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Abstract

In this paper, we address the data scarcity
problem in automatic data-driven glossing for
low-resource languages by coordinating mul-
tiple sources of linguistic expertise. We en-
hance models by incorporating both token-
level and sentence-level translations, utilizing
the extensive linguistic capabilities of modern
LLMs, and incorporating available dictionary
resources. Our enhancements lead to an av-
erage absolute improvement of 5%-points in
word-level accuracy over the previous state
of the art on a typologically diverse dataset
spanning six low-resource languages. The im-
provements are particularly noticeable for the
lowest-resourced language Gitksan, where we
achieve a 10%-point improvement. Further-
more, in a simulated ultra-low resource setting
for the same six languages, training on fewer
than 100 glossed sentences, we establish an
average 10%-point improvement in word-level
accuracy over the previous state-of-the-art sys-
tem.

1 Introduction

The extinction rate of languages is alarmingly
high, with an estimated 90% of the world’s lan-
guages at risk of disappearing within the next cen-
tury (Krauss, 1992). As speech communities dwin-
dle, linguists are urgently prioritizing the docu-
mentation of these languages. This is a multi-step
process involving: 1. phonetic and orthographic
transcription, 2. translation into a so-called matrix
language like English or Spanish, which provides
a common frame of reference for all annotations,
3. morpheme segmentation, and 4. grammatical
annotation (Crowley, 2007). The end-result is rep-
resented as Interlinear Glossed Text (IGT) like the
Gitksan example below (see Appendix A for addi-
tional details):

Orthography: Ii hahla’lsdi’y goohl IBM
Segmentation: ii hahla’lst-’y goo-hl IBM
Gloss: CCNJ work-1SG.II LOC-CN IBM
Translation: And I worked for IBM.

The traditional manual approach to language
documentation, while thorough, is notably labor-
intensive. This has spurred the development of
automated tools leveraging machine learning for
tasks such as word segmentation and glossing. For
example, Moeller and Hulden (2018) train neural
models for automatic glossing of Lezgi, a Nakh-
Daghestanian language. Their models deliver rea-
sonable performance when trained on a small train-
ing set of 3,000 glossed tokens of Lezgi text. How-
ever, neural models are data-hungry and the small
training set prevents the models from reaching their
full potential. The most straightforward way to im-
prove model performance would be to manually
gloss more training data. However, as stated above,
manual glossing is a very time-consuming process.
Therefore, additional data sources should be con-
sidered.

Figure 1: When glossing input such as the French sen-
tence Le chien aboie, our system utilizes multiple infor-
mation sources: an English sentence-level translation,
general linguistic knowledge provided by an LLM and
dictionary definitions for the input tokens.
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Many recent glossing approaches (Girrbach,
2023; Moeller and Hulden, 2018) exclusively train
on glossed source language transcripts. However,
we often have access to additional helpful knowl-
edge sources. One option is to augment the data
using translations of the training examples into
the matrix language.1 These provide an impor-
tant source of lexical information because the gloss
of nouns and verbs can often be found within the
translation.2 Because translation is a part of the
language documentation process, these are often
readily available and, thus, represent a quick and
cost-effective way to provide an additional source
of supervision. Our system incorporates transla-
tions as an added information source.

Unfortunately, the availability of translations for
IGT data is necessarily limited simply because the
quantity of IGT data itself is limited. As an ad-
ditional source of lexical information, our system
incorporates external dictionaries which provide
word-level translations of target language lexemes
into the matrix language. This helps the system
generalize to words missing from the training data.

Recently, powerful pretrained models have
emerged as a viable approach to strengthen and
supplement the training signal for NLP tasks in
low-resource settings (Ogueji et al., 2021; Bhat-
tacharjee et al., 2021; Hangya et al., 2022). Ad-
vancements in large language models (LLMs) also
present new opportunities for enhancing the lan-
guage documentation process. Pretrained language
models such as BERT (Devlin et al., 2018) and
LLMs like GPT-4 (Achiam et al., 2023), trained on
billions of tokens of text, encode extensive lexical
and linguistic knowledge in the matrix language,
and their incorporation has improved the bench-
marks in many natural language tasks (Zhao et al.,
2023; Bommasani et al., 2021; Zhou et al., 2023).
We integrate LLMs into our glossing pipeline as
a post-correction step through in-context learning.
It is worth noting that our approach does not re-
quire fine-tuning and is, therefore, appropriate in
low-resource settings where compute capacity is
limited.

By leveraging three external sources of informa-
tion (see Figure 1): utterance translations, exter-
nal dictionaries and LLMs, our glossing pipeline

1Frequently, the matrix language will be English but can
also be another language like Spanish or Russian.

2For the French sentence Le chien aboie, the correct gloss
of both chien ’dog’ and aboyer ’bark’ can be found in its
English translation: The dog barks.

achieves an average absolute improvement of 5%-
points over the previous state-of-the-art on datasets
from the SIGMORPHON 2023 Shared Task on
Interlinear Glossing (Ginn et al., 2023). In par-
ticular, the incorporation of dictionaries leads to
significant advancements for ultra-low resource lan-
guages such as Gitksan, resulting in a 10%-points
increase in word-level accuracy. Our key contribu-
tions are:
1. We enhance the training of glossing systems—in
addition to plain glossed training examples, we in-
troduce additional supervision in the form of input
translations which are encoded using a pre-trained
language model.
2. We utilize external dictionaries which improve
glossing performance, particularly for the lowest-
resourced languages.
3. We pioneer the use of LLM prompting and in-
context learning techniques as a post-correction
step in the glossing pipeline. To our knowledge,
this is the first time LLMs have been applied to the
automatic glossing task. Our findings show that
in-context prompting results in substantial improve-
ments, especially when very limited training data
is available.

2 Related Work

Interlinear Glossing Research into automatic
glossing starts with rule-based analysis (Bender
et al., 2014; Snoek et al., 2014) followed by data-
driven neural models (Moeller and Hulden, 2018;
Girrbach, 2023; Ginn and Palmer, 2023; Zhao et al.,
2020). More recently, the integration of pre-trained
multilingual models (Ginn et al., 2024; Sheikh
et al., 2024) has shown great potential to aid doc-
umentation projects. Our work is inspired by the
success of these powerful models and aims to build
upon their strengths.

Integrating Translation into the Glossing Task
We are not unique in incorporating translation in-
formation into a glossing system in the presence
of small training datasets. The system presented
by Okabe and Yvon (2023) is based on CRFs (Sut-
ton et al., 2012), and also employs translations.
However, in contrast to our approach, they heavily
rely on source and target word alignments derived
from an unsupervised alignment system (Jalili Sa-
bet et al., 2020). In low-resource settings, it is hard
to learn an accurate alignment model. 3

3Moreover, Okabe and Yvon (2023) assume
morphologically-segmented input, which considerably
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Pioneering studies by Zoph and Knight (2016),
Anastasopoulos and Chiang (2018) and Zhao et al.
(2020), show that leveraging translations can en-
hance the performance of a neural glossing system.
A notable limitation in all of these approaches is
the scarcity of available English translations for
training models. Therefore, only modest improve-
ments in glossing accuracy are observed. Our
work, in contrast, incorporates translation infor-
mation through large pre-trained language models,
which leads to greater improvements in glossing
performance. This strategy has lately become in-
creasingly popular in low-resource NLP and shows
promise across various language processing tasks
(Ogueji et al., 2021; Hangya et al., 2022).

Similarly to our approach, Okabe and Yvon
(2023) also take advantage of the BERT model in
their study, but only utilize BERT representations
for translation alignment. In contrast, we directly
incorporate encoded translations into our glossing
model. He et al. (2023) also use pre-trained lan-
guage models, namely, XLM-Roberta (Conneau
et al., 2020), mT5 (Xue et al., 2021) and ByT5
(Xue et al., 2022), as part of their glossing model.
However, they do not incorporate IGT translation
information.4 Instead, they directly fine-tune the
pre-trained models for glossing.

LLM Prompting In recent years, the application
of LLMs for various NLP tasks has expanded sig-
nificantly, demonstrating remarkable potential in
few-shot and in-context learning. This approach
leverages the inherent knowledge and adaptabil-
ity of LLMs like GPT-4 (Achiam et al., 2023) and
LLaMA-3 (Touvron et al., 2023), allowing them to
perform tasks based on a few examples provided
as context, without requiring further fine-tuning.
Margatina et al. (2023) introduce a novel perspec-
tive by applying active learning (AL) principles
to in-context learning with LLMs. Their study
frames the selection of in-context examples as a
pool-based AL problem conducted over a single
iteration. Various AL algorithms, including uncer-
tainty, diversity, and similarity-based sampling, is
explored to identify the most informative examples
for in-context learning. The findings consistently
indicate that selecting examples semantically sim-
ilar to the test instances significantly outperforms

simplifies the glossing task. We instead address the much
harder task of predicting glosses without segmentation
information.

4Though He et al. (2023) do use external dictionary infor-
mation for post-correction of glosses.

Language Train(num) Dev(num) Test(num) Matrix lang.

Arapaho (arp) 39,501 4,938 4,892 (eng)
Gitksan (git) 31 42 37 (eng)
Lezgi (lez) 701 88 87 (eng)
Natügu (ntu) 791 99 99 (eng)
Tsez (ddo) 3,558 445 445 (eng)
Uspanteko (usp) 9,774 232 633 (spa)

Table 1: 2023 Sigmorphon Shared Task Dataset Infor-
mation (Ginn et al., 2023)

other methods, including random sampling and tra-
ditional uncertainty-based approaches .

Building on these insights, our proposed work
aims to enhance the task of automatic glossing in
low-resource settings by integrating LLM prompt-
ing and active learning principles. Our approach
applies the strategies outlined by (Margatina et al.,
2023) by focusing on similarity-based methods for
selecting in-context examples. This ensures that
the most relevant and informative examples are
utilized, enhancing the model’s ability to generate
accurate glosses. Additionally, we explore the ef-
fectiveness of various active learning methods such
as BERT-similarity, word overlapping, longest com-
mon subsequence, and random sampling, tailoring
these approaches to the specific needs of the gloss-
ing task.

3 Data

We conduct experiments on data from the 2023
SIGMORPHON shared task on interlinear gloss-
ing (Ginn et al., 2023). The shared task provides
two distinct tracks: an open track, where the input
is morphologically segmented, and a closed track,
where no segmentations are provided. Our anal-
ysis focuses on data from the closed track. This
setting is substantially more challenging because
morphological segmentation now, effectively, be-
comes a part of the glossing task. The closed-track
languages are Arapaho (arp), Gitksan (git), Lezgi
(lez), Natügu (ntu), Tsez (ddo), and Uspanteko
(usp).5 Data details are shown as in Table 1. With
most languages, except Arapaho, comprising fewer
than training 10,000 sentences, our datasets can be
called low-resourced. For all languages, the data
includes translations in a matrix language which is
English, except from Uspanteko, where it is Span-
ish.

5We exclude one language Nyangbo, because its dataset
lacks translations.
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Figure 2: Pipeline
of Girrbach (2023)’s
model.

Figure 3: Pipeline of the proposed work. The lower portion of the diagram demonstrates
how attention weights inform the model when predicting the glossing targets.

4 Baseline Model

Our glossing system is based upon a neural gloss-
ing model developed by Girrbach (2023). This is
the winning system of the 2023 SIGMORPHON
shared task on internlinear glossing. As shown in
Figure 2, the model accomplishes glossing of mor-
phological segments through a three-stage process:
input encoding, unsupervised morpheme segmen-
tation, and morpheme classification.

Input encoder The model input consists of a
character-sequence s = s1, ..., sN , representing
a sentence. A bidirectional long short-term mem-
ory network (BiLSTM) encodes the input into a
sequence of contextualized embeddings hi, one for
every character in s.

Morpheme Segmenter Next, the model per-
forms unsupervised morphological segmentation
using the forward-backward algorithm (Kim et al.,
2016). In a first step, an MLP is used to predict the
number of morphemes Jw for each word w in input
sentence s. For each character si, the model applies
a linear layer with Sigmoid activation function to
its character encoding hi to get the probability p

seg
i

that indicates whether si is the last character of the
morpheme segment. Then the forward and back-
ward scores (α and β, respectively) for each input
position i and target morpheme j can be computed
as follows:

αi,j = αi−1,j · (1− p
seg
i−1) + αi−1,j−1 · pseg

i−1

βi,j = βi+1,j · (1− p
seg
i ) + βi+1,j+1 · pseg

i

Finally, the marginal probability of a morpheme
boundary at position i relating to morpheme j is
given by:

ξi,j =
αi,j · βi,j
αN,Jw

where N is the sequence length, and Jw is the
number of morphemes in the word w.

Morpheme classifier After segmentation, we get
each morpheme encoding ej through averaging its
corresponding character encodings. An MLP is
then used to predict the gloss for each morpheme
based on its morpheme encoding. Model training
optimizes the cross-entropy loss between the pre-
dicted and ground-truth gloss labels.

5 Our Methods

Our glossing system enhances the baseline model
by incorporating utterance translations (both at the
sentence level and token level) and a character-
based decoder.6 Model and training details are pro-
vided in Appendix B. Additionally, we implement
a gloss post-correction component using LLM-
powered in-context learning. Figure 3 presents
an overview of the system.

5.1 Character-Based Gloss Decoder

Our first addition to the Girrbach (2023) model is a
character-based decoder. The baseline model is un-
able to predict glosses which were not observed in

6Our code is publicly available: https://github.com/
changbingY/Auto_glossing_stem_translation
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the training data, because it treats glossing as a mor-
pheme classification task with a closed set of po-
tential gloss labels. This deficiency is particularly
harmful when predicting glosses for lexical mor-
phemes (i.e. word stems) which represent a much
larger inventory than grammatical morphemes (i.e.
inflectional and derivational affixes). A character-
based decoder can enhance the model’s capability
to use words from a translation of the input ex-
ample. Following Kann and Schütze (2016), we
implemented a LSTM decoder. However, we adapt
it to function at the character level for lexical mor-
phemes and at the morpheme level for grammatical
morphemes. 7

5.2 Translation Encoder

We then extend the model of Girrbach (2023) by
incorporating matrix-language translations. We en-
code the English or Spanish (in the case of Uspan-
teko) translations in the shared task datasets using
a deep encoder. We experiment with three different
encoders: a character-based BiLSTM (Hochreiter
and Schmidhuber, 1997) and pre-trained transform-
ers BERT-base (Kenton and Toutanova, 2019) and
T5-large (Raffel et al., 2020).8 To represent trans-
lations, we then either use the final hidden state
from the translation encoder, or attend over the
translation hidden states.

When attending over the hidden states, we apply
Bahdanau attention (Bahdanau et al., 2014) scoring
the association between each encoder hidden states
and the previous decoder state di−1. We separately
attend to the encoded morpheme representations ej
in the input example (morphemes are discovered by
our baseline model in an unsupervised manner as
explained above) and the encoded subword-tokens
tk in the translation. This gives us a morpheme
representation ei =

∑J
j=1w

e
jej and a translation

representation ti =
∑K

k=1w
t
ktk at time-step i. We

then use the concatenated representation [ei; ti] to
compute the next gloss decoder state di.

5.3 Post-correction through in-context
learning

Preliminary experiments revealed that the glossing
system sometimes generates typos and non-sensical
glosses such as stoply instead of story. To miti-
gate this issue, we introduce a post-correction step

7For instance, if the word gloss is "dog-FOC", the decoder
will generate it as "d-o-g-FOC".

8See Appendix B for details concerning the encoders.

leveraging LLM prompting. We enhance the accu-
racy and reliability of glosses through an in-context
learning approach.

For each language, we generate conservative sil-
ver glosses (requiring correction) using a BERT-
based model with attention (BERT+attn+chr) to
prevent excessive corrections, as the baseline
model (Girrbach, 2023) already provides a reason-
ably accurate starting point. We use one-quarter of
the training data to produce silver glosses for the
remaining training data, fine-tuning the model on
the original development split. To reduce noise, we
apply an edit distance constraint, retaining exam-
ples where the gloss edit distance from the gold
gloss is limited to 4-8 characters.9 The initial one-
quarter of data is then reintroduced into the training
set, ensuring completeness and accuracy, as these
glosses match the original training data.

Here we prepare a prompt which asks the LLM
to correct the lexical morphemes in a glossed input
sentence. A prompt is generated by selecting two
training examples as in-context learning examples
for each test example. Each in-context learning
example includes the source language transcript,
morpheme/word translations based on the training
data, the English translation of the sentence, the
silver gloss, and the gold gloss. Additional word
translations will also be added if a bilingual dic-
tionary between the target language and matrix
language is available. The test example is struc-
tured similarly but omits the gold gloss, prompting
the language model to generate the corrected gloss.
The prompting pipeline is illustrated in Figure 4.
When using an external dictionary, we additionally
provide word translations in the prompt. Follow-
ing the in-context paradigm, we do not perform
any further training or fine-tuning of the LLM. The
template used for the prompting is detailed in Ap-
pendix F. We experiment with two models in this
scenario: GPT-4 (Achiam et al., 2023) and LLaMA-
3 (Touvron et al., 2023).

In-context Learning Examples Selection Tech-
niques In our experiment, we compare three tech-
niques to optimize the selection of in-context learn-
ing examples. We evaluate these techniques against
random selection. BERT Similarity (BERT-Sim)
We first embed the translated test sentence from
the IGT using BERT (we use multilingual BERT
for Uspanteko). We then find the two training sen-

9The character number is determined by half the length of
the word glosses, depending on the language.
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Figure 4: The procedure of selecting in-context learning examples to generate components for LLM prompting.

tences with the lowest embedded cosine distance
from the test case, and use them as our in-context
examples. Overlapping Words (Overlap) We cal-
culate the number of overlapping words between
source sentences in the test and training datasets.
In-context examples are selected to maximize the
number of overlapping words between the test case
and the training sentences. Longest Common Sub-
strings (LCS) We select in-context examples from
the training sentences that maximize the LCS with
the test case.

6 Experiments and Results

In all experiments, we evaluate based on word-level
glossing accuracy.

6.1 Translation Enriched Model Results

Table 2 shows the glossing accuracy across dif-
ferent model settings and languages.10 We re-
port performance separately for original shared
task datasets and our simulated ultra low-resource
datasets spanning 100 training sentences. We group
the Gitksan shared task dataset in the ultra low-
resource category because it only has 30 training
examples.11

Shared Task Data When only integrating trans-
lations through the final state of a bidirectional
LSTM, we observe an improvement in average
glossing accuracy, but performance is reduced for
two languages (Arapaho and Uspanteko).

Augmenting translations via an attentional mech-
anism (LSTM+attn) does not confer consistent im-
provements. In contrast, translation information
incorporated via a pre-trained model (BERT+attn)

10We additionally present edit distance in Appendix C.
11Apart from the baseline, all systems apply majority voting

from 10 independently trained models. Its impact is discussed
in Appendix D.

renders consistent improvements in glossing ac-
curacy across all languages and we see notable
gains in average glossing accuracy over the base-
line. Incorporating a character-based decoder leads
to further improvements in average glossing ac-
curacy and for all individual languages. The T5
model (T5+attn+chr) attains the highest average
performance: 82.56%, which represents a 3.97%-
points improvement over the baseline. It also
delivers the highest performance for three out
of our five test languages (Arapaho, Lezgi and
Tsez), while the BERT-based model with attention
(BERT+attn+chr) delivers the best performance
for the remaining two (Natügu and Uspanteko).
Among all languages, we see improvements over
the baseline model ranging from 2.32%-points to
5.95%-points.12

Ultra Low-Resource Data In order to investi-
gate the performance of our model in ultra low-
resource settings, we additionally form smaller
training sets by sampling 100 sentences from the
original shared task training data. We use the origi-
nal shared task development and test sets for vali-
dation and testing, respectively.

Translations integrated through the final state of
a randomly initialized bidirectional LSTM (LSTM
and LSTM+attn), lead to an average 6%-points
improvement in accuracy over the baseline. We
achieve particularly impressive gains for Uspan-
teko, surpassing the baseline accuracy by over
15%-points. Incorporating pre-trained models
(BERT+attn) exhibits a slight increase in accuracy
for certain languages. However, when we incor-
porate both pre-trained models and the character-
based decoder (BERT+attn+chr and T5+attn+chr),
we see larger gains in accuracy across the board.

12We visualize the attention patterns over the English trans-
lation representations. The visualizations are shown in Ap-
pendix E
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Model setting arp lez ntu ddo usp ave arp-low git-low lez-low ntu-low ddo-low usp-low ave

Girrbach (2023) 78.79 78.78 81.04 80.96 73.39 78.59 19.12 21.09 48.84 51.08 36.12 17.32 32.26
LSTM 77.04 81.42 83.55 84.99 73.01 80.00 18.67 20.71 54.29 59.56 44.5 32.92 38.44
LSTM+attn 79.31 76.19 83.01 85.12 76.24 79.97 24.38 18.49 55.75 58.48 42.37 29.52 38.17
BERT+attn 78.98 81.87 84.57 85.84 77.63 81.78 27.33 20.31 55.86 60.13 41.85 33.04 39.75
BERT+attn+chr 80.79 82.19 85.41 84.13 79.34 82.37 28.82 28.11 56.99 62.73 39.72 35.84 42.04
T5+attn+chr 81.11 82.37 84.68 85.91 78.72 82.56 27.31 24.23 57.33 62.82 39.97 33.59 40.88

Table 2: Word-level accuracy of languages in the 2023 Sigmorphon Shared Task (Ginn et al., 2023) (left) and ultra
low-resource settings (right). Model specifics are elaborated in Section 5.

Model setting arp lez ntu ddo usp git

T5/BERT+attn+chr 81.11 82.37 85.41 85.91 79.34 28.11
+GPT4-random 81.12 83.52 85.79 84.76 70.62 28.58
+GPT4-BERT-Sim 81.17 84.70 86.07 85.32 72.44 29.02
+GPT4-Overlap 81.57 84.47 86.11 85.53 73.64 29.14
+GPT4-LCS 81.25 83.86 86.38 84.98 72.78 28.77
+LLaMA3-Overlap 81.23 83.01 86.09 83.77 70.99 30.11

Table 3: Word-level accuracy of all languages. We
incorporate prompts using different selection techniques
for in-context examples, which add into the information
enriched models (T5/BERT+attn+chr).
Model setting arp lez ntu ddo usp git ave

Girrbach (2023) 78.79 78.78 81.04 80.96 73.39 21.09 69.01
T5/BERT+attn+chr 81.11 82.37 85.41 85.91 79.34 28.11 73.88
T5/BERT+attn+chr+Prmpt 81.57 84.70 86.38 85.53 73.64 30.11 73.66

Table 4: Word-level accuracy of all languages. We
compare the performance of models that incorporate
prompts from our optimal in-context example selection
techniques with other models.

Here, BERT achieves the highest average accuracy
of 42.04%, which represents a 9.78%-points im-
provement over the baseline. It achieves the highest
performance for three languages (Arapaho, Gitk-
san and Uspanteko), while T5 delivers the best
performance for two of the languages (Lezgi and
Natügu). The plain LSTM model attains the best
performance for Tsez.

6.2 Prompting Model Results

The prompting experiments aim to further improve
the output of the T5/BERT+attn+chr model by post-
correcting its glossed output using an LLM. We
only allow the LLM to change the gloss of lexi-
cal morphemes because preliminary experiments
demonstrated that post-processing tends to worsen
performance on grammatical morphemes. The
word-level accuracy shown in Table 3 highlights
the performance of various training data selection
techniques across multiple languages.13 We further
select the best setting to compare with the baseline

13We additionally present lexical morpheme accuracy in
Appendix G.

model and translation enriched models. The com-
parison demonstrates that using in-context learn-
ing continues to boost glossing accuracy. This ap-
proach delivers further improvements for Arapaho,
Lezgi, Natügu, and Gitksan. It presents the high-
est accuracy for Lezgi , showing a 2.33%-points
increase over the highest-performing translation
enriched model T5/BERT+attn+chr.

When applying GPT-4 for post-correction, the
Overlapping Words selection technique emerges
as the most effective, achieving the highest accu-
racy for Arapaho at 81.57% and maintaining strong
performance across other languages. The BERT
similarity and LCS techniques also provide sub-
stantial improvements over random selection, with
notable improvements for Lezgi at 84.70% and
Natügu at 86.38% accuracy, respectively. Addition-
ally, the LLaMA-3 model using the Overlapping
Words method shows competitive results, particu-
larly excelling in the low-resource language Gitk-
san at 30.11%, indicating its potential utility in
such challenging settings.

We further examine Lezgi predictions from the
prompting model to better understand how prompt-
ing help correcting the glosses. One such example
includes a sentence whose translation is "She was
lonely". The pre-corrected gloss from our encoder-
decoder model (T5/BERT+attn+chr) contains in-
correct lexical morpheme glosses, including “pie”
and “he”. It is evident that the prompting model
successfully changed these lexical morphemes ac-
cording to the words in the translation line of the
IGT14. Results are as shown below:

Silver Gloss: pie old.woman was he
Prompt Gloss: alone old.woman was still.be
Gold Gloss: alone old.woman was still.be,.remain

14We observe that the prompting results can contain syn-
onyms. To gain a better understanding of our model’s per-
formance, we use BERT score as an alternative evaluation
metric to evaluate the lexical morphemes. Results are shown
in Appendix H.
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Model setting arp lez git ave

Girrbach (2023) 78.79 78.78 21.09 59.55
T5/BERT+attn+chr 81.11 82.37 28.11 63.86
T5/BERT+attn+chr+Prmpt 81.57 84.70 30.11 65.46
T5/BERT+attn+chr+Prmpt+Dict 81.61 85.30 31.32 66.08

Table 5: Word-level accuracy of all languages. We com-
pare the model performance among the accumulated
effort of incorporating external dictionaries with other
models.

Interestingly, both the GPT-4 and LLaMA-3 in-
context learning setups perform worse when the
translations are in Spanish than in English, as ev-
idenced by the accuracy drop in Uspanteko. The
reasons behind this require further investigation.

6.3 External Dictionaries

We also assess the impact of introducing additional
word translations into the in-context prompts to
enhance accuracy. We expand the prompt by also
injecting word translations from available exter-
nal dictionaries for Arapaho, Lezgi, and Gitksan.
The sources and detailed information about each
dictionary are shown in Appendix I.

The word-level results, as presented in Table 5
illustrate that the integration of out-of-domain dic-
tionary resources is highly beneficial, especially
for languages with limited training data like Gitk-
san and Lezgi. Dictionary translations consistently
boost the performance of our best models, enhanc-
ing benefits obtained solely through prompting.
As shown in an Lezgi example below: The En-
glish translation of this sentence is: “All this (sic)
were real stories”. Initially, the prompting model
produces the nonsense gloss “stoply”. Adding
the gloss translation allows the model to produce
“story”, which is closer to the meaning of the orig-
inal sentence. However, the translation employs
some creative license, and dictionary definition is
closer to “work”. Only after adding the dictionary
translation does the glossing model generate the
correct output.

Silver Gloss: himself-FOC be-PERF-PST stoply.of was
Prompt Gloss: himself-FOC be-PERF-PST real-story-PL was
+Dict Gloss: himself-FOC be-PERF-PST work-PL was
Gold Gloss: reflxv-FOC be-PERF-PST work-PL was

Overall, the dictionary-supplemented models
achieve the best results in all three languages, with
an overall average accuracy of 66.08%, surpassing
the baseline model by 6.53%-points and the plain
prompting model by 0.62%-points.

6.4 Learning Curves

The learning curves in Figure 5 illustrate the impact
of prompting on model performance when using
varying amounts of IGT training data. This compar-
ison includes models with and without prompting,
focusing on both word-level and lexical morpheme
accuracy. We focuse on the Arapaho language,
which has the largest number of manually glossed
training examples: 39,501 training sentences, in
total.

Figure 5: Lexical morpheme and word-level accu-
racy on Arapaho. We incorporate prompting with the
encoder-decoder model which is enriched with transla-
tion.

The bar chart represents the word-level accu-
racy for models trained with varying amounts of
data (100 sentences, 25% data, 50% data, and
100% data). The results clearly demonstrate that in-
context post-correction greatly improves glossing
accuracy. In ultra-low data conditions, the post-
corrected model is more than twice as accurate as
the uncorrected model. As the amount of training
data increases, the benefits gained through prompt-
ing diminish.

The line chart maps the accuracy of lexical
morphemes prior- and post-correction. Similarly
to the word-level accuracy, the accuracy of lex-
ical morphemes benefits greatly from in-context
post-correction. The most significant improve-
ments are again observed when training data is
restricted. With only 100 training sentences, the
post-corrective model achieves a lexical morpheme
accuracy that is nearly as high as that obtained
using the full dataset.

7 Conclusions

This paper offers a promising and efficient solu-
tion by introducing multiple resources to aid in
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the glossing task, particularly in linguistically di-
verse and data-sparse environments. The current
study demonstrates the effectiveness of incorporat-
ing translation information at both the token and
sentence level, alongside LLM prompting in au-
tomatic glossing for low-resource languages. The
proposed system, based on a modified version of
Girrbach’s model (Girrbach, 2023), shows signif-
icant performance enhancements, particularly in
low-resource settings. By leveraging translation
data and integrating a character-based decoder, our
approach provides a robust solution for unobserved
lexical morphemes (stems).

This research pioneers the application of LLM
prompting to the glossing task. By employing var-
ious in-context example selection strategies and
adding extra dictionary words as a resource, we
have shown that LLM prompting can substantially
refine lexical morpheme glosses, leading to higher
word-level accuracy. This approach is also partic-
ularly beneficial in scenarios with limited training
data, as it maximizes the potential of minimal data
resources.

In all, the integration of translation information,
additional dictionary resources, along with LLM
prompting, sets a new benchmark in automatic
glossing.

8 Limitations

The limitations of our study primarily pertain to the
extent of our experimentation and the models we
have chosen. Firstly, our investigation relies solely
on an LSTM decoder. This decision was influ-
enced by time constraints, which limited our ability
to explore more complex decoders. Additionally,
our experimentation is confined to the T5-large
model. While this model has shown promising re-
sults in our study, we acknowledge the existence
of other large language models in the field of natu-
ral language processing. Although we did explore
other large language models such as LLaMA-2
(Touvron et al., 2023), our preliminary experiments
yielded unsatisfactory results compared to T5. Con-
sequently, we made the decision not to include
LLaMA-2 in our paper due to its inferior perfor-
mance. These limitations underscore the need for
future research to explore a wider range of decod-
ing architectures and incorporate various large lan-
guage models to enhance our understanding of the
subject matter. However, using large language mod-
els requires significant computational resources,

which can have an environmental impact due to
increased energy consumption.
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A IGT Information

In the IGT data, the second line includes segmen-
tations with morphemes normalized to a canonical
orthographic form. The third line has an abbrevi-
ated gloss for each segmented morpheme. Lexical
morphemes typically correspond to the stems of
words. The morpheme glosses usually have two cat-
egories: Lexical and Grammatical morphemes. For
example, in glossing labels such as work-1SG.II,
“work" would be considered a Lexical morpheme,
representing the core semantic unit. On the other
hand, Grammatical morphemes like ‘1SG.II" are
often denoted by uppercase glosses and generally
signify grammatical functions, such as tense, as-
pect, or case, rather than specific lexical content.

B Model Settings

Our experimental framework and hyperparame-
ters draw inspiration from Girrbach’s methodology,
with a focus on organizing and optimizing the tech-
nical setup. For model optimization, we employ the
AdamW optimizer (Loshchilov and Hutter, 2017),
excluding weight decay, and set the learning rate

at 0.001. Except for this specific adjustment, we
maintain PyTorch’s default settings for all other
parameters.

Our configuration is structured to allow a range
of experiments, varying from 1 to 2 LSTM layers,
with hidden sizes spanning from 64 to 512, and
dropout rates fluctuating between 0.0 and 0.5. The
scheduler γ is adjusted within a range of 0.9 to
1.0, and batch sizes are diversified, ranging from 2
to 64. This versatile approach is designed to thor-
oughly evaluate the model’s performance across a
spectrum of hyperparameter configurations.

Departing from the original model which was
trained for 25 epochs, our approach extends the
training duration to 300 epochs when using large
pretrained models. In cases where the BERT model
is utilized, we sometime apply a 0.5 dropout rate
during the BERT training phase. We exclusively
employ the multilingual BERT model for Uspan-
teko, while we utilize the standard BERT model
for all other languages. This comprehensive and
meticulously organized setup is aimed at enhanc-
ing the effectiveness and efficiency of our model
training process.

To prevent coincidences, for each proposed
model configuration, we train the model for 10
iterations, and the final prediction is determined
through majority voting.

C Edit Distance

Results are shown in Table 6.

D Influence of Majority Voting

Average accuracy across 10 models and results uti-
lized majority voting are shown in Table 7. Im-
provements in performance can be achieved even
without resorting to voting, particularly accentu-
ated in ultra low-resource datasets as opposed to
the Shared Task datasets.

E Attention Distribution

To assess whether our model is able to success-
fully incorporate translation information, we visu-
alize attention patterns (from the BERT+attn+chr
model) over the English translation representations.
Figure 6 presents an example for Natügu. Atten-
tion weights are displayed in a heat map, where
each cell indicates difference from mean attention:
a − 1/(n + 2). Here n is the length of the trans-
lation in tokens (+2 here because of the start-of-
sequence and end-of-sequence tokens [CLS] and
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Model setting ara git(-low) lez ntu ddo usp ara-low lez-low ntu-low ddo-low usp-low

Girrbach (2023) - - - - - - 6.59 3.64 4.78 4.92 3.79
LSTM 1.52 5.65 1.22 1.17 0.72 0.88 6.50 3.28 4.12 3.93 2.84
LSTM+attn 1.31 6.27 1.62 1.34 0.72 0.86 6.04 3.26 3.81 4.25 3.21
BERT+attn 1.39 5.57 1.24 1.23 0.69 0.70 5.97 3.20 3.81 4.1 2.88
BERT+attn+chr 1.50 5.30 1.20 1.25 0.53 0.81 5.54 3.04 3.55 4.27 2.78
T5+attn+chr 1.40 5.51 1.18 1.27 0.52 0.78 5.62 3.00 3.55 4.36 2.74

Table 6: Word-level edit distance of languages in the 2023 Sigmorphon Shared Task (Ginn et al., 2023) (left) and
low-resource settings (right), with ‘arp’ representing Arapaho, ‘git’ for Gitksan, ‘lez’ for Lezgi, ‘ntu’ for Natügu,
‘ddo’ for Tsez, and ‘usp’ for Uspanteko. Model specifics are elaborated in Section 2.

Model setting arp lez ntu ddo usp ave arp-low git-low lez-low ntu-low ddo-low usp-low ave

Girrbach (2023) 78.79 78.78 81.04 80.96 73.39 78.59 19.12 21.09 48.84 51.08 36.12 17.32 32.26
BERT/T5+attn+chr-average 79.32 79.49 80.76 81.00 74.92 79.10 25.43 23.95 54.28 57.18 32.41 28.77 37.00
BERT/T5+attn+chr-majority 81.11 82.37 85.41 85.91 79.34 82.83 28.82 28.11 57.33 62.82 39.97 35.84 42.14

Table 7: Word-level accuracy of languages in the 2023 Sigmorphon Shared Task (Ginn et al., 2023) and low-resource
settings. We compute the average across 10 models and also utilized majority voting accuracy results. Language
abbreviations were used, with ‘arp’ representing Arapaho, ‘git’ for Gitksan, ‘lez’ for Lezgi, ‘ntu’ for Natügu, ‘ddo’
for Tsez, and ‘usp’ for Uspanteko. Model specifics are elaborated in Section 2.

[SEP] which are concatenated to the translation).
Positive red cells inidicate high attention and neg-
ative blue cells low attention. The visualization
clearly indicates that the model attends to the rele-
vant tokens in the translation when predicting the
stems people, mankind and kill. Figure 7-Figure 12
shows randomly picked heat maps for the rest of the
languages. We can see that attention weights for the
larger shared task datasets tend to express relevant
associations, while attention weights for the ultra
low-resource training sets largely represent noise.
Figure 7-Figure 12 also displays attention distri-
butions when translations are incorporated using a
randomly initialized LSTM instead of a pre-trained
language model. These distributions also largely
represent noise indicating that pre-trained models
confer an advantage.

F Prompt template

You are a linguistic annotator for the Gitksan lan-
guage, tasked with correcting errors in glossing
based on translation details and morpheme transla-
tions. Your task is to adjust errors in the stems (in
lowercase) without changing the total number of
morphemes or words in the gloss. Each gloss ele-
ment is separated by hyphens within morphemes
and spaces between words.

Here are two examples:
Example 1: Gitksan sentence is {example[’train1-
raw-sentence’]}. You are provided with

Figure 6: Difference from mean attention weights
of glossed output tokens (y-axis) with respect to en-
coded translation tokens (x-axis) for a Natügu exam-
ple (attention weights are derived from the model
BERT+attn+chr).

morpheme translations according to the dic-
tionary: {example[’train1-word/morpheme-
translation’]}. The English translation for
this sentence is: {example[’train1-sentence-
translation’]}. The glossing pending to be revised
is: {example[’train1-silver-gloss’]}. The corrected
gloss is {example[’train1-gold-gloss’]}.

Example 2: Gitksan sentence is {example[’train2-
raw-sentence’]}. You are provided with
morpheme translations according to the dic-
tionary: {example[’train2-word/morpheme-
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Figure 7: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded transla-
tion tokens (x-axis) for an Arapaho example (attention weights are derived from the model BERT+attn+chr (left) and
the model LSTM+attm (right)). The gold-standard glosses for this sentence: IC.it.is-2S IC.be.had.as.father.by.all-2S.

Figure 8: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Gitksan example (attention weights are derived from the model BERT+attn+chr
(left) and the model LSTM+attm (right)). The gold-standard glosses for this sentence: CCNJ want-3.II PROSP-3.I
tell-T-3.II OBL-1PL.II MANR LVB-3.II.
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Figure 9: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Lezgi example (attention weights are derived from the model BERT+attn+chr (left)
and the model LSTM+attm (right)). The gold-standard glosses for this sentence: 1pl.abs return-AOR this one there
village-ERG-DAT.

Figure 10: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Natügu example (attention weights are derived from the model BERT+attn+chr
(left) and the model LSTM+attm (right)). The gold-standard glosses for this sentence: but mankind MID-kill-COS-
3MINIS people SUBR PAS-see-INTS-just.
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Figure 11: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Tsez example (attention weights are derived from the model BERT+attn+chr
(left) and the model LSTM+attm (right)). The gold-standard glosses for this sentence: DEM2.ISG.OBL-LAT
village-IN.ESS beautiful girl give-PST.UNW

Figure 12: Difference from mean attention weights of glossed output tokens (y-axis) with respect to encoded
translation tokens (x-axis) for a Uspanteko example (attention weights are derived from the model BERT+attn+chr
(left) and the model LSTM+attm (right)). The gold-standard glosses for this sentence: CONJ INC-ir PREP árbol.
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Model setting arp lez ntu ddo usp git

T5/BERT+attn+chr 83.68 81.29 81.51 92.79 82.75 12.83
+GPT4-random 84.78 85.12 83.19 90.52 70.54 26.79
+GPT4-BERT-Sim 85.13 86.35 83.33 91.23 73.28 27.13
+GPT4-Overlap 86.54 86.20 84.17 91.76 74.91 27.17
+GPT4-LCS 85.97 85.86 84.87 90.87 73.65 26.98
+LLaMA3-Overlap 85.23 84.05 83.88 89.54 71.43 29.81

Table 8: Lexical morpheme accuracy across languages
in the 2023 Sigmorphon Shared Task (Ginn et al., 2023)
with ‘arp’ representing Arapaho, ‘git’ for Gitksan, ‘lez’
for Lezgi, ‘ntu’ for Natügu, ‘ddo’ for Tsez, and ‘usp’ for
Uspanteko. Model specifics are elaborated in Section 2.

translation’]}. The English translation for
this sentence is: {example[’train2-sentence-
translation’]}. The glossing pending to be revised
is: {example[’train2-silver-gloss’]}. The corrected
gloss is {example[’train2-gold-gloss’]}.

Now, here’s the gloss you need to correct:
Gitksan sentence is {example[’test-raw-
sentence’]}. You are provided with mor-
pheme translations according to the dictio-
nary: {example[’test-word/morpheme-gloss’]}.
The English translation for this sentence is:
{example[’test-translation’]}. The glossing pend-
ing to be revised is: {example[’test-silver-gloss’]}.
What is the corrected gloss for this sentence? You
should answer in this format: The corrected gloss
is: (your generated answer). Note, don’t change
the total number of words or morphemes in the
gloss.

G Lexical Morpheme Accuracy

Here we only evaluate the lexical morpheme accu-
racy. Results are shown in Table 8.

H BERT score

Specifically, we compare tokens using BERT em-
beddings and calculate similarity scores with the
BERT model. The results are shown in Table 9. As
we do not have access to the results from Girrbach
(2023), we use the LSTM-encoder classifier model
as our baseline instead. The BERT score results
align closely with the word-level accuracy.

I Dictionary Information

The Arapaho dictionary was accessed from
https://homewitharapaho.wordpress.
com/wp-content/uploads/2015/03/
arapaho-dictionary1.pdf.

Model setting arp lez ntu ddo usp git

LSTM 0.889 0.873 0.826 0.925 0.783 0.434
T5/BERT+attn+chr 0.895 0.913 0.860 0.942 0.864 0.468
T5/BERT+attn+chr+Prmpt 0.896 0.922 0.862 0.940 0.807 0.526

Table 9: BERT score of lexical morphemes of languages
in the 2023 Sigmorphon Shared Task (Ginn et al., 2023),
with ‘arp’ representing Arapaho, ‘git’ for Gitksan, ‘lez’
for Lezgi, ‘ntu’ for Natügu, ‘ddo’ for Tsez, and ‘usp’ for
Uspanteko. Model specifics are elaborated in Section 2.

Language total words(num) new words(num)

Arapaho 2436 2155
Lezgi 2081 1299
Gitksan 2034 2019

Table 10: The table details the dictionary information
for Arapaho, Lezgi, and Gitksan, including the number
of total words and the number of new words compared
with the training data.

The Gitksan dictionary is downloaded
from http://www.gitxsansimalgyax.com/
dictionaries.html.

Lezgi data is unpublished and obtained through
personal communication with a linguist.

Word number information of these dictionaries
are in Table 10.
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https://homewitharapaho.wordpress.com/wp-content/uploads/2015/03/arapaho-dictionary1.pdf
https://homewitharapaho.wordpress.com/wp-content/uploads/2015/03/arapaho-dictionary1.pdf
https://homewitharapaho.wordpress.com/wp-content/uploads/2015/03/arapaho-dictionary1.pdf
http://www.gitxsansimalgyax.com/dictionaries.html
http://www.gitxsansimalgyax.com/dictionaries.html

