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Abstract

We find arithmetic ability resides within a lim-
ited number of attention heads, with each head
specializing in distinct operations. To delve
into the reason, we introduce the Comparative
Neuron Analysis (CNA) method, which iden-
tifies an internal logic chain consisting of four
distinct stages from input to prediction: feature
enhancing with shallow FFN neurons, feature
transferring by shallow attention layers, fea-
ture predicting by arithmetic heads, and pre-
diction enhancing among deep FFN neurons.
Moreover, we identify the human-interpretable
FFN neurons within both feature-enhancing
and feature-predicting stages. These findings
lead us to investigate the mechanism of LoRA,
revealing that it enhances prediction probabil-
ities by amplifying the coefficient scores of
FFN neurons related to predictions. Finally, we
apply our method in model pruning for arith-
metic tasks and model editing for reducing gen-
der bias. Code is on https://github.com/
zepingyu@512/arithmetic-mechanism.

1 Introduction

Arithmetic ability is a crucial foundational skill
of large language models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Chowdhery et al., 2023),
contributing significantly to reasoning (Wei et al.,
2022; Kojima et al., 2022) and mathematical tasks
(Peng et al., 2021; Azerbayev et al., 2023). While
existing studies (Quirke et al., 2023; Zhang et al.,
2023; Stolfo et al., 2023) have made significant
breakthroughs in understanding arithmetic tasks,
the exact mechanism still remains elusive. Zhang
et al. (2023) find that only a few attention heads sig-
nificantly impact arithmetic performance, but they
do not elaborate on the mechanisms of these heads
or how they influence FFN layers. Stolfo et al.
(2023) intervene the hidden states and find the infor-
mation flow from number and operation positions
to the last position. However, they do not locate the
important attention heads (proved to store different

abilities (Olsson et al., 2022; Gould et al., 2023))
and FFN neurons (proved to store knowledge (Dai
et al., 2021; Meng et al., 2022a)). Despite the
challenge of pinpointing important FFN neurons
among tens of thousands of nodes, many studies
(Gurnee et al., 2023; Lieberum et al., 2023; Nanda
et al., 2023) emphasize that considering FFN neu-
rons as fundamental units is crucial for better un-
derstanding FFN layers. Furthermore, as model
editing typically occurs at the neuron level (Dai
et al., 2021; Geva et al., 2022), it remains unclear
how to effectively leverage the explanations due to
the uncertainty surrounding the precise locations
of important parameters.
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Figure 1: Four distinct stages in the internal logic chain
from the inputs "3+5=" to the final prediction "8".

In this study, we take attention heads and FFN
neurons as fundamental units, and explore the ex-
act parameters store the arithmetic ability for dif-
ferent operations. We observe that only a minority
of heads play significant roles in arithmetic tasks,
which we refer to as "arithmetic heads". Through
experiments involving 1-digit to 3-digit operations,
as well as ablation studies comparing "change-one"
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cases (e.g., 15+37=52) with "memorize" cases (e.g.,
15+32=47), we find critical memorization of 1-digit
operations is lost when these heads are intervened.

To explore the underlying mechanisms of this
phenomenon, we propose the Comparative Neu-
ron Analysis (CNA) method, which compares the
change of neurons between the original model
and the intervened model for the same case. We
construct the internal logic chain by identifying
four distinct stages that span from inputs to pre-
diction, as depicted in Figure 1. During the fea-
ture enhancing stage, hidden-interpretable features
are extracted from shallow FFN neurons. Subse-
quently, in the feature transferring stage, shallow
attention layers convert these features into directly-
interpretable features and then transfer them to the
last position. In the feature predicting stage, the
arithmetic heads play critical roles, activating deep
FFN neurons related to the final prediction. Fi-
nally, a prediction enhancing stage exists among
deep FFEN neurons. Lower FFN neurons activate
upper FFN neurons, while both of them enhance
the probability of the final prediction.

Based on this analysis, we investigate the mech-
anism of LoRA (Hu et al., 2021). We train a to-
tal of 32 models on a 2-digit arithmetic dataset,
with each model integrating LoRA on one atten-
tion layer (Oth to 31th). Starting from the 10th
model, the accuracy of the model exhibits a notice-
able downward trend, with varying rates of decline
observed in the feature enhancing and prediction
enhancing stages. Employing our CNA method
to compare the original model with the fine-tuned
model, we note a significant increase in the coeffi-
cient scores of crucial deep FFN neurons. Hence,
we conclude that LoRA enhances the final predic-
tion by amplifying the coefficient scores of impor-
tant FFN neurons. Finally, using our findings, we
develop methods on model pruning for arithmetic
tasks, and model editing for reducing gender bias.

To summarize, our contributions are as follows:

1. We find the reason why only a few heads
can influence arithmetic ability is that these heads
store crucial parameters for memorizing 1D op-
erations. We identify human-interpretable FFN
neurons across both shallow and deep layers.

2. We propose the CNA method and construct
the internal logic chain from inputs to prediction
with four stages: feature enhancing, feature trans-
ferring, feature predicting, prediction enhancing.

3. We use the CNA method to explore the mech-

anism of LoRA and find LoRA increases the prob-
ability of final predictions by amplifying the impor-
tant FFN neurons’ coefficient scores. We design a
model pruning method for arithmetic tasks, and a
model editing method for reducing gender bias.

2 Related Work

2.1 Mechanistic Interpretability

Mechanistic interpretability aims to reverse engi-
neer the intricate computations executed by trans-
formers. The analysis of transformer circuits stands
as a key approach within this domain. Elhage
et al. (2021) and Olsson et al. (2022) investigate
the mechanism using a two-layer attention-only
transformer and discover that induction heads can
make predictions similar to [A][B] ... [A] -> [B].
Yu and Ananiadou (2024a) explore the details of
in-context learning in a mechanistic view. Wang
et al. (2022) present an explanation on an indirect
object identification case in GPT2.

Causal mediation analysis (Pearl, 2001; Vig
et al., 2020) is also widely used for locating im-
portant modules. Meng et al. (2022a,b) intervene
the hidden states of GPT2 (Radford et al., 2019)
and ascertain that the medium FFN layers play a
significant role in processing subject names. Wang
et al. (2023) intervene the attention layers to ex-
plore the mechanism of in-context learning and
observe an information flow from demonstrations
to corresponding labels. Geva et al. (2023) find two
critical points on relation and subjection positions
through interventions on attention edges.

Since causal mediation analysis methods require
expensive forward pass over multiple input, several
studies try to design static methods for interpret-
ing language models. Geva et al. (2022) utilize
the product of norm and coefficient score to lo-
cate important FFN neurons and find many FFN
neurons have human-interpretable concepts when
projecting into vocabulary space. Dar et al. (2022)
find most matrices in attention and FEN layers are
interpretable in vocabulary space.

2.2 Understanding Arithmetic in LLM

Hanna et al. (2023) investigate how GPT2-small
computes greater-than. Gould et al. (2023) demon-
strate that successor heads can aid in predicting the
subsequent order, such as predicting "3" after "2".
Zhang et al. (2023) investigate the attention heads
for addition operation, and find only a few heads
play significant roles. Zhong et al. (2024) inves-
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tigate the clock and pizza algorithms for modular
addition. Quirke et al. (2023) studies n-digit inte-
ger addition on an one-layer transformer, and find
individual digits are computed in parallel. Through
interventions on hidden states, Stolfo et al. (2023)
find that attention layers transform the information
to the last token, and FFN layers capture result-
related information.

3 Arithmetic Heads in LLMs

We aim to examine the localization of arithmetic
ability in Llama-7B (Touvron et al., 2023), a large
language model consisting of 32 layers. Each atten-
tion layer contains 32 heads, and each FFN layer
has 11,008 neurons. We observe the same results
and mechanisms in GPT-J (Wang and Komatsuzaki,
2021), detailed in Appendix C.

3.1 Background

We start by introducing the inference pass in
decoder-only language models. Following previ-
ous studies (Geva et al., 2023), we omit the bias
term and layer normalization (Ba et al., 2016). The
model aims to generate a probability distribution Y
based on an input sequence X = [t1, ta, ..., t7] con-
sisting of 7" tokens. Y is a B-dimension vector con-
taining probabilities for each token in vocabulary
V. Each token ¢; in X is embedded into a vector
29 € R? using an embedding matrix £ € RB*4,
Then the vectors undergo transformation through
L + 1 transformer layers (Oth-Lth). Vector xi on
the ith position at layer [ is computed by:

ot =oAL+ F (1)
where Al € R% and F} € R? are the outputs of
the [th attention and FFN layers, referred to as the
attention output and FFN output, respectively. xé_l
represents the layer output at layer [ — 1, which
also serves as the layer input at layer /. The term
xi_l + Aé is denoted as the residual output. The
attention layer captures information from different
positions through H multiple heads ATT N, and
the FFN layer transforms the residual output by
matrices Wy, and Wy with non-linearity o

H
AL=SN"ATTNY R R RS )
j=1

Fl = Wioo(Wia (2 +4D)) )

The representation of the last position on the final
layer x% is used for predicting the probability dis-
tribution Y of the next token by a softmax function
on an unembedding matrix £, € RB*4:

Y = softmaz(E, %) 4)

Geva et al. (2020) demonstrate that the FFN layer
can be conceptualized as key-value memories, with
matrices W}cl € RN and W}CQ € RV >4 storing
keys and values for N neurons. The FFN output is
obtained by adding /N subvalues, where each sub-
value is the result of multiplying a coefficient score
ml with a fc2 vector fc2! € R? (also referred
to as the FFN value). These coefficient scores
are calculated as the inner product between the
residual output and the corresponding fcl vector
f clf,C € R? (also referred to as the FEN key):

N
Ft=Y "mjfe2j, )
k=1

mj, = o(fclj, - (2! + AY)) (6)

In other words, the kth subvalue is the kth col-
umn of W} 2> Whose subkey is the kth row of lec ol

3.2 Interventions on Attention Heads

We make a 2-digit arithmetic dataset, including
addition (2D+), subtraction (2D-), multiplication
(2D*) and division (2D/). Similar to Stolfo et al.
(2023), we design four prompts for each operation
including both numbers (e.g. 3) and number words
(e.g. three), reported in Appendix A. The evalu-
ation dataset has 1,600 sentences. We intervene
the attention heads by setting all the head’s param-
eters into zero, and we take accuracy as metric.
Llama-7B consists of 32 layers with 32 heads per
layer. Consequently, we execute the model 1,024
times (intervening on one head each time for 1,600
cases) and compute the average accuracy on the
evaluation dataset.

3.3 Results of Different Heads

The accuracy of the original model is 74.8%. Inter-
ventions on the majority of heads (976 in total) lead
to only a minor decrease in accuracy (0.01%-2%).
Only three heads result in a decrease of 10% or
more. The top5 heads are shown in Table 1.
Interventions on head 1722, 15? and 14'? cause
12.7% or more decrease. Specifically, 1722 reduces
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ori 17?2 159 1419 1523 16!
all 748 534 62.1 627 68.1 68.7
2D+ 96.8 429 832 925 89.7 916
2D- 944 723 846 932 86.5 79.1
2D* 56.6 50.5 509 513 523 569
2D/ 514 482 29.5 13.8 43.8 47.1

Table 1: Accuracy (%) when intervening different heads.
"ori": original model. 17%2: 22th head in 17th layer.

21.4% in accuracy. Moreover, the accuracy de-
crease on these heads is attributed to different oper-
ations. For example, 1722 drops a lot on 2D+ and
2D-, and 149 performs extremely poor on 2D/.

3.4 Reasons Causing Accuracy Decrease

Since the accuracy of more complicated operations
are low, we analyze the most important head for
each operation in 1-digit (1D), 2-digit (2D) and 3-
digit (3D) operations, shown in Table 2. The most
important heads in 1D, 2D and 3D operations are
the same. We report the details of top5 heads in
Appendix E. In comparison to addition, subtraction,
and division, the top head for multiplication does
not significantly impact accuracy. We leave further
investigation of this phenomenon for future work.

1722(+)  17%2(-) 20%8(x) 1490
ID 465 62.2 6.8 54.9
2D 584 52.6 11.2 71.8
3D 525 56.9 8.1 53.2

Table 2: Accuracy decrease (%) in 1D, 2D and 3D.

In Table 2, the decreases of 1D, 2D and 3D op-
erations are similar. Therefore, we hypothesize
that the heads store important parameters about 1D
operations. Since 2D and 3D also rely on the mem-
orization of 1D operations, the 2D/3D accuracy
decrease when the 1D memorization is lost.

add sub multi divide
memorize 59.2 498 11.6 63.6
change-one 57.1 655 113 752

Table 3: Accuracy decrease (%) on memorize and
change-one cases.

We also analyze two types of cases for each op-
eration, which are named "change-one" (similar to
the definition of "carry" in Opedal et al. (2024))
and "memorize". "Memorize" cases only require
memorization. For example, "15+32=47" requires
memorization about "5+2=7" and "1+3=4", thus

"15+32=->4" and "15+32=4 -> 7" are two "mem-
orize" cases. "Change-one" cases require the
change-one ability. For example, "15+37= -> 5"
is a "change-one" case, as the output is based on
"5=1+3+1". For multiplication and division cases,
we take the last token as "memorize" cases, and
others as "change-one" cases. We compute the ac-
curacy decrease between the original model and
the intervened model for each operation. The re-
sults are shown in Table 3. If the heads only store
change-one abilities, the decrease of "memorize"
cases should be much smaller than "change-one"
cases. However, the accuracy decrease of "mem-
orize" cases and "change-one" cases are similar.
Hence, we hypothesize the heads store parameters
for memorizing 1D operations.

4 Comparative Neuron Analysis for
Mechanistic Interpretability

In this section, we investigate how head 1722 influ-

ence 1D+ and 1D- operations. Analysis of head

14" for 1D/ operations is shown in Appendix B,

resulting the same stages with Section 4.2-4.4.

4.1 Methodology

The core idea of our proposed CNA method is com-
paring the same neuron across different models
given the same input, or comparing the same neu-
ron across different inputs within the same model.
Due to the computational intensity of the forward
pass, employing causal mediation analysis meth-
ods on every neuron is impractical. Therefore, we
take the increase of log probability (Yu and Anani-
adou, 2024b) as importance score for each neuron.
The importance score of a FFN neuron mﬁc f 022 is
log(p(wlzf " + Al +mij fe2)) —log(p(w]a ' +
AL)), where w is the final predicted token and the
probability is computed by the softmax function
when multiplying the vectors with the unembed-
ding matrix (Eq.4). Then we compute the change of
each neuron’s importance score between the orig-
inal model and the intervened model (intervening
head 17%2), and sort the change score to locate the
most important neurons causing the final prediction
probability decrease. We only intervene one head
because this head can result very much decrease in
accuracy. In later sections, we introduce the analy-
sis process focusing on a specific case "3+5=", and
devise various methods to prove these findings are
applicable to all 1D+ and 1D- cases.
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4.2 Feature Predicting via Arithmetic Head

For case "3+5=" with prediction "8", we compute
the importance score change for each neuron, and
find the most important neurons are in FFN layers.
We project these neurons in vocabulary space (Geva
et al., 2022) by multiplying the FFN neurons v
and unembedding matrix: P, = softmax(E,v).
The top tokens when projecting into the unembed-
ding space are shown in Table 4. 283596 means the
3696th neuron in the 28th FFN layer. "ori" and
"inv" denote the original and the intervened model
("mdl"). "imp" and "coef" represent the importance
score and coefficient score of each neuron.

FFNv mdl imp coef toplO tokens
283606 ori  0.82 6.21 [8, eight, VIII,
283696 inv  0.13 0.95 huit, acht, otto]
257164 ori  0.31 8.44 [six, eight, acht,
257164 inv  0.07 2.08 Four, twelve,
six, four, vier]
195769 ori  0.20 3.79 [eight, VIII, 8,
195769 inv  0.06 1.28 III, huit, acht]

Table 4: Importance scores and coefficient scores of
located important FEN neurons for input "3+5=".

All these neurons contain concepts about "eight"
and "8" in top tokens. The importance scores and
coefficient scores drop a lot in the intervened model.
From the interpretable results, we hypothesize that
the reason why the accuracy decreases a lot in the
intervened model is that head 1722 stores impor-
tant parameters for activating the important FFN
neurons related to the final prediction. To verify
this hypothesis, we conduct two experiments on
all 1D+ and 1D- cases. For each case, we employ
the CNA method to identify the important FFN
neurons. Then in the original model we only in-
tervene the most important FFN neurons ("mask")
or intervene all the other FFN neurons within the
17th—31th layers ("keep"). The accuracy decrease
on all 1D+ and 1D- cases is presented in Table 5.

top99 top50 top30 top20 toplO
mask 100.0 96.0 89.5 86.8 684
keep 3.9 7.8 132 184 382
coef 49.1 604 672 727 771

Table 5: Decrease (%) of accuracy and coefficient score
on all 1D+ and 1D- cases when intervening and keeping
the most important FEN neurons.

When intervening the top99 FFN neurons, the

accuracy decreases 100%. When intervening all
the other neurons in deep FFN layers, the accuracy
only decreases 3.9%. This suggests that almost all
important information for predicting the final token
is contained within the FFN neurons identified by
our CNA method. We also report the decrease of
the top neurons’ coefficient scores ("coef") between
the intervened model and the original model in
Table 5. In all situations, the coefficient scores drop
much. Therefore, our hypothesis is verified: head
1722 stores important parameters for activating the
important FFN neurons related to final predictions.
When head 1722 is intervened, coefficient scores
of important FFN neurons drop a lot, thus final
predictions’ probabilities drop much.

4.3 Prediction Enhancing among Deep FFN
Neurons

In case "3+5=", we observe that there is a predic-
tion enhancing stage among the most important
FEN neurons 283496, 257164 and 1957¢9. The inner
product scores between the FFN value of 195769
and the FFN keys of 257164 and 283696 are large.
Additionally, the inner product between the FFN
value of 257164 and the FFN key of 283496 is also
large. Therefore, a prediction enhancing directed
acyclic graph (PE-DAG) exists among the three
neurons, where 195769 is the root. Activation of the
lower FFN neuron recursively triggers activations
of upper semantic-related FFN neurons.

To explore whether the prediction enhancing
stage also exists in other 1D+ and 1D- cases, we
compute the coefficient score change of important
FFN neurons when intervening the lowest neuron
among the most important neurons. If there are
many neurons in the lowest layer, we intervene
the neuron with the largest importance score in the
lowest layer. Decrease of coefficient score when
intervening the lowest important neuron in the orig-
inal model are shown in Table 6.

top99
15.8

top50
14.8

top30
125 95 44

top20  top10

coef

Table 6: Decrease (%) of coefficient score when inter-
vening the lowest neuron among important neurons.

Intervening only one neuron among top99 neu-
rons can reduce the coefficient scores by 15.8%.
The results indicate that the prediction enhancing
stage exists among the identified deep FFN neurons.
Among 1D+ and 1D- cases, comparing with inter-
vening the lowest neuron among top10 and top20
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neurons, the coefficient score decreases more when
intervening the lowest neuron among top50 and
top99 important neurons. This phenomenon maybe
because the lowest neuron among top99 and top50
neurons typically resides on lower FFN layers com-
pared to those on top10 and top20 neurons.

4.4 Feature Enhancing with Hidden-
Interpretable Shallow FFN Neurons

Stolfo et al. (2023) utilize causal mediation anal-
ysis and find the model processes numbers and
operators on early FFN layers and transfer into last
position via attention layers. In this section, our
objective is to locate the specific neurons fulfilling
this function and to analyze the roles of shallow
FFN layers and attention layers in this process. To
identify the important shallow FFN neurons for
case "3+5="->"8", we sort the neurons by com-
puting the inner products between the PE-DAG
root 195769 and the attention transformation of each
FFN neuron. We find that the neurons (on residual
streams of "3" and "5") with highest inner prod-
ucts are hidden-interpretable. When projecting the
original neurons into vocabulary space, they do
not contain human-interpretable concepts in top
tokens. However, after the transformation of at-
tention layers, these neurons become interpretable.
Moreover, we find that the word embeddings of
"3" and "5" are also hidden-interpretable. The top
vocabulary tokens of original and 15th attention
layer transformation are shown in Table 7.

FFNv  origin attn transform

124072 [rd, quarters, [III, three,
PO, Constraint, Three, 3,
ran, avas) triple]

119958 [enz, Trace, lis, [XV, fifth, Fif,
vid, suite, HT, avas, Five, five,
ung, icano] abase, fif]

word "3" [rd, rum, quar- [three, Three,
ters, Af, EX- RGB, triple, 3,
ISTS, raum] triangle]

word "5" [th, esa, gi, AXI, [Fif, XV, engo,

gal, ides, Inject,
san, IDE]

abase, ipage,
vos, fif, fifth]

Table 7: Hidden-interpretable FFN neurons’ top10 to-

kens transformed by 15th attention layer.

We hypothesize that these hidden-interpretable
FFN neurons are crucial for enhancing input fea-
tures. We develop a zero-shot method to identify

these hidden-interpretable shallow FFN neurons.
For each FFN neuron on 0th — 15th layer, we com-
pute the transformation by 0th — 16th attention
layers’ value-output matrices, and project these
vectors into vocabulary space. If the top50 tokens
contain M or more concepts related to numbers
or operations, we add this neuron into a hidden-
interpretable neuron set. Then we intervene all the
neurons in this neuron set in the original model,
and compute the accuracy decrease on all 1D+ and
1D- cases. The number of neurons and accuracy
under different M are shown in Table 8.

M=0 M=1 M=2 M=3
number 51,980 10,426 1,953 510
accuracy 98.7 68.4 539 434

Table 8: Decrease (%) of accuracy on 1D+ and 1D-
cases when intervening hidden-interpretable neurons.

There are 176,128 neurons in 0th — 15th FEN
layers. Intervening with only 1,953 neurons (M=2)
results in a decrease of 53.9%. This strongly sug-
gests that these hidden-interpretable neurons play a
significant role in enhancing features and are valu-
able for final predictions. Further supporting this
notion is the observation that randomly intervening
1,953 neurons on the 0th — 15¢th FFN layers only
results in an accuracy decrease of 2.6%. Compared
to directly interpretable neurons in deep FFN lay-
ers, hidden-interpretable neurons in shallow FFN
layers are more widely distributed. When interven-
ing 10,426 neurons (about 6% of all neurons in
0th — 15th layers), the accuracy decreases 68.4%.

4.5 Constructing the Internal Logic Chain
from Inputs to Prediction

In Section 4.2-4.4, we apply our CNA method to
identify the important neurons for the case "3+5",
and also design experiments to verify the generality
across other 1D+ and 1D- cases. In this section,
we conclude the internal logic chain from inputs to
prediction for case "3+5="-> "8":

First, in feature enhancing stage, shallow FFN
neurons containing hidden-interpretable features
(e.g. 119958, 124072) are extracted. In feature
transferring stage, the hidden-interpretable features
(word embeddings and shallow FFN neurons) are
transformed into directly-interpretable features by
attention layers and then transferred to the last po-
sition. In feature predicting stage, head 1722 acti-
vates deep FFN neurons associated with the con-
cept of "8" (e.g. 283696, 257164, 19576‘9) based on
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the enhanced features. Finally, in the prediction en-
hancing stage, lower FFN neurons activate higher
FFN neurons, which collectively contribute to the
probability of "8" in the final prediction.

Through our CNA method, we precisely iden-
tify crucial parameters (attention heads and FFN
neurons) for predicting final tokens. Compared
to prior studies, our approach enables the discov-
ery of more detailed locations and offers a clearer
explanation of the information flow. Given our
method’s ability to pinpoint precise parameters, it
can be effectively leveraged for downstream tasks
such as model pruning and model editing, which
we discuss in Section 6.

5 Understanding the Mechanism of LoRA

LoRA (Hu et al.,, 2021) is a commonly used
parameter-efficient fine-tuning method (Houlsby
etal., 2019; Li and Liang, 2021; Lester et al., 2021).
By adding trainable low-rank matrices into atten-
tion layers, models are fine-tuned with only 0.5%
additional parameters, yielding favorable outcomes.
Intuitively, LoRA is similar to a head. Inspired by
the analysis on arithmetic heads, we apply the CNA
method to understand the mechanism of LoRA.

We first investigate whether LoRA plays distinct
roles when added into various layers. We fine-tune
32 models on the 2-digit arithmetic dataset, with
each model incorporating a low-rank matrix into
a distinct attention layer. Notably, we introduce
negative numbers in 2D cases such as "3-5=-2",
as the original Llama model does not learn this
concept well. The training and testing set consist
of 18,000 and 2,000 sentences, respectively. We
determine the optimal learning rate from choices of
0.001, 0.0005, and 0.0001. The maximum epoch is
set to 4. The results are depicted in Figure 2.

accuracy

0.75 A

0.65 -

01234567 8 910111213141516171819202122232425262728293031
layer

Figure 2: Accuracy: adding LoRA in different layers.

All the fine-tuned models exhibit superior ac-

curacy compared to the original model (62.96%).
The 0th and the 31th layer may have special use,
since the accuracy of the Oth and 31th models dif-
fers much from their neighboring models. The
accuracy of the 1st — 9th models is around 90%.
Starting from the 10th model, the accuracy keeps
decreasing. The average slope during the 10¢h to
16th models differs from that of the 17th to 30th
models. Motivated by LoRA’s accuracy curve and
the analysis of arithmetic heads, we hypothesize
that LoRA enhances the correct predictions’ proba-
bilities by amplifying the deep FFN neurons related
to final predictions. We apply our CNA method on
the original model and five LoRA models analyzing
the case "3+5=", detailed in Table 9.

ori 9th 15th 16th 19th 20th
283606 6.2 36 63 39 57 41
257164 84 16.1 11.8 11.0 139 9.7

195769 3.8 92 77 6.1 51 38

Table 9: Important neurons’ coefficient scores on the
original model and five fine-tuned models for "3+5=".

Across all five fine-tuned models, the coefficient
scores of 257164 and 195769 surpass those of the
original model. The scores are higher in shallow-
layer models compared to deep-layer models. The
significant decrease in the coefficient score ob-
served in 257164 in the 20th model can be attributed
to its failure to leverage the features of 1957¢9.

LoRA layer top50 top30 top20 toplO

1st — 9th 2% 49% 57%  59%
10th — 16th  29% 36% 44%  53%
17th — 30th 2% 11% 14% 28%

Table 10: Coefficient score increase (%) of different
fine-tuned models compared with the original model.
For all cases, we compute the average coeffi-
cient score increase of 1st — 9th, 10th — 16th, and
17th — 30th models on the most important neurons,
detailed in Table 10. Across all scenarios, the co-
efficient scores of significant FFN neurons surpass
those of the original model. Notably, fine-tuning
LoRA in shallow layers yields a greater amplifica-
tion of FFN neurons’ coefficient scores compared
to deep layers. This observation validates our hy-
pothesis: LoRA enhances the probabilities of final
predictions by amplifying the coefficient scores of
deep FFN neurons relevant to final predictions.
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6 Applications

In this section, we utilize our method for model
pruning on arithmetic tasks and for model editing
aimed at mitigating gender bias.

6.1 Model Pruning for Arithmetic Tasks

As recent powerful models boast tens of billions
of parameters, the extraction of sub-networks from
these large models for various downstream tasks
has become crucial. This approach is based on
the assumption that only a small subset of parame-
ters in an over-parameterized model are pertinent
to a specific task and similar tasks share similar
sub-networks (Pfeiffer et al., 2023). Recent works
(Stanczak et al., 2022; Foroutan et al., 2022) in
multilingual models can support these hypotheses.

In this section, we apply our findings on model
pruning for arithmetic tasks. As discussed in Sec-
tion 4, important information for final predictions
is concentrated in only a few deep FFN neurons.
Therefore, we design a simple method to prune
useless neurons in deep FFN layers. We apply our
CNA method between the original model and the
9th LoRA model on all the 1D+, 1D-, 1D* and
1D/ cases, to find the important top500 neurons for
each case. Then we prune all the other FFN neu-
rons among 17th — 31th layers, thus only 5% deep
FFN neurons are saved in the pruned model. Fi-
nally, we add LoRA on the 9th layer of the pruned
model, and fine-tune on the training set. The pa-
rameters on deep FFN layers are reduced to 5%,
and only 0.015% LoRA parameters are added.

origin

acc 629

LoRA9 LoRA9-p LoRA9-r
89.3 82.3 17.1

Table 11: Accuracy on 2-digit datasets.

The results are shown in Table 11. The ac-
curacy of the fine-tuned pruned model (LoRA9-
p) is 82.3%, better than original Llama (62.9%).
While our method do not reach the performance
of the fine-tuned model without pruning (LoRA9),
it still offers a promising avenue for model prun-
ing. Furthermore, although 2-digit arithmetic is an
easy task, fine-tuning LoRA on a randomly-pruned
model (LoRA9-r) with the same number of neurons
fails to yield satisfactory results (only 17.1%). This
further underscores the significance of our method.

6.2 Model Editing for Reducing Gender Bias

Even though LLMs have achieved great success,
they can learn, perpetuate, and amplify harmful
social biases (Gallegos et al., 2023). In this section,
we focus on gender bias, which is observed in dif-
ferent models (de Vassimon Manela et al., 2021;
Kotek et al., 2023). We apply our CNA method an-
alyzing similar cases with different genders in the
same model. For example, we identify the impor-
tant neurons for predicting "nurse" by calculating
the change of importance scores between sentences
"A woman works as a" and "A man works as a".
Since the other words are the same except "woman"
and "man", these neurons contain much gender
bias causing p(nurse|woman) > p(nurse|man).
The neurons’ top tokens of are shown in Table 12.
For example, the top tokens of FFN neuron 19g436
are all professions. Under the input "A woman
works as a", this neuron’s coefficient score is 3.39.
While the neuron’s coefficient score is only 0.14
activated by "A man works as a", proving that this
neuron contains much gender bias.

FFNv gend imp coef top tokens

229651 F 024 6.48 [maid, domestic,
229651 M 0.06 1.53 servant, servitor]
198436 F 0.16 3.39 [nurse, secretary,
19g436 M  0.01 0.14 typing, reception]

Table 12: FFN neurons contain gender bias. "F":woman.

We then apply our CNA method on 32 com-
mon professions contain gender bias (detailed in
Appendix D). Designing four prompts, we iden-
tify top18 important FFN neurons and edit them
by setting their parameters to zero. The aver-
age perplexity difference log(p(prof|gendl)) —
log(p(prof|gend2)) is shown in Table 13, reduced
by 35.7% when only 18 neurons are edited.

total bias woman bias man bias
origin 1.26 1.45 1.08
edited 0.81 1.04 0.59

Table 13: Gender bias of original and edited model.

These results can demonstrate that our proposed
CNA method can be utilized in different tasks. It
is also important to note that the utilized gender
bias datasets may not comprehensively represent
general scenarios. We leave the explorations on
different datasets in future work.
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7 Discussion and Conclusion

We aim to discuss the mechanisms behind causal
mediation analysis and static interpretation meth-
ods. Causal mediation analysis methods can find
the "root cause" (head 1722) of the probability
change, which are usually not interpretable. Static
methods can locate the interpretable "direct cause"
(FFN neurons), but many elements can activate
these neurons. Our CNA method can locate both
"root cause" and "direct cause", and reconstruct the
whole logic chain from inputs to prediction.
Overall, we identify the important attention
heads and FFN neurons for arithmetic operations.
We propose the comparative neuron analysis (CNA)
method and construct the internal logic chain from
inputs to prediction, including the feature enhanc-
ing stage, feature transferring stage, feature predict-
ing stage, and prediction enhancing stage. Based
on these findings, we find LoRA increases the final
predictions’ probabilities by enlarging the impor-
tant FFN neurons’ coefficient scores. Finally, we
apply our method and findings on model pruning
for arithmetic tasks, and model editing for reduc-
ing gender bias. Our method and analysis offer a
comprehensive insight for understanding LLM.

Limitations

The case studies rely on projecting vectors in vo-
cabulary space, which is widely used in previous
studies (Elhage et al., 2021; Ram et al., 2022; Geva
et al., 2022; Dar et al., 2022). While the results
are empirically interpretable, the theories of this
method are incomplete. Therefore, we utilize this
method in our case studies and supplement our
findings with additional methods to strengthen our
conclusions, thus enhancing their persuasiveness.

Another limitation lies in the lack of standard-
ization across various studies regarding attribution
methods. Different intervention methods (zero in-
tervention, noise intervention, replace intervention,
etc.) may get different results. Apart from causal
mediation analysis methods and static interpreta-
tion methods, gradient-based methods (Sundarara-
jan et al., 2017) and SHAP values (Lundberg and
Lee, 2017) are also widely utilized for attributing
important modules. However, these methods of-
ten demand substantial computational resources,
rendering them unsuitable for our work.

A potential risk of our work is that attackers can
identify the important neurons and edit these neu-
rons to change the output probability distribution.

For instance, instead of reducing the gender bias
by setting the neurons’ parameters to zero, they
can amplify the gender bias professions’ probabili-
ties by enlarging the identified neurons in Section
6.2. Hence, it is important to distinguish whether
a model is edited, and we leave this exploration in
future work.
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A Four Prompts in Arithmetic Dataset

type prompt

addition-1  The sum of nl and n2 is
addition-2  Q: What is nl plus n2? A:
addition-3  nl plus n2 is

addition-4 nl +n2=

subtract-1  The difference between nl and n2 is
subtract-2  Q: What is nl minus n2? A:
subtract-3  nl minus n2 is

subtract-4 nl -n2=

multiply-1  The product of nl and n2 is
multiply-2  Q: What is nl times n2? A:
multiply-3  nl times n2 is

multiply-4 nl *n2 =

division-1  The ratio of nl and n2 is
division-2  Q: What is nl divides n2? A:
division-3  nl divides n2 is

division-4 nl/n2=

Table 14: Four prompts for 2-digit arithmetic operations.

B Results of Interventions on Head 14

We conduct the same experiments as discussed in
Section 4.2-4.4. The results of head 14'? is shown
in Table 15 (corresponding to Table 5), Table 16
(corresponding to Table 6), and Table 17 (corre-
sponding to Table 8).

top99 top50 top30 top20 toplO
mask 84.6 821 744 667 513
keep 48.7 513 539 539 642
coef 50% 61% 67% 70% T3%

Table 15: Decrease (%) of accuracy and coefficient
score on all 1D/ cases when masking and keeping the
top FFN neurons.

In Table 15, when head 14'? is intervened, co-
efficient scores of important neurons in deep FFN
layers are reduced, causing the accuracy decrease.
Also, the top identified neurons contain much in-
formation. Interventions on top99 neurons result in
an accuracy decrease of 84.6%.

top99  top50 top20

coef 1.3 0.9 32 4.9 7.0

top30 top10

Table 16: Decrease (%) of coefficient score when inter-
vening the lowest neuron among important FFN neu-
rons.

The results of Table 16 also demonstrate that
among the identified important neurons, the lower
neurons can enhance higher neurons’ coefficient
scores among deep FFN neurons. Therefore, the
prediction enhancing stage also exists.

M=0 M=l M=2 M=3
number 51,980 10,426 1,953 510
acc 975 821 308 257

Table 17: Decrease (%) of accuracy on 1D/ cases when
intervening hidden-interpretable neurons.

In Table 17, The hidden-interpretable neurons
in shallow FFN layers are important for 1D/ cases
(e.g. "72/8="). When intervening 10,426 hidden-
interpretable shallow FFN neurons, the accuracy
reduces 82.1%. For comparison, we randomly in-
tervene 10,426 FFN neurons in shallow FFN lay-
ers, and the interventions only cause a decrease of
5.1%.

Overall, head 14! shares the same mechanism
with head 1722, Head 14'° stores important param-
eters for division operations, while head 17?2 is
responsible for addition and subtraction.

C Results of Interventions in GPT-J

We conduct the same experiments in Section 3.3 in
GPT-J. The accuracy when intervening each head
is presented in Table 18.

oi 7° 139 ot 156 1414
all 745 636 644 650 688 70.8
2D+ 97.0 95.0 940 98.0 950 97.0
2D- 786 63.6 41.8 63.6 745 80.0
2D*  71.0 54.0 720 53.0 59.0 72.0
2D/ 515 420 500 456 467 34.4

Table 18: Accuracy (%) when intervening different
heads in GPT-J.

In GPT-J, we also observe that different heads
store important parameters for various operations.
For instance, the accuracy of 2D- decreases signifi-
cantly when intervening in head 13°, whereas head
144 holds significant parameters for 2D/.

Then we apply the CNA method between the
original model and the intervened model on head
139 on 2D- cases. The results are shown in Table 19
(corresponding to Table 5), Table 20 (correspond-
ing to Table 6), and Table 21 (corresponding to
Table 8).
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top99 top50 top30 top20 topl0
mask 584 459 334 25 25
keep 375 50 541 834 959
coef 17% 20% 21% 23% 29%

Table 19: Decrease (%) of accuracy and coefficient
score when masking and keeping the top FFN neurons.

top99
coef 1.9 1.7 1.6 1.2 1.9

top50 top30 top20 toplO

Table 20: Decrease (%) of coefficient score when inter-
vening the lowest neuron among important neurons.

In Table 19, the top FFN neurons also play a
large role in GPT-J. When intervening the top99
neurons, the accuracy decreases 58.4%. Compared
with Llama, the degrees of coefficient decrease
and accuracy change are both smaller. In Table
20, when intervening the lowest neuron among the
important neurons identified by our CNA method,
the deep neurons’ coefficient scores decrease.

M=0 M=1 M=2 M=3
number - 4272 1,228 564
acc - 100.0 83.4 20.8

Table 21: Decrease (%) of accuracy when intervening
hidden-interpretable neurons.

Results in Table 21 indicate that the hidden-
interpretable shallow FFN neurons also exist in
GPT-J. When intervening 4,272 neurons, the accu-
racy decreases 100%.

Overall, we observe similar results in GPT-J.
Similar to Llama, GPT-J also exhibits the presence
of four stages: feature enhancing, feature transfer-
ring, feature predicting, and prediction enhancing.

D Details for Evaluating Gender Bias

We design eight prompts to find the most common
professions causing the gender bias. The prompts
are shown in Table 22, where <gend> is "man" or
"woman".

We compute the top100 predictions of each
prompt for different genders, and compare the dif-
ferent professions, which are shown in Table 23.
These professions contain much gender bias. We
then apply our CNA method between cases with
different genders under the first prompt, and iden-
tify the top18 important neurons causing the differ-
ence. Finally, we edit the top18 neurons by setting
their parameters to zero, and then compute the per-

prompt

A <gend> works as a

A <gend> is employed as a

A <gend> holds a job as a

A <gend>’s occupation is

The job of a <gend> is

The work of a <gend> is

The profession of a <gend> is
The work of a <gend> involves

Table 22: Eight prompts for gender bias professions.

plexity difference between different genders for
all prompts in both the original and edited model
(results are shown in Table 13).

gend profession

woman cleaner, nurse, secretary, domestic
helper, maid, reception, seller, server,
librarian, pharmacist, translator, beauti-
cian, dental assistant, hairdresser, vol-
unteer, bookkeeper

police, guard, delivery, labour, driver,
machinist, roofer, machine operator,
lumberjack, technician, miner, night-
watch, painter, photographer, builder,
porter

man

Table 23: Professions with gender bias.

E Important Heads for 1-Digit, 2-Digit
and 3-Digit Operations

We report the top5 important heads for 1D, 2D and
3D operations in this section. For each operation,
the experiments are conducted on the last prompt
in Table 14. The results are shown in Table 24-27.

ori 17?2 152 20 1315 1419
1D+ 889 47.6 828 84.1 84.1 84.1
ori 17?2 159 132 20 1216
2D+ 945 393 860 879 886 892
ori 17?2 g0 1523 1216 159
3D+ 96.1 46.4 827 835 852 872

Table 24: Results of most important heads for 1D+,
2D+, and 3D+.

3305



1D-

ori
82.0

1722
31.0

16!
51.0

1523
53.0

226
57.0

132
65.0

2D-

ori
80.0

16!
339

17
37.9

132
61.8

1523
63.3

1216
70.6

3D-

ori
57.1

16!
19.6

1722
22.9

1523
29.3

132
34.3

1216
40.7

Table 25:
and 3D-.

Results of most important heads for 1D-, 2D-,

1D*

ori
93.0

35
854

20"
86.7

624
87.3

1722
89.2

030
89.2

2D*

ori
56.9

159
49.3

1419
50.1

1722
50.5

2018
50.5

35
51.6

3D*

ori
32.8

35
25.9

159
29.7

1419
30.3

1319
31.1

214
31.1

Table 26:
and 3D*.

Results of most important heads for 1D*, 2D*,

1D/

ori
78.9

1419
35.6

159
61.1

2124
65.6

624
67.8

16*!
68.9

2D/

ori
48.6

1419
13.7

121
30.2

33
314

16!
36.9

129
38.8

3D/

ori
19.0

1419
9.67

33
12.7

121
13.0

622
13.3

159
13.7

Table 27: Results of most important heads for 1D/, 2D/,

and 3D/.

3306



