with findings in previous works (Dufter and
Schütze, 2020). This indicates the ability of spon-
taneous establishment of multilingual alignment of
language models. Secondly, the aligned similarity
score of PREALIGN is near perfect as designed,
and despite the score decreases at the beginning of
pretraining, it maintains to be significantly higher
than Joint-Training throughout the pretraining pro-
cess. Finally, the codeswitching strategy is helpful
for both Joint Training and PREALIGN, as it ac-
celerates the increment of Joint Training’s aligning
similarity score, and helps slow down the decre-
ment of PREALIGN’s aligning similarity score.

LM ZS-CLT CLKA

Joint Training 21.6 74.9 26.5

PREALIGN

β = 25% 17.0 78.2 80.2
β = 50% 16.8 78.6 83.1
β = 75% 16.6 78.8 88.4
β = 100% 16.5 79.3 90.3

Table 5: Performance of PREALIGN when using differ-
ent portion of aligned word pairs. For reference, we also
list the performance of Joint Training.

Figure 6: Language modeling perplexity on Seen and
Unseen words categorized according to multilingual
alignment stage.

5.5 Generalization to Unseen Word Pairs

In previous experiments, we assumes that we can
collect translations for all words in the pretraining
corpus. However, in real-world settings, this might
be impractical. Therefore we present an investi-
gation on whether we can only collect alignment
table of high-frequency words, and generalize the
alignment to words unseen in the alignment table.

Specifically, we sort words in our unique word
set according to their frequency, and only train PRE-
ALIGN model based on the top β word alignment.
Table 5 shows the results. We can see that when
using the most frequent 25% words for multilin-
gual alignment, PREALIGN can already achieve
significant improvements over Joint Training. This
indicates the alignment information can be general-
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LM(ppl. ↓) ZS-CLT(acc. ↑) CLKA(acc. ↑)

En Zh De Ar Ru En Zh De Ar Ru Zh De Ar Ru

150M

Joint Training 25.7 99.7 43.5 46.9 49.8 80.6 64.6 63.5 58.3 62.0 26.2 25.1 26.8 26.3
PREALIGN 25.4 91.1 39.8 40.7 44.6 80.6 69.2 67.5 60.8 65.1 53.1 57.2 51.6 55.5

400M

Joint Training 20.3 79.8 32.5 34.8 39.6 82.3 65.8 65.3 56.9 63.7 37.8 39.5 36.1 37.7
PREALIGN 19.9 75.2 28.3 30.7 33.6 82.4 70.0 69.3 65.6 68.2 63.8 66.5 64.7 63.6

1.3B

Joint Training 15.8 62.2 24.0 27.7 31.2 84.3 70.8 70.6 63.7 68.6 49.6 44.1 45.5 48.0
PREALIGN 16.1 58.0 23.3 25.3 29.4 83.9 74.0 72.9 68.2 71.4 71.1 73.9 72.7 72.5

Table 6: Performance of Joint Training and PREALIGN across different scale of models on language modeling,
zero-shot cross-lingual transfer (ZS-CLT) and cross-lingual knowledge application (CLKA).

ize between words.
To better validate this, we split all words into

Seen and Unseen according to their appearance
during the multilingual alignment phase. We then
compute the test LM perplexity of seen words and
unseen words, and present the results in Figure 6.
It can be seen that PREALIGN not only can effec-
tively leverage seen words to enhance the language
modeling ability, but only can generalize the align-
ment information to unseen words.

6 Experiments on Real-world Settings

We validate the effectiveness of PREALIGN under
real-world settings. Performances of LM, ZS-CLT
and CLKA is shown in Table 6.

PREALIGN are also effective under real-world
scenarios. It can be seen from Table 6 that PRE-
ALIGN can still achieve substantially better per-
formance compared to the original Joint Training
method. This improvements is consistent across
different model scales, rendering the effectiveness
of PREALIGN in real-world scenarios. Interest-
ingly, the transferring effect from English is more
preeminent for German and Russian than Chinese
and Arabic, indicating typological similarity be-
tween language might also play important roles in
cross-lingual transferring effectiveness.

Enlarging models is beneficial for CLKA. We
can also see that although Joint Training gets near-
random performance at the small scale, the perfor-
mance grows with the scale of model parameters.
This indicates that the ability of spontaneous mul-
tilingual alignment only appears on larger models,
which is consistent with finding in Qi et al. (2023).

7 Conclusion

We present the PREALIGN framework in this pa-
per. It advances the establishment of multilingual
alignment prior to language pretraining, and main-
tain it throughout pretraining using an input-only
codeswitching strategy. Through extensive exper-
iments and analysis, both on synthetic and real-
world settings, we demonstrate the effectiveness of
PREALIGN for facilitating cross-lingual ability and
knowledge transfer.

Limitations

The main limitation of this paper is scale of stud-
ied models and datasets. Although we proved the
effectiveness of PREALIGN up to 1.3B models, it
is still very small compared to LLMs nowadays.
Whether the findings in the paper holds on larger
settings still remains to be explored.

Another limitation is that we only test simple
factual knowledge in this paper. In real worlds,
knowledge may take more complex forms, and the
effectiveness of PREALIGN on these settings need
to examined.
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A Experimental Details

Collection of the multilingual table We recog-
nize words using the word_tokenize function from
NLTK library. The word set consists of all words,
including named entities, that appears above 20
times in the pretraining corpus. We translate all
words using GPT-4, by asking it to generate 5 most
common translations of a given word (without plac-
ing it in a context).

Training details During the multilingual align-
ment stage, we set the τ to be 0.1. During the lan-
guage pretraining stage, we independently sample
sentences for LM loss and word pairs for the align-
ment loss at each training step. We ran all experi-
ments on 8×A100 GPUs. The multilingual align-
ment stage takes about 500 steps, and the language
pretraining stage takes about 24000 steps. The run-
ning time of different sizes of models ranges from
4 hours to 24 hours.

Example of the synthesized knowledge We col-
lect relations from WikiData, and ask GPT-4 to
compose templates for each relation. We then
fill in the person name to synthesize knowledge
about people. For example, if the subject, relation
and object are Oprah Winfrey, godparent and Tyler
Perry respectively, then the composed knowledge
is Oprah Winfrey is the godparent of Tyler Perry.

B Experimental results on the PAWSX
dataset

To further validate the effectiveness of PreAlign,
we conduct additional experiments on the PAWSX
dataset (Yang et al., 2019), and show the result in
Table 7. It can be seen that PreAlign can still bring
consistent improvements across different model
scales.

En De Zh

150M

Joint Training 90.6 71.5 78.9
PREALIGN 90.1 76.1 83.7

400M

Joint Training 92.6 75.1 83.3
PREALIGN 92.3 78.9 85.6

1.3B

Joint Training 94.1 79.7 85.2
PREALIGN 94.3 82.4 87.9

Table 7: ZS-CLT performance of Joint Training and
PREALIGN across different scale of models on the
PAWSX dataset.
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