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Abstract

Comprehensively understanding and accurately
predicting the performance of large language
models across diverse downstream tasks has
emerged as a pivotal challenge in NLP research.
The pioneering scaling law on downstream
works (Hu et al., 2024; Isik et al., 2024) demon-
strated intrinsic similarities within model fam-
ilies and utilized such similarities for perfor-
mance prediction. However, they tend to over-
look the similarities between model families
and only consider design factors listed in the
original scaling law. To overcome these limita-
tions, we introduce a novel framework, Collab-
orative Performance Prediction (CPP), which
significantly enhances prediction accuracy by
leveraging the historical performance of var-
ious models on downstream tasks and other
design factors for both model and task. We
also collect a collaborative data sourced from
online platforms containing both historical per-
formance and additional design factors. With
the support of the collaborative data, CPP not
only surpasses traditional scaling laws in pre-
dicting the performance of scaled LLMs but
also facilitates a detailed analysis of factor im-
portance, an area previously overlooked. Our
code is available here1.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022) have emerged as one of
the most important AI research powered by large-
scale parameters, high computational resources,
and massive training data. With the substantial
increase in model sizes, the evaluation cost of
LLMs’ performance becomes even more signifi-
cant. For example, testing a single LLM on cer-
tain benchmarks often requires $10K+ and 4K+
GPU hours (Liang et al., 2023). Therefore, un-
derstanding the behaviors and predicting the capa-
bilities of LLMs across scales under various tasks

∗Co-corresponding Authors
1https://github.com/Don-Joey/CPP_LLM

becomes a vital question (Ganguli et al., 2022a;
Owen, 2024; Finnveden, 2020; Hu et al., 2024) for
both researchers and engineers.

Scaling laws (Kaplan et al., 2020; Hoffmann
et al., 2022; Hernandez et al., 2022; Gordon et al.,
2021; Bahri et al., 2024; Muennighoff et al., 2023)
have been powerful tools for predicting the capabil-
ities of LLMs. It indicates a power-law correlation
between the model performance and design factors
such as computational measure (FLOPs) utilized
during training. Although the scaling law was orig-
inally proposed as a strong intuitive guide for de-
signing LLM, researchers (Hu et al., 2024; Ruan
et al., 2024; Isik et al., 2024) have extended its
utility into predicting model performances on vari-
ous metrics, such as BLEU in Machine Translation,
and different tasks. These works can accurately
predict model performances by utilizing the simi-
larity within each model family, e.g., models within
each family are usually trained on the same dataset.
However, there are several issues rooted in their
methods: the performance prediction 1) requires
transparent design factors that consume substantial
training resources to fit the curve, 2) is only tailored
to a certain model family and a specific task metric,
and 3) neglects the connections among different
models and tasks.

The aforementioned limitations motivate us to
design more effective methods for predicting the
performance of LLMs on downstream tasks. Two
observations sparked our attention. Firstly, A
strong similarity exists between model families,
e.g.LLama-family and GPT family. Models from
different families behave similarly in prediction
distribution (Shrivastava et al., 2023) and emergent
phenomenon (Wei et al., 2022). Secondly, with
the emerging LLM models and the increasingly
diverse tasks, the cost of enumerating and bench-
marking models with tasks increases exponentially.
Therefore, we aim to utilize the similarities across
model families in order to collaboratively predict
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Figure 1: Framework for Collaborative Performance Prediction of Large Language Models. This schematic
delineates two principal components: (1) Collaborative Data, which encompasses a score matrix illustrating the
performance of various LLMs across downstream tasks, along with external descriptive factors of both models
and tasks; (2) Collaborative Prediction Method, given the model and task IDs to leverage this collaborative data,
enabling accurate score prediction.

the model performance over diverse tasks in an
accurate yet efficient way.

To incorporate the aforementioned intuitions, we
propose a new scheme, Collaborative Performance
Prediction (CPP), to efficiently predict the perfor-
mance of LLMs on evaluation tasks. This scheme
learns the latent representations of LLMs and tasks,
which captures the intrinsic similarity among dif-
ferent models and tasks. The interaction (e.g., in-
ner product) between the latent representations of
LLMs and tasks can be utilized to predict the per-
formance of LLMs on certain tasks. To fulfil the
proposed scheme, we collect the LLM performance
data from academic papers, technical reports, and
open leaderboards covering 72 models and 29 tasks.
To summarize, our scheme has several advantages:

• Low Training Cost: Compared with meth-
ods (Hu et al., 2024) that extend scaling law to
various downstream tasks, no pre-training or fine-
tuning of LLM is required in our scheme.

• Prediction over proprietary model: Unlike pre-
vious methods (Ruan et al., 2024), our scheme
supports prediction over proprietary models with-
out knowing key design factors, such as compu-
tational measures.

• Prediction from small to large: By utilizing
cross-family information, our scheme can accu-
rately estimate model performance, e.g., emer-
gent ability, of large models on downstream tasks
given the information from small models.

• Beyond Scaling Laws: Our scheme is more gen-
eral and can incorporate diverse factors, such as
task description factors.

• Factor-level Interpretability: Our scheme can

provide interpretability by analyzing the factors
importance of LLMs.

Under our scheme, multiple customized pre-
diction methods (e.g., COLLABORATIVE FITER-
ING (Koren et al., 2022)) can be incorporated to pre-
dict the performance of LLMs, further validating
the feasibility and generality. Our method enables
more diverse factors as input, ranging from tradi-
tional LLM design factors to task design factors,
e.g., targeted ability and few-shot setting.

Upon extensive experimentation within the open-
released core leaderboard of HELM (Liang et al.,
2023) and our collected historical matrix, our pre-
dictive performance demonstrated exceptionally
well. Specifically, even without any input of model
factors or task factors: in HELM, we use 50%
of the scores to predict the other 50%, the pre-
dictive ranking (derived from predicted scores)
achieves Accuracy =10%, and MAE@2 =39%;
in our collected matrix (characterized by a 44%
sparsity level) achieves an Accuracy =45%, and
the MAE@2 =84%. Notably, the accuracy of
our prediction from small to large LMs signifi-
cantly exceeded that predicted by scaling laws.
Using an analysis method similar to SHAPLEY-
VALUES (Lundberg and Lee, 2017; Shapley, 1952),
we elucidate the importance of different factors,
which surprisingly does not fully align with scaling
law (Kaplan et al., 2020). Therefore, our method is
undoubtedly more versatile.
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2 Related Work

2.1 Downstream Scaling Law and
Performance Predictability of LLM

Scaling laws (Kaplan et al., 2020; Hoffmann et al.,
2022; Hernandez et al., 2022; Bahri et al., 2024;
Muennighoff et al., 2023) for LLMs have increas-
ingly become a focal point in understanding and
guiding critical design decisions, such as model
size and the characteristics and volume of pre-
training data. Traditionally, most research in this
area has concentrated on how measures like cross-
entropy loss or perplexity scale. Subsequent stud-
ies have extended these efforts to the scaling be-
havior on translation (Isik et al., 2024; Ghorbani
et al., 2021; Zhuocheng et al., 2023) and other
downstream tasks modeling (Caballero et al., 2023;
Henighan et al., 2020). The high predictability
in LLMs capability has directly spurred extensive
research work (see Survey Anwar et al. (2024))
exploring whether LLMs can demonstrate pre-
dictability on downstream tasks, which are consid-
ered highly unpredictable in traditional ML knowl-
edge (Ganguli et al., 2022a). Particularly, the
“emergence” phenomenon (Suzgun et al., 2022; Wei
et al., 2022) has challenged predictability, where
models suddenly exhibit striking capabilities at
specific training reources. Recent studies (Scha-
effer et al., 2023) have made remarkable achieve-
ments in breaking the discontinuities in perfor-
mance brought about by emergence, and Ganguli
et al. (2022a); Owen (2024); Finnveden (2020)
demonstrated the predictability on downstream
tasks, for instance, Hu et al. (2024) directly fits
a curve of training resources and downstream task
performance by repeatedly pretraining a specific
model. Furthermore, Arora and Goyal (2023) pre-
dicted the performance through decomposing the
complex capabilities of LMs to some base skills.

Given that predictability has now been estab-
lished, we reassess the underlying premises that en-
able this predictability: the prevailing similarities
across multiple models and various downstream
tasks (Liu et al., 2023; Perlitz et al., 2024; Polo
et al., 2024; Torregrossa et al., 2020; Ilić, 2023).
Based on this, we step beyond the limitations de-
fined by scaling laws and propose a new methodol-
ogy to predict the performance of LLMs on various
downstream tasks.

2.2 Collaborative Filtering
Collaborative filtering (CF) (Koren et al., 2022) is a
widely used technique in recommendation systems
that predicts users’ preferences by collecting the
historical preferences of many other users. The un-
derlying assumption of CF is that similar users will
share similar preferences on similar items. A sem-
inal method in CF is matrix factorization (Koren
et al., 2009) (MF). It reduces the dimensionality of
the user-item matrix by learning the latent factors
associated with users and items, respectively. This
approach helps handle sparse data and improves
scalability. The factorization of the user-item ma-
trix R can be represented as

R ≈ P⊤ ·Q , (1)

where each column vector in P and Q represents
a specific user or item, respectively, with hidden
dimension d. The latent representations of users
and items capture the user preferences and item
properties in the latent space, and the inner product
· can be utilized to predict the interaction between
users and items. To optimize the latent feature
vectors, the following loss function is employed:

min
P,Q

∑

(u,i)∈Ω
(rui − p⊤

u · qi)
2 , (2)

which measures the squared differences between
the observed ratings rui and the ratings predicted
by the model p⊤

u · qi for each user-item pair (u, i)
in the set Ω of observed interactions.

Here, Yang et al. (2019) transferred the collabo-
rative filtering for ML model selection by predict-
ing the cross-valided errors, which demonstrates
CF’s adaptability and efficiency in diverse applica-
tion areas.

3 Background and Pilot Demonstration

3.1 Scaling Law on Downstream Tasks
For classic scaling laws, researchers propose a
hypothesized power-law relationship between a
model’s computational measures Cm (e.g., train-
ing FLOPs) and their performance loss Lm (e.g.,
perplexity). Specifically, for a model m within a
family f (e.g., Llama-2 7B, 13B, and 70B), the
relationship is hypothesized as

log(Lm) ≈ ωf log(Cm) + bf , (3)

where ωf and bf are scaling coefficients cus-
tomized for each model family. Researchers fit
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Figure 2: Error Distribution of Predictions (Normalized Score and Rank Derived by Score) Based on the
HELM Lite Leaderboard Using Matrix Factorization: We evaluate the effectiveness of Matrix Factorization
(MF) using two latent factors, 7 and 10, across 2 training/validation split percentages. Accuracy is the percentage
of instances where the predicted rank equals the actual rank. MAE@2 is defined as the percentage of instances
where the absolute difference between the predicted and actual ranks is 2.

this formula through repeated scaling experiments,
then use it to accurately predict performance when
larger-scale (C ′ > C). Some studies (Finnveden,
2020; Owen, 2024) have adapted scaling laws to
specific downstream task metrics, proposing that
sigmoidal functions are more suitable for predic-
tions, as follows:

σ−1(Sm) ≈ ωf log(Cm) + bf , (4)

where Sm refers to the normalized downstream
scores of models within the range [0, 1]. How-
ever, applying scaling laws across different model
families on various specific tasks presents a trade-
off: fitting unique coefficients for each evaluation
scenario (e.g., Llama 2 on MMLU) is a resource-
intensive endeavor (Hu et al., 2024); alternatively,
estimating these coefficients using a limited num-
ber (3-5) of models within the same family may
compromise the accuracy of the predictions. More-
over, the recent work (Ruan et al., 2024) extends
scaling law by incorporating latent variables to cap-
ture the patterns across model families and tasks.

3.2 Pilot Demonstration on HELM
Scaling laws reveal that models from any family
exhibit a similar performance trend as computa-
tional measures increase. This insight suggests

there are commonalities and connections between
different models. These motivate us to employ
the MF method to explore more similarities be-
yond computational measures, e.g., the relationship
among the different model families and tasks.

We perform the aforementioned MF on the
benchmark matrix to observe the error gap between
predicted and truth (normalized) scores. Specifi-
cally, we select the core leaderboard provided by
HELM for our exploratory experiments with only
model name, task name, and performance scores.
This leaderboard, 68 models and 16 tasks, pre-
sented in a score matrix with a density of 82.5%,
which includes both open-source and proprietary
models, e.g., GPT-4 and Jurassic-2. Our method
treats all models and tasks as independent enti-
ties without introducing any prior similarity factors.
We hope to observe whether MF can predict the
remaining scores, giving a small part of the matrix,
where we evaluate two training/validation sets split
strategies: 10%/90%, 50%/50%. As illustrated in
Figure 2, MF can accurately predict most of the
missing scores within a low error range, which
proves that it can encode the similarity across the
model and the task without regression depending
on explicit computational measures variable.
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4 Collaborative Performance Prediction

4.1 Definition

Motivated by pilot experiments, we introduce the
concept of “Collaborative Performance Prediction”
(CPP) to facilitate the performance prediction of
LLMs.

Definition 1. Let M = {M1,M2, . . . ,Mn} be
a set of n LLMs, and T = {T1, T2, . . . , Tm} be
a suite of m tasks. Define the Score Matrix S,
which is an n×m matrix where each element sij
represents the performance score of model Mi on
task Tj . sij is defined as

sij =

{
score if tested,
unknown otherwise.

Function: Employ an prediction method F to es-
timate the unknown elements of S, denoted by ŝij ,
based on the known values.
Extention: Accommodate model design factors
Vm = {V 1

m, V 2
m, . . . , V M

m }, such as common com-
putational meatures, and task design factors Vt =
{V 1

t , V
2
t , . . . , V

T
t }, such as targeted capabilities

and few-shot settings.

Based on this definition, our framework consists
of two components: 1) collaborative performance
data, 2) collaborative prediction methods. We
anticipate that an accurate score can be predicted
based on the historical performance of various mod-
els on downstream tasks and other design factors
for both model and task. Moreover, we can incor-
porate or solely rely on the factors describing the
LLM and the associated downstream tasks.

4.2 Collaborative Data
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Figure 3: Distribution of Testing Coverage Across Mod-
els and Tasks. The left bar shows the number of tasks
each model has been tested on; The right bar illustrates
the number of models tested in each specific task.

Unlike the scaling law approach, which requires
training resource factors to obtain the correlation

between metric scores and factors at a high train-
ing cost, our proposed method makes use of eval-
uation results and other design factors reported
from existing studies, referred to as collaborative
data. Open-source leaderboards, such as Open-
LLM2, HELM, and OpenCompass3, have made
tremendous efforts on this issue in fairly evaluat-
ing different LLMs. Our efforts extend beyond
merely (Ruan et al., 2024) utilizing data from open-
source leaderboards with matrix sparsity of 0%.
We also extract test results from different models’
papers, technical reports, and model cards. Ulti-
mately, we have collected a score matrix of n = 72,
m = 29 with a density of only 56%. Furthermore,
we collected 12 and 4 detailed design factors for
models and tasks. These details are listed in Ap-
pendix B.1. Our data analysis is shown in Figure 3
and Figure 8.

Data Analysis. Based on the collective data, we
can make the following observations: a) Uneven
distribution of testing resources. We observe
significant variability in the deployment of testing
efforts, as shown in Figure 3. For instance, models
from the LLAMA series have undergone extensive
testing across various tasks, in contrast to models
like GOPHER, where testing has largely stagnated.
A similar disparity is also evident among tasks,
with MMLU and HELLASWAG receiving consid-
erable evaluation, whereas RACE has been rela-
tively underexplored. This trend suggests that as
LLMs proliferate and tasks evolve, scores across
the matrix will increasingly skew. This leads to
a pronounced long-tail effect in testing coverage
for many tasks, barring a few that consistently re-
ceive comprehensive evaluations. b) Widespread
variations in the scores. It is noteworthy that iden-
tical models yield varying scores on the same tasks
across different studies (Shrivastava et al., 2023;
AI@Meta, 2024), a variation often attributed to dif-
ferences in prompt settings, model versions, and
the volume of test samples employed. Typically,
these score variations range within 0.1, with scores
normalized between [0, 1]. This phenomenon un-
derscores the importance of public leaderboards
and highlights researchers’ need to articulate their
testing frameworks when performing customized
evaluations. When conflicted, we prefer the re-
sults from the Open-LLM leaderboard in the col-
lective data. c) Missing description/model card.

2https://github.com/bentoml/OpenLLM
3https://opencompass.org.cn/
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We advocate for consistently providing complete
model cards for open-source and proprietary mod-
els. Such a phenomenon is shown in Figure 8 and,
unsurprisingly, a long-tail distribution is witnessed.
While it is understandable that proprietary models
might withhold specific details about parameters,
they can still divulge information about parameter
scale and the extent of pre-training. Furthermore,
we recommend a more thorough description of test-
ing tasks, including suggested few-shot settings
and detailed descriptions of targeted capabilities.

4.3 Prediction Methods

In Section 2.2, classical collaborative filtering meth-
ods are inspired to conduct the performance pre-
diction. In principle, most collaborative filtering
methods can be applied. Here, in addition to the
abovementioned MF, we also leverage neural col-
laborative filtering (He et al., 2017) (NCF) meth-
ods, which uses a multi-layer perceptron to learn
the model-task interaction function to predict the
score ŝij for a model i on a task j, providing a way
to learn non-linearities in the data:

ŝij = f(i, j|M, T , [Vi,Vj ], θ)

= MLP(pi, qj , [evi, evj ]),
(5)

where M and T denote the sets of collaborative
models and tasks, and their descriptive factors Vi,
Vj optionally enrich the input data. Here, pj and
qj are the latent vectors for model i and task j that
capture the intrinsic properties of models and tasks,
as well as embeddings [evi, evj ] derived from their
descriptive factors, and θ represents the parameters
of NCF.

Moreover, we further simplify the model to ver-
ify whether it is feasible to predict a score when
only inputting the descriptive factors Vi, Vj into
the prediction model:

ŝij = f(i, j|Vi,Vj , θ)

= MLP(evi, evj),
(6)

For both settings, where the goal is to predict the
scores accurately, the loss function can be defined
as follows:

L(θ) =
1

N

∑

(i,j)∈D
(ŝij − sij)

2, (7)

where N is the total number of scores set D for
training, and sij is the true score for model i and
task j.

5 Experiments

In this section, we evaluate the feasibility of CPP
from an overall benchmark perspective and a model
perspective in Section 5.1 and 5.2, respectively;
we then analyze the importance of factors for both
models and tasks in Section 5.3. Additionally,
a substantial amount of ablation and analysis is
placed in the appendix D, such as sparsity, the cor-
relations in tasks and models, and which models
and tasks are more critical for prediction.

Experimental Setting. Our validation frame-
work utilizes the aforementioned collaborative
dataset as the score matrix S. We partition scores
{sij} into train and validation set, detailed in Ap-
pendix C.2.

Evaluation Metric. To accurately evaluate CPP,
we adopt two types of metrics: 1) SCORE-LOSS

metrics including MSE LOSS and L1 LOSS be-
tween predicted scores and true scores (normalized)
on downstream tasks and 2) RANK-ACCURACY

metrics including ACCURACY and MAE@2 be-
tween the rank of predicted scores and true scores.
We elaborate on these metrics in Appendix C.1.

5.1 Evaluation from Benchmark Perspective

In this study, we select the abovementioned meth-
ods, MF and NCF, to verify whether sij can be
accurately predicted based on the input of model
i and task j. To examine whether enhancements
are helpful, we modify NCF to support the input of
design factors, detailed in Appendix C.2. Based on
Figure 4 and Table 1, we can make the following
observations:

First, all methods accurately predicted model
performance, demonstrating that collaborative fil-
tering mechanisms can predict model outcomes
based on collaborative data across different mod-
els and tasks. This prediction is achieved without
explicit scaling factors or fitting a log-power curve.
Second, from MF to NCF, the transformation in
interaction mechanisms further enhances accuracy,
suggesting that model improvements can further
augment the efficacy of our methodology. Addi-
tionally, we further increased accuracy by incorpo-
rating factors, such as model scaling variables and
task descriptions, into the NCF framework along-
side ID information. This confirms that incorpo-
rating explicit factors can enhance model and task
similarities. Finally, among all metrics, we particu-
larly noted that the accuracy of the predictive rank-
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Figure 4: Comparative visualization of predictive accuracy across various scoring methods. From left to right:
MF, NCF, NCF with Factor Enhancement, and NCF based solely on Factors. Each plot displays the regression
between predicted and actual scores, where the solid line represents the regression fit and the shaded area denotes
the confidence interval (CI). A line closer to the diagonal indicates perfect prediction and higher prediction accuracy.
These plots demonstrate the enhanced performance in score prediction achieved by integrating factors into the NCF
method.

Prediction Method Score-Loss Rank-Acc
MSE Loss ↓ Mean L1 Loss ↓ Mean Prec.(%) ↑ MAE@2(%) ↑

Matrix Factorization 2.16e−2(1.19e−4) 9.47e−2(2.89e−4) 44.33(0.69) 83.16(0.73)

Neural Collaborative Filtering 1.58e−2(4.22e−5) 8.94e−2(3.10e−4) 41.76(1.22) 84.98(0.42)

+ Factor Enhanced 1.25e−2(3.35e−6) 7.88e−2(6.31e−5) 45.45(0.33) 84.54(0.27)

Only Factor 1.75e−2(2.07e−5) 8.57e−2(1.48e−4) 33.47(0.12) 84.08(0.37)

Table 1: Comparison of prediction methods for LLM performance. Bold indicates the best-performed.

ing was acceptable. In other words, researchers
can use our method to accurately predict the rank-
ing range of their developed models on test tasks,
thereby enhancing model performance on specific
tasks.

Predictability with Only Description Factors.
We validate whether high predictive accuracy can
still be achieved by only inputting the models’ and
tasks’ design factors. As demonstrated in Table 1,
the accuracy of predicted rankings (derived from
predicted scores) remains high, affirming that our
method supports predictions based solely on fac-
tors. However, the accuracy is lower than other
models, suggesting that finer-grained latent similar-
ities remain encoded as potential factors within the
identity information across different models and
tasks.

5.2 Evaluation from Model Perspective
To mimic the utilization of CPP in the real world,
this section takes a model perspective to investigate
the predictive accuracy of CPP upon each model.
Specifically, we propose two scenarios: (i) pre-
diction with no prior testing information and (ii)
prediction with prior testing information on 2 tasks.
These two scenarios correspond to real-world cases
when the model has not been developed or is tested

MSE_Loss@CPP: 0.0280

MSE_Loss@SL: 0.0208

(a) With no prior testing information (CPP-0)
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Figure 5: Comparison of the predictive performance
of collaborative performance prediction (CPP) versus
traditional scaling laws (SL) for LLMs: (a) CPP-0, with
no prior testing information, and (b) CPP-2, with prior
testing on two tasks.
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on a few tasks and expects an accurate prediction
of its ability on other tasks. In both scenarios, we
focus on larger LLMs, e.g., LLama2-70b, as they
are more computationally expensive to develop and
test, requiring an accurate LLM prediction.

We report the results of CPP and SL on both sce-
narios in Figure 5 and can draw the following con-
clusions. Under the CPP-0 scenario, CPP demon-
strated greater adaptability across different tasks
compared to SL, with points closely aligned along
the y = x line (“perfect prediction”) in Figure 5
(a). This suggests that CPP has effectively captured
task-specific characteristics, such as value ranges,
whereas SL, despite achieving a lower MSE-LOSS,
tends to concentrate its predictions around 0.5. Un-
der the CPP-2 scenario, the distribution of points
of CPP is noticeably closer to y = x, as shown in
Figure 5 (b), and its MSE-LOSS is also lower than
that of SL. This indicates that leveraging perfor-
mance data from other tasks considerably enhances
the model’s cross-task prediction capabilities, un-
derscoring a degree of consistency across tasks for
the same model. This approach demonstrates that
predictions for scaling LLMs on downstream tasks
can be dynamically improved by evaluating perfor-
mance on less computationally intensive tasks and
using those outcomes to predict scores on subse-
quent tasks more accurately.

5.3 Factor Importance Analysis via
SHAPLEY-VALUE

In this section, we aim to analyze each design fac-
tor’s importance over CPP. The Shapley value,
a concept derived from cooperative game the-
ory (Shapley, 1952), offers a systematic approach
to measuring individual factors’ contribution in pre-
dictive models (Lundberg and Lee, 2017; Covert
et al., 2021). Appendix C.3 shows a detailed for-
mulation of the Shapley value. Visualization for
Shapley values of each design factor is shown in
Figure 6.

Based on Figure 6 (a), we can make the follow-
ing observations regarding model factors. First,
we have discovered that in addition to tradition-
ally important factors such as training data size
and parameter size mentioned in scaling law (Ka-
plan et al., 2020), other design factors significantly
influence predictive outcomes. These include the
model family, context window size, and batch size.
Second, the importance of the model family cannot
be overlooked, as it may relate to differences in

Figure 6: Mean Shapley Value on Each Factor.

data quality across models, including proprietary
data or specific architectural details. For instance,
using a particular model family might mean adopt-
ing architectures or optimization techniques better
suited to specific tasks. Moreover, the size of the
context window also significantly affects model
performance. A larger context window allows
the model to better understand the context in long
texts, which is particularly crucial for long-context
LLMs (Xiong et al., 2023). Experience (Google,
2024) has shown that such models perform better
across various tasks. Batch size, as another crucial
factor, affects the stability and speed of model train-
ing. An appropriate batch size ensures a balance
between the accuracy of gradient estimation and
computational efficiency during training.

As for the importance of task factors, results in
Figure 6 (b) show that the target ability among
all factors is more important. This also implies
that similarities between the domains of different
tasks can help predict outcomes. This conclusion is
consistent with previous observations (Ruan et al.,
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2024; Perlitz et al., 2024; Polo et al., 2024)
In summary, these findings indicate that LLMs

performance prediction should not rely solely on
traditional design factors limited by scaling law but
also on other key factors that might impact overall
model performance.

6 Conclusion and Discussion

Advancing beyond traditional scaling laws on
downstream tasks, we propose a collaborative per-
formance prediction framework for large language
models. It offers significant advantages, including
easy deployment, low training costs, and superior
predictive accuracy. Uniquely, it enables incorpo-
rating additional design factors and supports an
in-depth analysis of their impact, including factor
importance and correlations in models and tasks.
For prediction, we collect collaborative data con-
taining many historical performances and factors.

Our method’s predictive accuracy is expected to
improve as it benefits from an expanding pool of
collaborative data. Moreover, this approach high-
lights the potential to identify neglected but vital
factors beyond traditional scaling laws, such as task
design factors, thereby enriching our comprehen-
sion of LLM performance predictability on down-
stream tasks.

Limitations

“Single-source-of-truth”. When collecting the
collaborative data, we hypothesize that each
model’s performance on each task is identical.
However, in the real world, the detailed testing set-
ting, for instance, the testing prompt writing, can
influence LLM’s performance variance. Although
we observed this, we only saved one score from
different sources. How to incorporate the setting
of testing as an additional dimension remains to be
solved in future works.

Susceptibility to data quality. The prediction
accuracy of CPP highly depends on the quality
of collaborative data. The current version pas-
sively collects collaborative data from online re-
sources. Should information from either of these
data sources be incorrect, the prediction capability
of CPP would decrease correspondingly. To over-
come such a limitation, jointly considering passive
information collected from data sources and active
information, such as performances of models tested
on some tasks by the user, might be a solution.

Utilizing techniques such as efficient benchmark-
ing (Perlitz et al., 2024; Polo et al., 2024) could
alleviate the cost of obtaining active information.
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David Ilić. 2023. Unveiling the general intelligence
factor in language models: A psychometric approach.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh,
Dimitris Paparas, Sergei Vassilvitskii, and Sanmi
Koyejo. 2024. Scaling laws for downstream task
performance of large language models. In arXiv.

Neil Jethani, Mukund Sudarshan, Ian Covert, Su-In Lee,
and Rajesh Ranganath. 2022. Fastshap: Real-time
shapley value estimation. In arXiv.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. In arXiv.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009.
Matrix factorization techniques for recommender sys-
tems. Computer, 42(8):30–37.

Yehuda Koren, Steffen Rendle, and Robert Bell. 2022.
Advances in Collaborative Filtering, pages 91–142.
Springer.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Lad-
hak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue
Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng,
Mert Yuksekgonul, Mirac Suzgun, Nathan Kim,
Neel Guha, Niladri Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2023. Holistic eval-
uation of language models. In arXiv.

Nelson F. Liu, Tony Lee, Robin Jia, and Percy Liang.
2023. Do question answering modeling improve-
ments hold across benchmarks? In arXiv.

Scott M. Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. In Interna-
tional Conference on Neural Information Processing
Systems, pages 4768–4777.

Niklas Muennighoff, Alexander M Rush, Boaz Barak,
Teven Le Scao, Nouamane Tazi, Aleksandra Pik-
tus, Sampo Pyysalo, Thomas Wolf, and Colin Raffel.
2023. Scaling data-constrained language models. In
Conference on Neural Information Processing Sys-
tems.

Frank Nielsen. 2016. Hierarchical Clustering, pages
195–211. Springer.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, pages 27730–27744.

David Owen. 2024. How predictable is language model
benchmark performance? In arXiv.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv,
Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. 2024. Effi-
cient benchmarking of language models. In arXiv.

Felipe Maia Polo, Lucas Weber, Leshem Choshen,
Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
2024. tinyBenchmarks: evaluating llms with fewer
examples. In arXiv.

Yangjun Ruan, Chris J. Maddison, and Tatsunori
Hashimoto. 2024. Observational scaling laws and
the predictability of language model performance. In
arXiv.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage? In Conference on Neural Information
Processing Systems.

Lloyd S. Shapley. 1952. A Value for N-Person Games.
RAND Corporation.

Vaishnavi Shrivastava, Percy Liang, and Ananya Kumar.
2023. Llamas know what gpts don’t show: Surrogate
models for confidence estimation. In arXiv.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2022. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In arXiv.

François Torregrossa, Vincent Claveau, Nihel Kooli,
Guillaume Gravier, and Robin Allesiardo. 2020. On
the correlation of word embedding evaluation metrics.
In Language Resources and Evaluation Conference,
pages 4789–4797.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. In arXiv.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. In arXiv.

2586

http://arxiv.org/abs/2310.11616
http://arxiv.org/abs/2310.11616
http://arxiv.org/abs/2402.04177
http://arxiv.org/abs/2402.04177
http://arxiv.org/abs/2107.07436
http://arxiv.org/abs/2107.07436
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2102.01065
http://arxiv.org/abs/2102.01065
http://arxiv.org/abs/2401.04757
http://arxiv.org/abs/2401.04757
http://arxiv.org/abs/2308.11696
http://arxiv.org/abs/2308.11696
http://arxiv.org/abs/2402.14992
http://arxiv.org/abs/2402.14992
http://arxiv.org/abs/2405.10938
http://arxiv.org/abs/2405.10938
https://doi.org/10.7249/P0295
http://arxiv.org/abs/2311.08877
http://arxiv.org/abs/2311.08877
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale,
Sergey Edunov, Mike Lewis, Sinong Wang, and Hao
Ma. 2023. Effective long-context scaling of founda-
tion models. In arXiv.

Chengrun Yang, Yuji Akimoto, Dae Won Kim, and
Madeleine Udell. 2019. Oboe: Collaborative fil-
tering for automl model selection. In Proceedings
of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, page
1173–1183.

Zhang Zhuocheng, Shuhao Gu, Min Zhang, and Yang
Feng. 2023. Scaling law for document neural ma-
chine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
8290–8303.

A Pilot Demonstrations using Neural
Collaborative Filtering

In this section, we supplemented the error distribu-
tion in Figure 7, which is generated using neural
collaborative filtering on the HELM lite leader-
board. Compared to Figure 2, it is evident that
neural collaborative filtering consistently outper-
forms MF across each setting.

B Collaborative Data

B.1 Data Description
List of Models and Tasks. The table 2 contains
all the models and tasks we have collected.

Description Factors for Models and Tasks We
have collected the characteristics of models and
tasks in relevant aspects through model cards, tech-
nical reports, and academic papers. We have orga-
nized and introduced these characteristics, as well
as the corresponding embedding methods, as listed
in Table 3.

Note that during data collection, not all factors
are available. For these missing factors, such as
CO2 and GPU hours, we replace them as zero when
entering data.

B.2 Data Analysis
We conducted a statistical analysis of the data we
collected, specifically examining the number of
models tested for each task, the number of tasks
tested for each model, and the number of models
described by each factor. Since each task is con-
sistently associated with four factors, we did not
create a distribution chart for this aspect.

C Experimental Setup

C.1 Evaluation Metrics
Apart from visualization, we also evaluate the
method based on two types of metrics: 1) SCORE-
LOSS Metric: we calculate MSE LOSS and L1
LOSS between predicted scores and true scores
(normalized) on downstream tasks; 2) RANK-
ACCURACY Metric: researchers are sometimes not
concerned with detailed scores but rather the rank-
ings the model is in, so we calculate the accuracy
of rank derived from the predicted scores, ACCU-
RACY and MAE@2. ACCURACY refers to the
percentage of instances where the predicted rank
equals the true rank, and MAE@2 refers to the per-
centage of instances where the absolute difference
between the predicted rank and the true rank is in
2, the formulation as below:

Accuracy =

(∑N
i=1 1(ri = r̂i)

N

)
× 100%, (8)

MAE@2 =

(∑N
i=1 1(|ri − r̂i| ≤ 2)

N

)
× 100%,

(9)
where N is the total number of validation instances,
ri is the true rank, r̂i is the predicted rank derived
by the predicted score; 1(·) is the indicator function
that evaluates to 1 if the argument is true and 0
otherwise; | · | denotes the absolute value.

C.2 Detailed Setting of Validation Prediction
Accuracy Experiments

In this section, we detail the setup of each experi-
ment in 5.

Different Prediction Methods. Due to the 44%
sparsity of the collected collaboration matrix, we
used 5% of the known data as the validation set,
with the remaining data serving as the observed
training set. We trained each model five times
through random splitting, deriving an average per-
formance and variance. We configured our models
with latent factors = 10, learning rate = 0.01, and
iteration = 250, 000. The Figure 4 is the results
when random_seed = 1.

Predicting from Small to Large LMs. The fo-
cus here is on deriving the scaling law applicable to
specific task metrics. Undeniably, traditional meth-
ods do not provide a directly usable scaling law
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Accuracy: 0.02005
MAE@2: 0.10401

MSE Loss: 0.0316
L1 Loss: 0.13353

MSE Loss: 0.01135
L1 Loss: 0.06840

Accuracy: 0.07261
MAE@2: 0.29668

Training/Validation=10%/90%

Training/Validation=50%/50%

MSE Loss: 0.0210
L1 Loss: 0.1073

Accuracy: 0.03132
MAE@2: 0.1152

MSE Loss: 0.0070
L1 Loss: 0.0552

Accuracy: 0.09029
MAE@2: 0.3769

Latent Factor=7 Latent Factor=10

Figure 7: Error Distribution of Predictions (Normalized Score and Rank Derived by Score) Based on the HELM Lite
Leaderboard Using Neural Collaborative Filtering: We evaluate the effectiveness of Matrix Factorization (MF) using two
latent factors, 7 and 10, across 2 training/validation split percentages. Accuracy is defined as the percentage of instances where
the predicted rank equals the actual rank. MAE@2 is defined as the percentage of instances where the absolute difference
between the predicted rank and the actual rank is 2.

Models Tasks

’LLama-2-7B’, ’LLama-2-13B’, ’LLama-2-70B’, ’Llama 3 8B’, ’Llama 3 70B’,
’GLM-130B’, ’LLaMA-7B’, ’LLaMA-13B’, ’LLaMA-33B’, ’LLaMA-65B’,

’GPT-3-175B’, ’PaLM-540B’, ’Claude-V3 Haiku’, ’Claude-V3 Sonnet’,
’Claude-V3 Opus’, ’GPT-4’, ’gpt-3.5’, ’BLOOM-176B’, ’Luminous Base-13B’,

’Luminous Extended-30B’, ’Luminous Supreme-70B’, ’OPT-175B’,
’GPT-NeoX-20B’, ’GPT-J-6B’, ’sheared llama-2.7B’, ’sheared llama-1.3B’,

’INCITE-Base-3B’, ’INCITE-Base-7B’, ’TinyLlama-1.1B’, ’OpenLLaMA-3B-v1’,
’OpenLLaMA-3B-v2’, ’Pythia-1.4B’, ’Pythia-2.8B’, ’Falcon-7B’,

’Falcon-40B’, ’Falcon-180B’, ’Mistral 7B’, ’MPT-30B’, ’MPT-7B’,
’chinchilla’, ’Pythia-70M’, ’Pythia-160M’, ’Pythia-410M’, ’Pythia-1B’,

’Pythia-6.9B’, ’Pythia-12B’, ’Gopher - 280B’, ’Gopher - 44M’,
’Gopher - 117M’, ’Gopher - 417M’, ’Gropher - 1.4B’, ’Gopher - 7.1B’,

’MT-NLG 530B’, ’GLaM’, ’Phi-1.5-1.3B’, ’Phi-2-2.7B’, ’Yi-6b’, ’Yi-9b’,
’Baichuan 1-7B’, ’Baichuan 1-13B-Base’, ’Baichuan 2-7B-Base’,

’Baichuan 2-13B-Base’, ’InternLM2-7B’, ’InternLM2-20B’, ’Skywork-13B’,
’BlueLM-7B’, ’Qwen-7B’, ’Qwen-14B’, ’TigerBot-13b’, ’TigerBot-70b’,

’Gemma-2b’, ’Gemma-7b’

’BoolQ(0-shot)’, ’BIG-bench hard(3-shot)’,’WinoGrande(0-shot)’,’WinoGrande(1-shot)’,
’Winogrande(5-shot)’,’PIQA(0-shot)’,’SIQA(0-shot)’,’HellaSwag(0-shot)’,’HellaSwag(10-shot)’,

’ARC-e’,’ARC-c(0-shot)’,’ARC-c(25-shot)’,’OBQA(zero-shot)’,’MMLU(5-shot)’,
’HumanEval(pass@1)’,’MBPP(3-shot)’,’GSM8K(4-shot)’,’MATH(4-shot)’,

’TriviaQA(5-shot)’,’NaturalQuestions(0-shot)’,’NaturalQuestions(1-shot)’,’NaturalQuestions(5-shot)’,
’NaturalQuestions(64-shot)’,’LAMBADA(0-shot)’,’AGIEval English (3-5 shot)’,’RACE-m’,

’RACE-h’,’LogiQA’,’WSC’

Table 2: List of Models and Tasks

across all downstream tasks for comparative analy-
sis. However, we observed in the literature (Ruan
et al., 2024) that a sigmoidal curve with a single
coefficient and a single bias value represents the
scaling law for downstream tasks. Moreover, this
curve’s coefficients and bias values have a general
range across all tasks, w = [0.5, 2], b = [−10,−3].
Consequently, we set this range of coefficients and
bias for this curve. Then we used the normalized
scores of smaller models within the same model
family and their corresponding parameter sizes
to fit the scaling law curve for each task. This
approach generally follows a “pretrain-finetune”
methodology. Additionally, CPP-2 refers to ran-
domly selecting two scores from the observed
performances of the model to be included in the
training data. In this experiment, we use factor-
enhanced NCF (setting is same as above).

C.3 Detailed Setting of Analysis Experiments

Shapley-Value for Factor Importance Analysis.
Given a predictive model f and a set of factors
N , the Shapley value of a factor i is computed as
follows:

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

· [v(S ∪ {i})− v(S)] ,

(10)

where:
• N is the total set of factors.
• S is a subset of factors excluding factor i.
• |S| is the number of factors in subset S.
• v(S) is the prediction model’s output when only

the factors in subset S are used.
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Model
Factors Description Embedding

Model Family Type of model family, e.g., LLAMA 2, PYTHIA Categorical Embedding
Pretraining Dataset Size (B) Data size in millions of tokens Numerical Embedding

Parameter Size (M) Number of model parameters in millions Numerical Embedding
GPUh GPU hours consumed Numerical Embedding
FLOPs Floating-point operations count Numerical Embedding

Context Window Max context size in tokens, e.g., 1024, 2048 Categorical Embedding
Batch Size (M) Size of batches in millions,e.g., 1M, 2M Categorical Embedding

Layers Number of layers in the model Numerical Embedding
Number Heads Number of attention heads Numerical Embedding
Key/Value Size Size of key/value in attention mechanism Numerical Embedding

Bottleneck Activation Size Size of activation in bottleneck layers Numerical Embedding
Carbon Emission (tCO2Eq) Carbon footprint of training Numerical Embedding

Task
Ability Type of targeted cognitive ability, e.g., reasoning Categorical Embedding

TaskFamily Related task family ,e.g., ARC Categorical Embedding
Output Format Format of task output, e.g., binary Categorical Embedding

Few-Shot Setting Description of few-shot learning setting,e.g., zero-shot, 32-shot Categorical Embedding

Table 3: Design Factors of Models and Tasks

Scaled LLMs Prior Tasks Score-Loss Rank-Acc
MSE Loss Mean L1 Loss Mean Prec.(%) MAE@2(%)

LLaMA 2-70B
CF-0 1.34e−2 8.83e−2 16.7 50.0
CF-2 1.79e−2(1.3e−3) 1.79e−2(5.6e−4) 9.1(7.5e−3) 54.5(5.7e−4)

LLaMA 3-70B
CF-0 5.63e−2 19.27e−2 14.3 71.4
CF-2 1.7e−2(1.41e−4) 10.7e−2 (1.68e−3) 20.0(4.0e−2) 90.0(9.0e−2)

LLaMA-65B
CF-0 1.73e−2 9.78e−2 24.0 80.0
CF-2 1.88e−2(1.42e−5) 10.02e−2(4.1e−4) 17.3(1.9e−3) 71.7(4.7e−4)

Luminous Supreme-70B
CF-0 6.06e−2 20.14e−2 27.27 63.63
CF-2 1.45e−2(1.1e−5) 10.79e−2(6.4e−7) 16.7(3.1e−3) 83.3(3.5e−3)

Pythia-12B
CF-0 2.19e−2 11.2e−2 21.42 71.42
CF-2 1.57e−2(2.1e−6) 10.88e−2(4.6e−8) 33.3(2.7e−2) 66.7(6.9e−3)

Yi-9b
CF-0 3.20e−2 14.66e−2 44.4 100.0
CF-2 0.9e−2(3.1e−4) 8.1e−2(5.1e−6) 71.4(9.1e−2) 100(0)

Baichuan 2-13B-Base
CF-0 2.70e−2 12.84e−2 57.14 100.0
CF-2 1.0e−2(4.9e−4) 7.5e−2(4.7e−4) 40.0(6.2e−4) 100.0(0)

Qwen-14B
CF-0 1.05e−2 7.96e−2 33.3 100.0
CF-2 3.1e−2(1.8e−3) 11.1e−2(6.6e−3) 25.0(7.1e−3) 91.7(6.9e−3)

TigerBot-70B
CF-0 8.02e−2 19.26e−2 12.5 75.0
CF-2 4.4e−2(2.9e−6) 15.3e−2(6.6e−5) 25.0(6.9e−3) 83.3(6.1e−3)

Gamma-7B
CF-0 4.94e−2 17.62e−2 15.79 47.36
CF-2 10.2e−2(3.2e−5) 25.9e−2(1.6e−4) 26.4(8.6e−4) 58.8(1.4e−2)

Falcon-180B
CF-0 5.00e−2 17.91e−2 14.58 57.14
CF-2 3.2e−2(2.1e−5) 10.42e−2(7.8e−5) 23.94(8.5e−2) 63.6(2.1e−5)

Gopher-280B
CF-0 14.48e−2 30.76e−2 15.38 61.53
CF-2 10.87e−2(3.6e−5) 23.59(4.2e−4) 27.33(1.8e−3) 66.49(6.8e−3)

Table 4: The accuracy of Predicting Scaled Large LMs in CPP-0, CPP-2.

• v(S∪{i}) is the model’s output when the factors
in subset S plus factor i are used.

• The factorial terms |S|! and (|N |−|S|−1)! weigh
the contribution of each subset according to the
number of factors included or excluded, ensuring
a fair allocation across all possible combinations.

The Shapley value, ϕi(v), quantifies the average
marginal contribution of a factor i across all pos-
sible combinations of factors. The formula takes
every subset S of the total factor set N that does not
include i, calculates the difference in the model’s
prediction output with and without factor i and
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Figure 8: The detailed distribution of collaborative data.

averages this difference over all subsets. The av-
eraging is weighted by the factor |S|!(|N |−|S|−1)!

|N |! ,
which corresponds to the number of permutations
in which subset S appears as a prefix or suffix of
the total set when factor i is added.

This approach ensures that each factor’s con-
tribution is assessed fairly and comprehensively,
accounting for interactions with other factors and
their unique impact when combined in different
ways. Shapley values are particularly useful for
factor importance analysis because they provide
a solid theoretical foundation and are less biased
than simpler importance metrics.

The Shapley value algorithm for analyzing fea-
ture (factor) importance is computationally inten-
sive, which has led to the development of vari-
ous approximation methods (Jethani et al., 2022).

Fortunately, our predictive model involves a man-
ageable number of factors, allowing us to use the
most accurate direct computation method of Shap-
ley values. Specifically, we apply an enumera-
tion approach to compute Shapley values on a pre-
trained factor-enhanced neural collaborative filter-
ing model during the inference stage. This involves
systematically masking factors to assess their im-
pact.

For the implementation, we mask factors differ-
ently based on their data type as outlined in Table 3:
• numerical factors: we set the input factor values

to zero;
• categorical factors: we set the corresponding

embedding layer parameters to zero.
We then compute the difference in validation

loss with and without each factor present, providing
us with each factor’s marginal contribution. This
detailed approach allows us to quantify precisely
how much each factor contributes to the model’s
predictive performance, providing valuable insights
into factor importance and model behavior.

D Ablation Study

D.1 Ablation on Sparsity Threshold

To ascertain whether matrices composed of col-
laborative performance data can accurately predict
the performance of LLMs, it is essential to con-
sider the critical variable: the matrix sparsity. We
assessed the impact of sparsity on prediction accu-
racy by manipulating the sparsity of the training
matrix via masking. This method allowed us to
obtain a reliable measure of average accuracy, as
illustrated in Figure. 9. It is noteworthy that our
method of controlling sparsity only reduces the
number of training samples. We ensured fairness
in each comparative experiment by maintaining a
consistent validation set throughout. During the
experiment, we maintained the same settings for
the learning rate and number of iterations as in
the main experiment. To ensure the robustness of
our experimental results, each reported outcome
represents the average score after conducting five
random splits.

The data we collected inherently has a sparsity
of 44%. Hence, we only have the remaining 46%
of collaborative data. As sparsity levels range from
49.60% to 88.80%(masking 10% to 80% of the
collaborative data), the graph shows a pronounced
increase in L1 Loss and a decrease in Accuracy,
indicating deteriorating model performance with
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Figure 9: Relationship between matrix sparsity and three key
performance metrics: L1 Loss, Accuracy, and MAE@2.

higher sparsity, especially when sparsity exceeds
60%, where there is a significant drop in accuracy.
Conversely, MAE@2 remains relatively stable be-
fore experiencing fluctuations, suggesting varying
impacts on this metric. Interestingly, accuracy even
improves when sparsity reaches 50%. We think the
possible reason for this might be the presence of
an optimal level of information reduction that re-
moves redundant or noisy data without significantly
compromising signal integrity. This phenomenon
suggests that a moderate level of sparsity could po-
tentially enhance model performance by focusing
on more relevant factors.

D.2 Ablation on Predicting Performance on
Complex Reasoning and CoT Tasks

From the model perspective, it is crucial for validat-
ing the feasibility of predictive methodologies to as-
sess the predictive accuracy on special tasks poten-
tially exhibiting “emergent” phenomena (Suzgun
et al., 2022; Wei et al., 2022), including complex
reasoning and Chain of Thought (CoT) tasks (Wei
et al., 2023). “Emergent’ phenomena refers to the
challenges associated with predicting performance
from smaller models when the scale of a model ex-
pands significantly, resulting in discontinuous leaps
in model capabilities. The existence of this phe-
nomenon is subject to ongoing debate. Nonetheless,
recent efforts (Ganguli et al., 2022b; Hu et al., 2024;
Owen, 2024; Ruan et al., 2024; Schaeffer et al.,
2023) continue to focus on how scaling laws can
be modified to mitigate the “gap” between smaller
and larger models. This may involve modifying
metrics or incorporating additional data points to
linearize the growth curve or alternatively opting
for a sigmoidal curve.

Theoretically, these challenges are not too dif-
ficult for our prediction method, as the underly-
ing mechanism of “emergent” abilities reflects a
type of similarity. This commonality manifests
when models exceed a certain scale. By analyzing
cross-model similarities—how other larger mod-
els demonstrate emergent capabilities compared to

their smaller counterparts—we can enhance our
predictive accuracy for the current model. Overall,
these tasks are pivotal for comprehensive valida-
tion processes, e.g., GSM8K (Cobbe et al., 2021),
BBH (Suzgun et al., 2022), HUMANEVAL (Chen
et al., 2021) and MBPP (Austin et al., 2021).

In detail, if we want to evaluate the performance
of predicting a model on these special tasks, the
training data is the performance information from
other model families, the smaller model of the same
family, and the randomly selected two non-special
tasks prior to the performance of this model. In
our experiment, we tested the 4 models on these
tasks, and then we plotted the test results on Fig-
ure 10. As illustrated in Figure 10, our predictive
scores are more adaptive to each task, where the
points are close along the “perfect prediction” line,
which means our prediction method captures the
similarity in the specific task across models. Our
proposed method’s MSE Loss is comparable to the
scaling law, which shows the feasibility of CPP (in
CPP-2).
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Figure 10: Comparison of the predictive performance of
collaborative performance prediction (CPP) versus traditional
scaling laws (SL) for Large Language Models (LLMs) in
Complex Reasoning and CoT Tasks.

Generalization to Completely New Tasks. As
presented in Tab. 5, CPP-T0 and CPP-T2 have
a relative small error, demonstrating our method
CPP shows reliable generalization. When CPP-
T2 has the prior performance of two models in this
task, it has a significant drop compared to CPP-
T0. These two experimental results inspire us that
prediction and evaluation should be interactive, i.e.,
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we should evaluate two small models or tasks to
get true but low-cost results, and then the accuracy
of prediction can be improved after obtaining the
results.

D.3 Correlation between Models

Experiment. We conducted a “leave-one-out” ex-
periment to test the impact of Model A on the pre-
dictive performance of Model B. This involved
masking Model A and using the performance of
other models to train predictive methods, which
were then validated on Model B to observe changes
in loss. This approach generated a matrix with the
masked model names on the X-axis and the vali-
dation model names on the Y-axis, with the values
representing the change in loss.

The “Leave-one-out” experiment is a robust
method commonly used in statistical analysis. To
assess the impact of different models on the pre-
dictive performance of a specific model, we imple-
mented a strategy where we systematically masked
each selected model in the training set. The pro-
cedure involved masking each model individually
and then training and testing the loss on a valida-
tion model. This process was repeated across all
models, culminating in creating a matrix where
axis=0 represents the masked model ID, and axis=1
represents the validation model ID. The values in
the matrix correspond to the loss observed. This
experiment was conducted under three different
random seeds to ensure the stability and reliability
of the results.

Subsequently, each model was used as a vali-
dation set, with the remaining data serving as the
training set to calculate the loss for each model.
This also resulted in a matrix where axis=1 indi-
cates the validation model ID, and the columns[:,
valid model id] represent the corresponding loss
for that validation model. We derived a delta loss
matrix by calculating the difference between these
two matrices.

Given that each validation model has its own
range of loss variations, we normalized the delta
loss matrix. We then performed a row-based corre-
lation analysis on this normalized matrix to assess
each model’s impact on predictive performance.
The higher the correlation value between the two
models, their effects on predictions are more simi-
lar.

Analysis. Based on this correlation matrix, we
further conducted a hierarchical clustering analy-

sis (Nielsen, 2016). The results indicate that a set
of models exists that are similar in their impact
on the predictive performance of the model. Other
models are far away from them. (Details in Table 6)

This analysis not only helps us understand each
model’s specific contributions to predictive perfor-
mance but also reveals the similarities and differ-
ences in functionality among the models, providing
a crucial basis for model optimization and selec-
tion.

We performed a row-wise correlation analysis 13
on this matrix and discovered that models from
the same family tend to have similar impacts on
predictions, as do models of the same size. Af-
ter conducting a hierarchical distance analysis, we
concluded that a group of models exists that, when
more performance data is available, can signifi-
cantly enhance the accuracy of the predictive mod-
els. There are also what might be termed “noise
model performances” in our analysis D.3.
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Figure 11: Instance Distribution of the model factor Shapley
value. X-axis represents the Shapley value, which indicates
the degree of prediction loss change; Y -axis indicates the
factor names in order of importance from top to bottom. Each
point represents an instance.

D.4 Correlation between Tasks
We also conducted “leave-one-out” experiments
on these tasks and created a heatmap figure. 14 of

2592



Table 5: The predictive performance (MSE) of CPP in the predictions of the completely new task. Here, CPP-T0
refers to the predictive performance of CPP in the predictions of the completely new task, and CPP-T2 refers to the
predictive performance of CPP in the predictions of the task when we only know two models’ performance on this
task, indicating CPP has no prior knowledge and few cases.

Models BoolQ(0-shot) BIG-bench hard(3-shot) HellaSwag(10-shot) HumanEval(pass@1)

CPP-T0 0.02201 0.07103 0.03414 0.1244
CPP-T2 0.0182 0.00725 0.02506 0.0763
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Figure 12: Instance Distribution of the task factor Shapley
value. X-axis represents the Shapley value, which indicates
the degree of prediction loss change; Y -axis indicates the
factor names in order of importance from top to bottom. Each
point represents an instance.

the correlations. Tasks with similar targeted ability
testing capabilities demonstrated similar influences,
such as GSM8K, MATH (Hendrycks et al., 2021),
ARC (Chollet, 2019), and HUMANEVAL, which
all require complex reasoning abilities.

E Others

E.1 Visualization
The figure 15 is the visualization for the predic-
tion performance of scaled language models on
downstream tasks.
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Figure 13: The correlation heatmap of impacts of different models on prediction performance.
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Figure 14: The correlation heatmap of impacts of different tasks on prediction performance.

Llama 2-70B Llama-65B

Luminous Supreme-70B

Pythia-12B

Gemma-7B TigerBot-70B Qwen-14B

Falcon-180B Gopher-280B

Llama 3-70B

L1 Loss: 0.1287 L1 Loss: 0.0918 L1 Loss: 0.0842L1 Loss: 0.2131 L1 Loss: 0.1023

L1 Loss: 0.1199L1 Loss: 0.1944L1 Loss: 0.1782L1 Loss: 0.1819 L1 Loss: 0.1002

Figure 15: Prediction performance of various scaled Language Models on downstream tasks. This figure illustrates regression
plots comparing the predicted versus actual performance normalized scores for a series of large language models, including
Llama-2-70B, Llama-65B, Falcon-180B, Gopher-280B, Pythia-12B, Gemma-7B, TigerBot-70B, Qwen-14B, Luminous Supreme-
70B, and Llama-3-70B. Each subplot displays a regression line with a shaded 95% confidence interval and includes the L1 loss
for each model’s predictions, highlighting the accuracy and variability of predictive capabilities across different models.
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Distance Cluster Models

1

LLama-2-7B, LLama-2-13B, LLama-2-70B, Llama 3 8B,
LLaMA-7B, LLaMA-65B, Claude-V3 Haiku, Claude-V3 Sonnet,

Claude-V3 Opus, GPT-4, BLOOM-176B, Luminous Extended-30B,
Luminous Supreme-70B, OPT-175B, GPT-NeoX-20B, sheared llama-2.7B,

sheared llama-1.3B, INCITE-Base-3B, INCITE-Base-7B, OpenLLaMA-3B-v1, Pythia-1.4B,
Pythia-2.8B, Pythia-70M, Pythia-410M, Pythia-6.9B,

Gopher - 280B, Gopher - 44M, Gopher - 117M, MT-NLG 530B, GLaM,
Baichuan 1-7B, Baichuan 1-13B-Base, Baichuan 2-7B-Base, Baichuan 2-13B-Base,

Skywork-13B, Qwen-7B, Qwen-14B, TigerBot-13b,
Gemma-2b, Gemma-7b

2 gpt-3.5, Falcon-7B, Pythia-1B, Gropher - 1.4B, Yi-9b, TigerBot-70b
3 LLaMA-33B
4 Yi-6b
5 BlueLM-7B
6 Falcon-40B
7 MPT-7B
8 Falcon-180B
9 PaLM-540B
10 Pythia-160M
11 GPT-J-6B
12 GPT-3-175B, Luminous Base-13B
13 Gopher - 417M
14 Llama 3 70B
15 LLaMA-13B
16 TinyLlama-1.1B
17 Phi-1.5-1.3B
18 Gopher - 7.1B
19 InternLM2-20B
20 GLM-130B
21 MPT-30B
22 chinchilla
23 Mistral 7B
24 InternLM2-7B
25 OpenLLaMA-3B-v2
26 Phi-2-2.7B
27 Pythia-12B

Table 6: Distance Cluster of Models
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