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Abstract

Diffusion-based text-to-image models have
demonstrated impressive achievements in di-
versity and aesthetics but struggle to gener-
ate images with legible visual texts. Existing
backbone models have limitations such as mis-
spelling, failing to generate texts, and lack of
support for Chinese text, but their development
shows promising potential. In this paper, we
propose a series of methods, aiming to em-
power backbone models to generate visual texts
in English and Chinese. We first conduct a
preliminary study revealing that Byte Pair En-
coding (BPE) tokenization and the insufficient
learning of cross-attention modules restrict the
performance of the backbone models. Based
on these observations, we make the following
improvements: (1) We design a mixed granu-
larity input strategy to provide more suitable
text representations; (2) We propose to aug-
ment the conventional training objective with
three glyph-aware training losses, which en-
hance the learning of cross-attention modules
and encourage the model to focus on visual
texts. Through experiments, we demonstrate
that our methods can effectively empower back-
bone models to generate semantic relevant, aes-
thetically appealing, and accurate visual text
images, while maintaining their fundamental
image generation quality.

1 Introduction

Recently, diffusion-based models (Ho et al., 2020;
Rombach et al., 2022; Saharia et al., 2022; Balaji
et al., 2022; Zhang et al., 2023; Sauer et al., 2023)
have revolutionized the field of text-to-image gen-
eration, particularly in terms of diversity and aes-
thetics. Among various text-to-image tasks, visual
text generation has attracted much attention due
to the growing demand for generating images con-
taining visual texts in the AI art community and

* Work done during internship in Baidu.
† Corresponding author.

Figure 1: Comparison between the backbone models
(top) and our models (bottom). Our methods can em-
power the backbone models to generate complex (top
left), artistic (top right) visual texts while maintaining
fundamental image generation quality (bottom left). Be-
sides, our method can be transferred to Chinese text
generation (bottom right).

commercial fields. Despite their attractiveness, this
task remains challenging, as most current diffusion
models struggle to produce images with precise,
readable visual texts. At present, dominant stud-
ies on this task can be roughly divided into two
categories. Some researchers focus on adding addi-
tional conditions to reduce the difficulty of generat-
ing images with visual texts, resulting in restricted
diversity and visual texts not coherent with the
background. (Chen et al., 2023b; Ma et al., 2023;
Yang et al., 2023; Tuo et al., 2023; Chen et al.,
2023a; Zhao and Lian, 2023). Other researchers di-
rectly explore the performance of backbone models
on visual text generation, which avoids the limita-
tions of the previous type of methods but suffers
from challenges such as misspelling, ignoring, and
repeating words. To deal with these issues, early
studies (Saharia et al., 2022; Balaji et al., 2022;
Liu et al., 2023b) explore various text encoders
to address misspelling issues. Recent commercial
models such as Dall-E 3 (Betker et al., 2023) and
Stable Diffusion 3 (Esser et al., 2024) demonstrate
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remarkable performance, further validating the po-
tential of this research direction. However, they
lack support for other languages, such as Chinese.

To explore potential avenues for improvements,
we first conduct several preliminary experiments
and observe that the visual text generation perfor-
mance of backbone models are mainly constrained
for two reasons: First, BPE tokenization requires
the model to combine subwords to form complete
visual words, increasing the difficulty of generat-
ing visual texts. Second, The model is unable to
effectively bind visual texts to the corresponding
text tokens due to the insufficient learning of the
cross-attention modules.

Based on these analyses, we propose a series
of methods that significantly improve the visual
text generation capability of backbone models, as
shown in Figure 1. Specifically, we first introduce
a mixed granularity input strategy that provides
more suitable text representations. Then, we aug-
ment the conventional MSE loss with three glyph-
aware losses: (1) attention alignment loss refines
the cross-attention maps, thereby better binding
visual texts to their corresponding text tokens; (2)
local MSE loss highlights the importance of visual
text areas; (3) OCR recognition loss encourages the
model to generate accurate visual texts.

Figure 2 demonstrates that our methods effec-
tively enhance the backbone model’s visual text
generation ability while maintaining its fundamen-
tal capabilities. Particularly, our methods can be
transferred to the generation of Chinese texts.

2 Related Work

2.1 Visual Text Generation

Recent studies on visual text generation primarily
focus on introducing additional conditions, such
as rendered text images, or position coordinates
during inference.

Some works concatenate representations of the
rendered text image with the latent variable as the
model input. For example, TextDiffuser (Chen
et al., 2023b) and GlyphDraw (Ma et al., 2023) con-
catenate the representation of position-aware mask
with the latent variable, and utilize pre-trained mod-
els to generate positional information. UDiffText
(Zhao and Lian, 2023) utilizes an inpainting model
that considers concatenation of the position mask,
the masked image, and the original image as in-
put. Instead of introducing additional conditions
through concatenation, some works also explore

to utilize auxiliary modules. GlyphControl (Yang
et al., 2023) use a ControlNet, which receives im-
ages with rendered texts as input. Building upon
this, AnyText (Tuo et al., 2023) introduces a fusion
network that receives position and image masks to
support more flexible position control and image
editing. Apart from these, several works add spe-
cial tokens representing additional conditions. For
example, TextDiffuser-2 (Chen et al., 2023a) adds
additional position tokens into the text encoder to
generate text based on the predicted coordinates.

However, the above studies still suffer from the
following limitations: (1) The use of these con-
ditions constrains the overall composition of the
image, causing issues of restricted diversity and vi-
sual texts not coherent with backgrounds; (2) Users
are required to provide additional conditions, lead-
ing to inconvenience in usage.

2.2 Text-to-Image Backbone Models
Some researchers focus on enhancing the over-
all capabilities of text-to-image backbone mod-
els. Early works in this regard aim at addressing
spelling errors by experimenting with various text
encoders. For example, Imagen (Saharia et al.,
2022) replaces CLIP (Radford et al., 2021) with
T5 (Raffel et al., 2019), eDiff-I (Balaji et al., 2022)
uses both CLIP and T5.

Additionally, some researchers find that tok-
enization methods influence the model’s ability to
generate visual texts. Liu et al. (2023b) believe that
the primary reason for spelling errors lies in the
lack of character-level glyph information caused
by BPE tokenization, and propose to solve this
by adopting the character-level text encoder ByT5
(Xue et al., 2021).

Recently, some commercial models, such as
Dall-E 3 (Betker et al., 2023) and Stable Diffu-
sion 3 (Esser et al., 2024) show outstanding perfor-
mance in visual text generation. This demonstrates
that with the development of backbone models,
the performance of visual text generation is con-
currently improving. However, these commercial
models only support English, leaving the genera-
tion of visual texts in other languages unsolved.

In this work, we propose a series of methods,
which empower the backbone models with the abil-
ity to generate accurate and aesthetic visual texts in
two aspects. First, we propose a mixed granularity
input strategy to provide more suitable text repre-
sentations. Second, we augment the conventional
training objective with three glyph-aware losses.

8002



Figure 2: Visual text generation results of our models. Our methods significantly empower the backbone models to
generate semantic relevant, visual appealing visual text images generation in English and Chinese.

Figure 3: Visualization of the cross-attention maps. (a):
“University” is correctly spelled, the token has large
values on the corresponding areas. (b): “University”
is not correctly spelled, token “university</w>” fails
to focus on the corresponding area. (c): The token
“heart</w>“ attends to the corresponding area, thus
is correctly generated, while the token “flower</w>“
highlights irrelevant region and fails to generate the
corresponding visual text.

3 Preliminary Study

In this section, we first introduce the basic con-
cepts of the diffusion based text-to-image backbone
model, and then conduct experiments to identify
potential avenues for improvements.

3.1 Diffusion Based Text-to-Image Backbone
Models

Model Architecture. The commonly-used ar-
chitecture of text-to-image backbone models de-
rives from the latent diffusion model (Rombach
et al., 2022), which is composed of three modules:

(1) a VAE (Kingma and Welling, 2014) consists
of an encoder to compress images into the latent
space, and a decoder to reverse them back; (2) a
UNet (Ronneberger et al., 2015) denoiser ϵθ per-
forms diffusion denoising process at latent space;
(3) a text encoder T encodes the text prompt into
representation c.
Diffusion Process. This process defines a
Markov chain of forward diffusion process which
continually applies the noise sampled from a Gaus-
sian distribution to the real data z0 = E(x0):

q(zt|zt−1) := N (zt;
√
αtzt−1, (1− αt)I), (1)

where αt is a time-aware schedule. As t increases,
zt asymptotically approaches the noise in a stan-
dard Gaussian distribution.

The UNet denoiser ϵθ is trained to predict the
noise ϵt added to the image at timestep t, thereby
reversing the Markov chain. A mean squared error
(MSE) loss is utilized to supervise the training:

Lmse = Ez0,c,ϵt,t

[
||ϵθ(z0, t, c)− ϵt||22

]
. (2)

To add conditional guidance, the representation
c is fed into each cross-attention block of the UNet
model as:

Attn(zt, c) = Softmax(
Q(zt) ·K(c)T√

d
)V (c),

(3)
where Q, K and V denote the query, key and value
projections, and d denotes the output dimension.

8003



Figure 4: The framework of our methods. The Mixed Granularity Input strategy considers glyph words as whole
units to provide more suitable text representations. The Glyph Aware Training includes three losses: (1) the attention
alignment loss enhances the learning of cross-attention modules; (2) the local MSE loss highlights the importance
of visual text areas; (3) the OCR recognition loss encourages the model to generate accurate visual texts.

3.2 Experimental Analyses

To identify avenues for improvements, we use the
commonly-used backbone model–SD-XL (Podell
et al., 2023) to conduct two groups of experiments.

In the first group of experiments, we investigate
the effect of BPE tokenization on two subsets: (1)
S1, where words are split into subwords by BPE
tokenization, and (2) S2, consisting of words that
remains the same after BPE tokenization. To elimi-
nate the impact of word frequency and length, we
select 100 words for each subset from 5,000 com-
mon words with lengths ranging from 5 to 8 letters1.
Results show that the model achieves an accuracy
of 0.3 in S1, compared to 0.46 in S2, indicating
that BPE tokenization increases the difficulty for
the model in generating visual texts, as it splits
a word into subwords and requires the model to
combine them into a complete visual word.

As stated in previous works (Hertz et al., 2023;
Chefer et al., 2023), the cross-attention maps of the
UNet can reflect the relevance between generated
objects and corresponding text tokens. Similarly,
visual texts can also be treated as objects, and texts
to be generated, which we refer to as glyph texts,

1https://github.com/first20hours/
google-10000-english

should therefore have a robust relationship with
the corresponding visual texts in the image. In the
second group of experiments, we extract and vi-
sualize the cross-attention maps for glyph tokens
at the last timestep, as depicted in Figure 3. We
can clearly observe that cross-attention maps with
corresponding visual texts generated are correctly
localized, while the maps that do not have corre-
sponding visual texts generated highlights irrele-
vant regions. Thus, we conclude that glyph tokens
indeed have a robust relationship with visual
text areas through cross-attention mechanism,
which the model fails to effectively capture.

In summary, based on our experimental analy-
ses, we believe that BPE tokenization and the in-
sufficient learning of cross-attention modules con-
strain the model’s ability to correctly generate vi-
sual texts.

4 Methods

Based on the observations from our preliminary
study, we propose a series of methods to improve
the visual text generation capability of backbone
models. As shown in Figure 4, our improvements
mainly involve two aspects: (1) we introduce a
mixed granularity input strategy to replace the BPE
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Figure 5: Mixed granularity input. The word “diffusion”
is considered as a whole instead of being tokenized.

subword input; (2) we augment the conventional
training objective with three glyph-aware training
losses, which regulates the cross-attention maps
and encourage the model to focus on visual texts.

4.1 Mixed Granularity Input
Our preliminary study reveals that BPE tokeniza-
tion constrains the performance of the model, high-
lighting the necessity to represent glyph texts in a
more suitable granularity. In this regard, previous
studies (Liu et al., 2023b; Chen et al., 2023a; Zhao
and Lian, 2023) commonly utilize character-level
tokenization, which splits words into characters.
However, as stated in our preliminary study, this
split challenges the model to combine characters
into a complete visual word. To deal with this
issue, we consider each glyph word as a whole
within the model, as shown in Figure 5. Given the
impracticality of including every word in the vo-
cabulary, a method is needed to get the embedding
for every word. Therefore, we extract intermediate
features from the OCR model as new text embed-
dings following Tuo et al. (2023), which inherently
possess sufficient glyph information. Specifically,
for a user prompt y containing N glyph words
g1, g2, . . . , gN , we render each glyph word into an
image without providing positional information, re-
sulting in an image sequence Ig. Then, we feed
them into the OCR model γ, where the text embed-
ding c is refined as follows:

c = T (ϕ(y), ξ(γ(Ig))), (4)

where T is the CLIP text encoder, ϕ is the BPE
tokenizer, and ξ is a linear module.

4.2 Glyph-Aware Training
Formally, the overall training objective can be for-
mulated as:

L = Lmse + λ1 · Lattn + λ2 · Lloc

+ (1− λ1 − λ2) · Locr,
(5)

where Lattn, Lloc and Locr denote the attention
alignment loss, the local MSE loss, and the OCR
recognition loss, respectively.

4.2.1 Attention Alignment Loss Lattn

To enhance the learning of cross-attention modules,
we introduce an attention alignment loss, which
encourages the model to ensure that each visual text
mainly attends to the corresponding glyph token.
Specifically, the cross-attention map between the
intermediate feature of the noisy latent variable zt

and the refined representation cg of glyph tokens
can be calculated as:

CA(zt, cg) = Softmax(
Q(zt) ·K(cg)

T

√
d

). (6)

To encourage that each visual text has large val-
ues in the corresponding area, we minimize the
distance between the cross-attention maps and the
corresponding segmentation masks of visual texts,
which is defined as follows:

Lattn =
1

N

N∑

k=1

∥∥∥CA(zt, c
k
g)−Mk

∥∥∥
2

2
, (7)

where M denotes the segmentation mask of the
k-th visual text corresponding to its glyph token.

Through this training process, the model can
effectively capture a more robust understanding of
the relationships between the visual texts and glyph
tokens, thus faithfully generating the desired visual
texts.

4.2.2 Local MSE Loss Lloc

Since the MSE loss only measures pixel-wise dis-
tance and lacks additional focus on visual text areas,
we apply a weighting strategy to the MSE loss fol-
lowing Ma et al. (2023), which we refer to as the
local MSE loss. To mitigate the impact of visual
text area size, we add a weighting term w which is
the ratio of the image area to the visual text area.
Formally, the local MSE loss can be formulated as:

Lloc =
1

N

N∑

k=1

wk · Lk
loc,

Lk
loc = Ez0,ϵt,t

[
Mk ⊙ ∥ϵθ(z0, t, c)− ϵt∥22

]
.

(8)

4.3 OCR Recognition Loss Locr

To further encourage the model to generate accu-
rate visual texts, we introduce an OCR recognition
task. At each training step, we can estimate the
fully denoised image latent variable z′

0, as imple-
mented in DDPM (Ho et al., 2020). We then input
this latent variable into the VAE decoder to obtain
an approximate image x′

0, which is subsequently
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Metrics DeepFloyd SD-XL SDXL-Turbo LCM-LoRA SD Cascade Ours(XL) Ours(Turbo)

Quantitative Results

CLIP score 28.256 28.056 30.001 26.631 30.102 29.168 29.394

OCR (Precision) 0.153 0.116 0.315 0.032 0.298 0.348 0.360

OCR (Recall) 0.210 0.138 0.337 0.038 0.308 0.283 0.307

OCR (F1 score) 0.177 0.125 0.326 0.035 0.303 0.312 0.331

User Study Results

Text Aesthetics 0.100 0.050 0.100 0.016 0.200 0.259 0.275

Text Accuracy 0.131 0.041 0.134 0.006 0.188 0.234 0.266

Semantic Relevance 0.066 0.022 0.059 0.009 0.178 0.303 0.363

Image Aesthetics 0.038 0.034 0.053 0.031 0.178 0.287 0.378

Table 1: Quantitative results of English text generation compared with other backbone models. ‘XL’, ‘Turbo’
denotes SD-XL, SDXL-Turbo. Our models achieve the best results in terms of most metrics.

fed into the OCR model for recognition. As im-
plemented in the training of the OCR model, we
use the CTC loss (Graves et al., 2006) to refine the
predicted results. Since this estimation introduces
more distortion as t increases, we add a weighting
term related to t, which is set as ᾱt following Tuo
et al. (2023). The OCR recognition loss can be
formulated as:

Locr =
1

N

N∑

k=1

ᾱt · CTC(x′
0 ⊙Mk, gk), (9)

where CTC(·) denotes the CTC loss function.

5 Experiments

5.1 Dataset

To better unleash the potential of the model, we
require a large-scale, high-quality dataset that satis-
fies the following criteria:

• The dataset should contain images with clear
and recognizable visual texts.

• The visual texts in the images should occupy
a prominent area and be coherent with the
background.

• The captions should include detailed descrip-
tions of the visual texts.

• The aesthetic quality of the images should be
comparable to those used for pre-training.

Following the aforementioned criteria, we con-
struct an English dataset consisting of 240K sam-
ples by filtering internal datasets, and a Chinese
dataset containing 50K synthetic samples using

image-to-image models and rendering tools2. More
details are introduced in Appendix A.

5.2 Experimental Setting

Evaluation Metrics. We quantify the visual
text generation quality from two aspects: (1) CLIP
score (Hessel et al., 2021) measures the seman-
tic relevance between the generated image and the
input prompt by calculating the cosine similarity
of their representations from CLIP image and text
model (Radford et al., 2021). (2) OCR Accuracy
detects the texts in the generated images utilizing
OCR tools. We calculate the precision, recall and
F1 score between the detected texts and the ground
truths. Furthermore, we evaluate the model ’s fun-
damental capability through FID (Heusel et al.,
2017) score, which compares the distribution of
generated images with that of real images. Note
that we are unable to calculate the FID score in
our main experiments, due to the lack of source
images.
Implementation Details. We train our models
based on SDXL-base-1.0 and SDXL-Turbo. We
utilize the PaddleOCR v4 model3 to extract inter-
mediate features, perform the OCR recognition
task, and conduct evaluation. We set λ1 and λ2, to
0.4, 0.2, respectively, determined by a grid search
on the validation set, which are varied from 0.1 to
1.0 with an interval of 0.1. We set the learning rate
to 2e-5 and conduct a total of 10K steps of training.
The overall training process takes 7 hours and 50
minutes on 8 A800 GPUs.

2https://pypi.org/project/pillow/
3https://github.com/PaddlePaddle/PaddleOCR
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Figure 6: Visualization of generating English texts compared with other backbone models.

5.3 Quantitative Results

As shown in Table 1, we conduct quantitative com-
parison with existing backbone models on the Chi-
neseDrawText benchmark (Ma et al., 2023). We
compare our models with DeepFloyd (DeepFloyd-
Lab, 2023), SD-XL, SDXL-Turbo (Sauer et al.,
2023), LCM-LoRA (Luo et al., 2023), and SD-
Cascade (Pernias et al., 2023). Results show that
our models outperform other baseline models under
the majority of metrics.

5.4 User Study

To further validate the effectiveness of our pro-
posed methods, we conduct a human evaluation
comparing our English models with other baseline
models on ChineseDrawText benchmark. Three
raters are asked to compare these images from four
dimensions including text aesthetics, text accuracy,
semantic relevance, and image aesthetics, and then
select the images they prefer. Throughout the pro-
cess, all raters are unaware of which model the
image is generated from. The results in Table 1
show that human raters greatly prefer our models
on all aspects, which further validates the effective-
ness of our approaches in generating high-quality
and visual text images. The detailed participant
instruction are listed in Appendix B.

5.5 Qualitative Results

To provide more straightforward comparison, we
provide some visualization samples from the test
set in Figure 6. We can clearly observe that our
models better capture the semantic relevance, thus

Figure 7: Comparison between Ours(Turbo) at the top
and SDXL-Turbo at the bottom.

generate visual texts at the reasonable place. For
example, our models generate visual text “Speed”
at the front of the car (line 1), while some baselines
(SD-XL, SDXL-Turbo, LCM-LoRA) fail to cap-
ture the guidance “write on the car”. Besides, as
shown in line 3, our models effectively avoid issues
like misspelling (Deepfloyd, SDXL-Turbo, LCM-
LoRA), repeating (SD Cascade, SDXL-Turbo) and
ignoring words (Deepfloyd), or failing to under-
stand the instruction (SD-XL). We provide visu-
alization comparison and more showcases in Ap-
pendix C.

Regarding the failure cases, we analyze why
the recall of our model is lower than that of the
SDXL-Turbo model. As shown in Figure 7, the
SDXL-Turbo model tends to generate repeated
words. For example, in the first column, the SDXL-
Turbo model generates “do” and “not” twice and
spells them correctly once, leading to a higher re-
call. However, this repetition fails to align with
human reference, resulting in a lower precision
score.
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Method FID

Ours(SD-XL) 53.4

Ours(SDXL-Turbo) 52.9

SD-XL (Podell et al., 2023) 73.6

SDXL-Turbo (Sauer et al., 2023) 61.9

Table 2: COCO zero-shot FID5k(FID) comparison.

Figure 8: Visualization of generating images without
visual texts.

5.6 Comparison of Generating Images
without Visual Texts

In order to evaluate the fundamental image gener-
ation performance of our models, we use FID to
quantify the image quality without visual texts on
5K samples from COCO2017 (Lin et al., 2014), as
shown in Table 2. Furthermore, we visualize some
image generation examples in Figure 8. The quanti-
tative and qualitative results indicate that our mod-
els maintain the fundamental capability to generate
visual appealing and semantic relevant images.

5.7 Ablation Study

To investigate the effectiveness of each design, we
further compare our SD-XL model with the follow-
ing variants in Table 3:

(1) ⇒Char+BPE tokenization, and⇒BPE to-
kenization. In the first variant, we replace our
mixed granularity input with the mixture of
character-level and BPE tokenization. In the sec-
ond variant, we only utilize BPE tokenization. As
shown in line 2, our mixed granularity input strat-
egy outperforms the mixture of character-level and
BPE tokenization. We hypothesize that this is be-
cause the model struggles to combine the glyphs
of characters to form a complete visual word. The
result in line 3 shows that the mixture of character-
level and BPE tokenization achieves better results
comparing to BPE tokenization, which demonstrate
the effectiveness of providing character-level glyph
information.

Method Pre. Rec. F1.

Ours 0.348 0.283 0.312

⇒ Char+BPE tokenization 0.231 0.193 0.210

⇒ BPE tokenization 0.227 0.182 0.202

w/o Lattn 0.278 0.236 0.250

w/o Lloc 0.254 0.236 0.244

w/o Locr 0.270 0.218 0.241

Table 3: Ablation on the generation of English texts.
⇒* means replacing the input granularity with *. Lloc,
Lattn and Locr denote the local MSE loss, the attention
alignment loss, and the OCR recognition loss, respec-
tively. ‘Pre.’ and ‘Rec.’ denote Precision and Recall
respectively.

Figure 9: Visualization of generating Chinese texts com-
pared with other backbone models. * denote the baseline
model that is trained on our Chinese dataset for 10K
steps.

(2) w/o Lattn. In this variant, the attention
alignment loss Locr is removed. The result in line
4 shows a significant performance drop, which con-
firms our previous assumption that the insufficient
learning of cross-attention modules constrains the
visual text generation capability of backbone mod-
els.

(3) w/o Lloc. We remove the local MSE loss
Lloc from this variant. The result in line 5 demon-
strates a significantly decline in OCR accuracy, in-
dicating that focusing on visual text areas is indeed
helpful for generating correctly spelled visual texts.

(4) w/o Locr. We remove the OCR recognition
loss Locr, and observe from line 6 that the perfor-
mance suffers from a great decline, demonstrating
the effectiveness of OCR recognition loss.

5.8 Chinese Text Generation

We further explore the effectiveness of our methods
to generate Chinese visual texts. Instead of consid-
ering words as whole units, we use the mixture of
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Method CLIP score Pre. Rec. F1

SD-XL* 29.569 0.299 0.319 0.308

SDXL-Turbo* 29.827 0.275 0.295 0.284

SD Cascade* 29.734 0.146 0.154 0.150

Ours(SD-XL) 29.258 0.582 0.608 0.595

Ours(Turbo) 29.919 0.598 0.613 0.606

Table 4: Quantitative results of Chinese text generation.
* denotes that these baselines are trained on our Chinese
dataset for 10K steps before comparison.

character-level and BPE tokenization for Chinese
texts due to two reasons. First, Chinese glyphs are
excessively complex, resulting in the intermediate
features of each character being too similar in dis-
tribution to be effectively distinguished. Second,
fewer characters are included in each Chinese word,
thus is easier to be combined into a complete visual
word.

Note that due to the lack of open source Chinese
backbone text-to-image models for comparison, we
train both our models and the baseline models on
our Chinese dataset for 10K steps. We choose SD-
XL, SDXL-Turbo and SD Cascade, which achieve
relatively better performance in English, as base-
line models, and use the prompt templates from the
ChineseDrawText benchmark with texts included
in our Chinese dataset as test set. Quantitative
results in Table 4 show that our models greatly out-
perform other baseline models. As for qualitative
comparison, we visualize some samples from our
test set, as shown in Figure 9. Our model generates
accurate visual texts, while other baseline models
fails to correctly generate Chinese texts, indicating
that our methods enhance the learning of Chinese
texts. We provide the ablation study for Chinese
text generation in Appendix D.

6 Conclusion

In this paper, we conduct a preliminary study and
find that BPE tokenization, as well as the model’s
insufficient learning of cross-attention modules,
constrains the visual text generation performance
of diffusion-based backbone models. Based on
these insights, we propose a series of methods, aim-
ing to empower the backbone model with the ability
to generate accurate and aesthetically appealing vi-
sual text images, while maintaining fundamental
image generation quality. Specifically, we intro-
duce a mixed granularity input strategy to provide

more suitable text representations. Besides, we aug-
ment the conventional training objective with three
glyph-aware training losses, which enhance the
learning of the cross-attention modules and encour-
age the model to focus on visual texts. Experiments
demonstrate the effectiveness of our methods. Typ-
ically, our methods can be transferred to Chinese
text generation.

In the future, we intend to explore visual text
generation for more languages, and generate texts
in different styles (Liu et al., 2023a). Besides, we
also plan to explore utilizing glyph enhanced dif-
fusion models for image-to-image translation (Lan
et al., 2024).

Limitations

While our methods enhance the visual text gener-
ation capability of the backbone models, several
limitations still remain. First, our methods require
to train the diffusion backbone model, which may
be time consuming and expensive. Besides, our
methods are unable to completely solve the issue
of misspelling, ignoring and repeating words.

Ethics Statement

This research paper rigorously addresses the eth-
ical considerations associated with text-to-image
models, ensuring that all methods used in this study
are conducted responsibly and ethically. Our mod-
els are trained using open-source backbone models.
To address concerns related to training data, we
implement a strict filtering process to exclude in-
appropriate content, such as NSFW images and of-
fensive visual text. The evaluation experiments are
conducted using widely recognized public bench-
marks, and participants involved in the user studies
are systematically trained.

Acknowledgments

The project is supported by National Key RD
Program of China (No. 2022ZD0160501), Na-
tional Natural Science Foundation of China (No.
62276219), Natural Science Foundation of Fujian
Province of China (No. 2024J011001), and the
Public Technology Service Platform Project of Xi-
amen (No.3502Z20231043). We also thank the
reviewers for their insightful comments.

8009



References
Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vah-

dat, Jiaming Song, Karsten Kreis, Miika Aittala,
Timo Aila, Samuli Laine, Bryan Catanzaro, Tero
Karras, and Ming-Yu Liu. 2022. ediff-i: Text-to-
image diffusion models with an ensemble of expert
denoisers. CoRR, abs/2211.01324.

James Betker, Gabriel Goh, Li Jing, † TimBrooks,
Jianfeng Wang, Linjie Li, † LongOuyang, † Jun-
tangZhuang, † JoyceLee, † YufeiGuo, † Wesam-
Manassra, † PrafullaDhariwal, † CaseyChu, † Yunx-
inJiao, and Aditya Ramesh. 2023. Improving image
generation with better captions.

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf,
and Daniel Cohen-Or. 2023. Attend-and-excite:
Attention-based semantic guidance for text-to-image
diffusion models. ACM Trans. Graph.

Jingye Chen, Yupan Huang, Tengchao Lv, Lei Cui,
Qifeng Chen, and Furu Wei. 2023a. Textdiffuser-
2: Unleashing the power of language models for text
rendering. CoRR, abs/2311.16465.

Jingye Chen, Yupan Huang, Tengchao Lv, Lei Cui,
Qifeng Chen, and Furu Wei. 2023b. Textdiffuser:
Diffusion models as text painters. In NeurIPS.

DeepFloyd-Lab. 2023. Deepfloyd if.

Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin,
Weiwei Liu, Jun Zhou, Yifan Bai, Zilin Yu, Yehua
Yang, Qingqing Dang, and Haoshuang Wang. 2020.
PP-OCR: A practical ultra lightweight OCR system.
CoRR, abs/2009.09941.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim
Entezari, Jonas Müller, Harry Saini, Yam Levi, Do-
minik Lorenz, Axel Sauer, Frederic Boesel, Dustin
Podell, Tim Dockhorn, Zion English, Kyle Lacey,
Alex Goodwin, Yannik Marek, and Robin Rombach.
2024. Scaling rectified flow transformers for high-
resolution image synthesis. CoRR, abs/2403.03206.

Alex Graves, Santiago Fernández, Faustino J. Gomez,
and Jürgen Schmidhuber. 2006. Connectionist tem-
poral classification: labelling unsegmented sequence
data with recurrent neural networks. In ICML.

Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou, Minzhe
Niu, Hang Xu, Xiaodan Liang, Wei Zhang, Xin Jiang,
and Chunjing Xu. 2022. Wukong: 100 million large-
scale chinese cross-modal pre-training dataset and A
foundation framework. CoRR, abs/2202.06767.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aber-
man, Yael Pritch, and Daniel Cohen-Or. 2023.
Prompt-to-prompt image editing with cross-attention
control. In ICLR.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le
Bras, and Yejin Choi. 2021. Clipscore: A reference-
free evaluation metric for image captioning. In
EMNLP.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans
trained by a two time-scale update rule converge to a
local nash equilibrium. In NeurIPS.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. In NeurIPS.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In ICLR.

Zhibin Lan, Liqiang Niu, Fandong Meng, Jie Zhou,
Min Zhang, and Jinsong Su. 2024. Translatotron-
v(ison): An end-to-end model for in-image machine
translation. In ACL.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. Microsoft COCO:
common objects in context. In ECCV.

Bingshuai Liu, Longyue Wang, Chenyang Lyu, Yong
Zhang, Jinsong Su, Shuming Shi, and Zhaopeng Tu.
2023a. On the cultural gap in text-to-image genera-
tion. CoRR.

Rosanne Liu, Dan Garrette, Chitwan Saharia, William
Chan, Adam Roberts, Sharan Narang, Irina Blok,
RJ Mical, Mohammad Norouzi, and Noah Constant.
2023b. Character-aware models improve visual text
rendering. In ACL.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick
von Platen, Apolinário Passos, Longbo Huang, Jian
Li, and Hang Zhao. 2023. Lcm-lora: A univer-
sal stable-diffusion acceleration module. CoRR,
abs/2311.05556.

Jian Ma, Mingjun Zhao, Chen Chen, Ruichen Wang,
Di Niu, Haonan Lu, and Xiaodong Lin. 2023. Glyph-
draw: Learning to draw chinese characters in image
synthesis models coherently. CoRR, abs/2303.17870.

Pablo Pernias, Dominic Rampas, Mats L. Richter,
Christopher J. Pal, and Marc Aubreville. 2023. Wuer-
stchen: An efficient architecture for large-scale text-
to-image diffusion models. CoRR.

Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna,
and Robin Rombach. 2023. SDXL: improving latent
diffusion models for high-resolution image synthesis.
CoRR, abs/2307.01952.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In ICML.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

8010

https://doi.org/10.48550/arXiv.2211.01324
https://doi.org/10.48550/arXiv.2211.01324
https://doi.org/10.48550/arXiv.2211.01324
https://api.semanticscholar.org/CorpusID:264403242
https://api.semanticscholar.org/CorpusID:264403242
https://doi.org/10.1145/3592116
https://doi.org/10.1145/3592116
https://doi.org/10.1145/3592116
https://doi.org/10.48550/arXiv.2311.16465
https://doi.org/10.48550/arXiv.2311.16465
https://doi.org/10.48550/arXiv.2311.16465
http://papers.nips.cc/paper_files/paper/2023/hash/1df4afb0b4ebf492a41218ce16b6d8df-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1df4afb0b4ebf492a41218ce16b6d8df-Abstract-Conference.html
https://github.com/deep-floyd/IF
https://arxiv.org/abs/2009.09941
https://doi.org/10.48550/arXiv.2403.03206
https://doi.org/10.48550/arXiv.2403.03206
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://arxiv.org/abs/2202.06767
https://arxiv.org/abs/2202.06767
https://arxiv.org/abs/2202.06767
https://openreview.net/pdf?id=_CDixzkzeyb
https://openreview.net/pdf?id=_CDixzkzeyb
https://doi.org/10.18653/v1/2021.emnlp-main.595
https://doi.org/10.18653/v1/2021.emnlp-main.595
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://aclanthology.org/2024.findings-acl.325
https://aclanthology.org/2024.findings-acl.325
https://aclanthology.org/2024.findings-acl.325
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.48550/ARXIV.2307.02971
https://doi.org/10.48550/ARXIV.2307.02971
https://doi.org/10.18653/v1/2023.acl-long.900
https://doi.org/10.18653/v1/2023.acl-long.900
https://doi.org/10.48550/arXiv.2311.05556
https://doi.org/10.48550/arXiv.2311.05556
https://doi.org/10.48550/arXiv.2303.17870
https://doi.org/10.48550/arXiv.2303.17870
https://doi.org/10.48550/arXiv.2303.17870
https://doi.org/10.48550/Arxiv.2306.00637
https://doi.org/10.48550/Arxiv.2306.00637
https://doi.org/10.48550/Arxiv.2306.00637
https://doi.org/10.48550/arXiv.2307.01952
https://doi.org/10.48550/arXiv.2307.01952
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683


Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In CVPR.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
2015. U-net: Convolutional networks for biomedical
image segmentation. CoRR, abs/1505.04597.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L. Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo Lopes,
Burcu Karagol Ayan, Tim Salimans, Jonathan Ho,
David J. Fleet, and Mohammad Norouzi. 2022. Pho-
torealistic text-to-image diffusion models with deep
language understanding. In NeurIPS.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and
Robin Rombach. 2023. Adversarial diffusion distil-
lation. CoRR, abs/2311.17042.

Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton
Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig
Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
2022. LAION-5B: an open large-scale dataset for
training next generation image-text models. In
NeurIPS.

Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng
Geng, and Xuansong Xie. 2023. Anytext: Multi-
lingual visual text generation and editing. CoRR,
abs/2311.03054.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. CoRR,
abs/2105.13626.

Yukang Yang, Dongnan Gui, Yuhui Yuan, Weicong
Liang, Haisong Ding, Han Hu, and Kai Chen. 2023.
Glyphcontrol: Glyph conditional control for visual
text generation. In NeurIPS.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023.
Adding conditional control to text-to-image diffusion
models. In ICCV.

Yiming Zhao and Zhouhui Lian. 2023. Udifftext: A
unified framework for high-quality text synthesis in
arbitrary images via character-aware diffusion mod-
els. CoRR, abs/2312.04884.

A Dataset

A.1 Data Collection

To obtain suitable English training data, we ini-
tially survey academic datasets such as LAION-5B
(Schuhmann et al., 2022) and WuKong (Gu et al.,
2022), and find that these academic datasets have

issues with low image resolution, which signifi-
cantly degrades the overall quality of the images
when used for training. Therefore, we utilize our in-
ternal dataset and employ the high-precision OCR
model PaddleOCR (Du et al., 2020) to filter data
with texts. To get high quality captions including
visual text information, we utilize a Multimodal
Large Language Model (MLLM) and include the
OCR results in the prompt to improve the accuracy
of the generated captions. Following the above
steps, we construct a English dataset of 240,000
high-aesthetic image-caption pairs.

Regarding Chinese data, we identify several is-
sues with both web-crawled and academic datasets
upon sampling: an excessive amount of text, overly
complex glyphs, and text not occupying a promi-
nent area in the images. These issues increase the
difficulty of generating Chinese visual texts. Con-
sequently, we explore constructing synthetic data
using rendering and image-to-image models. We
first select Chinese phrases that consists of two
characters with no more than 10 strokes for each
character 4, and then apply manual deduplication
to prevent overfitting to some characters, result-
ing in 255 phrases. We then design 10 templates
to stipulate positional information and render the
characters onto background images according to
the templates. Finally, we apply image-to-image
models to generate the backgrounds and conduct
post-filtering with the OCR model to ensure that the
aforementioned issues are avoided. However, due
to the use of predefined rules, there are significant
limitations in the diversity and overall aesthetic
quality of the data, which impact the quality of the
images generated by the model.

4https://github.com/thunlp/THUOCL/tree/master

Figure 10: Statistics of data sources of our dataset.

8011

https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ec795aeadae0b7d230fa35cbaf04c041-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2311.17042
https://doi.org/10.48550/arXiv.2311.17042
http://papers.nips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/arXiv.2311.03054
https://doi.org/10.48550/arXiv.2311.03054
https://arxiv.org/abs/2105.13626
https://arxiv.org/abs/2105.13626
http://papers.nips.cc/paper_files/paper/2023/hash/8951bbdcf234132bcce680825e7cb354-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8951bbdcf234132bcce680825e7cb354-Abstract-Conference.html
https://doi.org/10.1109/ICCV51070.2023.00355
https://doi.org/10.1109/ICCV51070.2023.00355
https://doi.org/10.48550/arXiv.2312.04884
https://doi.org/10.48550/arXiv.2312.04884
https://doi.org/10.48550/arXiv.2312.04884
https://doi.org/10.48550/arXiv.2312.04884
https://github.com/thunlp/THUOCL/tree/master


Figure 11: Statistics of data style of our dataset.

A.2 OCR Filtering Rules

We filter our collected data with the following cri-
teria:

• Height and width larger than 1024 for En-
glish dataset, and 512 for Chinese dataset.
We find that low-resolution sample has a neg-
ative impact for the training.

• Area size for each visual text are more than
10% of the whole image. Visual texts be-
ing too small will increase the error rate of
OCR recognition during training, thus intro-
duce noise into data, and images with small
texts often contain watermarks.

• At least one detected text appears in the
caption. MLLMs would reject to describe
when there is no visual text included in the
image, we mark these images as invalid.

• Text areas are at least 10% away from bor-
der. Texts too close to image boarder are more
likely to be pruned when regulating images
within a batch during training.

• Number of texts should be no more than 5.
Samples that include too much texts typically
have small areas for each text.

A.3 Data Statistics

We further provide the statistics of our data source
and style, as listed in Figure 10 and 11.

B Participant Instruction

Objective: Evaluate the images based on the fol-
lowing four criteria. Select one or multiple images
that you prefer; you can select all or none of them.
Each sample will be evaluated by three raters.

• Text Accuracy:

Metric: The visual texts should be correctly
spelled and easily recognizable. The follow-
ing errors should be considered in descending
order of importance: neglecting or repeating
words, misspelling words, generating words
that are not requested.

Further Consideration: A repeated word may
not be exactly the same as others. For exam-
ple, if the prompt asks to generate the text ’ap-
ple’, texts like ’aple’, ’apple’, ’appple’ should
all be considered as repeated words.

• Text Aesthetics:

Metric: The color of the visual texts should be
coherent with the background. The font style
of the visual texts should match the current
scenario. For example, in paintings, the texts
should be artistic; in posters, the texts should
be eye-catching and occupy a prominent area.
The positions of the visual texts should be
reasonable.

Further Consideration: If the image does
not contain any recognizable visual texts, it
should be less preferred. The accuracy of the
visual texts is not considered in this metric.

• Semantic Relevance:

Metric: The image should depict a scenario
that matches the requirements of the user
prompt.

Further Consideration: Note that the rele-
vance between the visual texts and the user
prompt is considered in text accuracy; the
overall semantic relevance is more important.
If the image contains noise from visual texts,
it should be less preferred. For example, if
the user prompt asks the image to contain the
word ’apple’ without needing to draw a real
apple, images containing a real apple should
be considered as bad cases.

• Image Aesthetics:

Metric: The image should be visually appeal-
ing.

Further Consideration: The aesthetics of the
visual texts are less important than the back-
ground.
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Figure 12: More visualizations of visual text generation results.

Variant CLIP score Pre. Rec. F1
240K / 10K 29.168 0.348 0.283 0.312
120K / 5K 28.584 0.206 0.203 0.205
48K / 2K 28.075 0.127 0.173 0.146

Table 5: Quantitative results of scalability of our meth-
ods, A / B denotes the model is trained on A samples
for B steps.

B.1 Scalability

To investigate the scalability of our methods, we
train three variants based on SD-XL, as detailed
in Table 5. The results demonstrate that as data
scale and training steps increase, the model’s per-
formance consistently improves.

C More Visualization Results

As depicted in Figure 12 and Figure 13, we show-
case more visualizations results of our models on
visual text generation task. Our model can generate
visual appealing, style diverse, and legible visual
text images, while maintaining basic capability to
generate images without visual texts.

D Ablation Study for Chinese Text
Generation

We further conduct ablation study for Chinese texts
and compare the results with English texts.

Method Pre. Rec. F1
Ours 0.598 0.613 0.606

⇒ BPE tokenization 0.0 0.0 0.0
w/o Lattn 0.578 0.604 0.591
w/o Lloc 0.116 0.120 0.118
w/o Locr 0.411 0.420 0.416

Table 6: Ablation on the generation of Chinese texts. ⇒
BPE tokenization means using only BPE tokenization.
Lloc, Lattn and Locr denotes the local MSE loss , the
attention alignment loss , and the OCR recognition loss,
respectively

(1) Char+BPE tokenization⇒BPE tokenization.
We replace the mixture of character-level and BPE
tokenization with BPE tokenization. While consid-
ering words as whole units achieves the best results
for English texts, we find that utilizing character-
level tokenization for Chinese texts yields the best
performance. We indicate that this is because the
glyph information for each Chinese character is
more complex, and fewer characters are included
in each phrase.

(2) w/o Lattn. We remove the attention align-
ment loss Lattn in this variant. From line 3, we
observe a greater performance decline of OCR ac-
curacy for English texts than Chinese texts without
the attention alignment loss, indicating that English
texts are more susceptible to cross-attention scores.
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Figure 13: More visualizations of image generation without visual texts.

We assume this is because more English words
are included in each input image during training,
making it harder to bind each visual text to its text
token.

(3) w/o Lloc. The local MSE loss Lloc is not
included in this variant. As shown in line 4, we
observe a greater performance decline for Chinese
texts when local MSE loss is not incorporated. This
indicates that Chinese glyphs are harder to learn
and should receive more attention during training.

(4) w/o Locr We remove the OCR recognition
loss Locr. As shown in line 5, similar to results
for English texts, there is a significant performance
decline when OCR recognition loss is not included,
the which indicates that the OCR recognition loss
does have a positive effect for both English and
Chinese texts.
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