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Abstract

In recent years, there has been a significant
rise in the phenomenon of hate against women
on social media platforms, particularly through
the use of misogynous memes. These memes
often target women with subtle and obscure
cues, making their detection a challenging task
for automated systems. Recently, Large Lan-
guage Models (LLMs) have shown promising
results in reasoning using Chain-of-Thought
(CoT) prompting to generate the intermediate
reasoning chains as the rationale to facilitate
multimodal tasks, but often neglect cultural di-
versity and key aspects like emotion and contex-
tual knowledge hidden in the visual modalities.
To address this gap, we introduce a Multimodal
Multi-hop CoT (M3Hop-CoT) framework for
Misogynous meme identification, combining
a CLIP-based classifier and a multimodal CoT
module with entity-object-relationship integra-
tion. M3Hop-CoT employs a three-step mul-
timodal prompting principle to induce emo-
tions, target awareness, and contextual knowl-
edge for meme analysis. Our empirical evalua-
tion, including both qualitative and quantitative
analysis, validates the efficacy of the M3Hop-
CoT framework on the SemEval-2022 Task 5
(MAMI task) dataset, highlighting its strong
performance in the macro-F1 score. Further-
more, we evaluate the model’s generalizability
by evaluating it on various benchmark meme
datasets, offering a thorough insight into the
effectiveness of our approach across different
datasets 1.

1 Introduction

In recent years, the proliferation of memes on so-
cial media platforms like Facebook, Twitter, and
Instagram has gained significant attention due to
their widespread influence and potential to shape
public discourse. While many memes are created
for entertainment, some serve political or activist

1Codes are available at this link: https://github.com/
Gitanjali1801/LLM_CoT

Figure 1: Comparison between (a) fine-tuning visual
language model approach and (b) Chain-of-Thought
based approach.

purposes, often employing dark humor. Misogy-
nous memes2, however, stand apart by propagating
hatred against women through sexist and aggres-
sive messages on social media (Attanasio et al.,
2022; Zhou et al., 2022; Arango et al., 2022). These
memes exacerbate sexual stereotyping and gender
inequality, mirroring offline societal issues (Franks,
2009) and have become a concerning issue (Chen
and Chou, 2022; Zhang and Wang, 2022; Fersini
et al., 2022).

Identifying misogynous memes is much more
challenging than other memes, as the task demands
an understanding of world knowledge and com-
mon sense (Singh et al., 2024). Despite the chal-
lenges, developing deep learning models to clas-
sify such memes can provide sociological benefits,
such as understanding hidden meanings, support-
ing humanities research, and raising awareness on
a large scale (Kumari et al., 2024). Previous re-
search has primarily focused on developing robust
deep-learning models that learn cross-modal inter-
actions (c.f. Figure 1 (a)) from scratch to iden-
tify these memes (Rijhwani et al., 2017; Sharma
et al., 2020; Kiela et al., 2020a; Suryawanshi et al.,

2WARNING: This paper contains meme samples with slur
words and sensitive images.

22105

https://github.com/Gitanjali1801/LLM_CoT
https://github.com/Gitanjali1801/LLM_CoT


2020; Pramanick et al., 2021a; Hossain et al., 2022;
Sharma et al., 2022a). However, learning com-
plex multimodal interactions can be difficult with
limited data (Cao et al., 2023). The advent of
Large Language Models (LLMs) offers a way to
bridge this gap. Although LLMs are highly adept at
question-answering and reasoning tasks, they often
overlook the cultural diversity of human reasoners,
crucial for tasks demanding commonsense, con-
textual knowledge, and multimodal reasoning (Li
and Zhang, 2023; Cao et al., 2024). However, the
recent concept of Chain-of-Thought (CoT) has
demonstrated the potential of LLMs for multi-hop
reasoning (Wei et al., 2023; Fei et al., 2023; Wu
et al., 2023), showing that LLMs can perform chain-
style reasoning effectively with the right prompts.
Nonetheless, most CoT reasoning studies focus pri-
marily on the language modality (Lu et al., 2023;
Wang et al., 2022), often overlooking multimodal
contexts. Analyzing memes is particularly chal-
lenging because their implicit meanings are not
fully conveyed through text and images. In such a
scenario, neglecting one modality in meme detec-
tion can negatively impact model performance.
As depicted in Figure 1 (b), if an LLM can not only
interpret emotions, such as anger or disgust from
the text, “Your job is simple. Stay in Kitchen,"
but also analyze the visual elements of the meme
featuring a woman and a man, which would further
enhance its ability to recognize emotions by con-
sidering their facial expressions and body language.
This is crucial for identifying sexist stereotypes.
Moreover, the LLM can determine if the meme
targets women by evaluating both textual and vi-
sual modalities. Furthermore, understanding the
broader context, which encompasses societal and
cultural discussions on gender roles and equality, is
crucial, and this can also be achieved using LLMs.
To achieve this, the ability to perform multi-hop
reasoning Chain-of-Though(CoT) (i.e., inferring
emotion, target, and then understanding the con-
text) is indispensable. By hierarchically consid-
ering key aspects of misogynous memes, such as
emotions, targets, and contextual backgrounds, we
can create general-purpose models that are in sync
with human intent for real-world tasks like meme
identification.
Our proposed work is motivated by the afore-
mentioned discussion, where we introduce a
deep learning-based framework named M3Hop-
CoT (Misogynous Meme Identification with
Multimodal Multi-hop Chain-of-Thought) a mod-

ular approach that leverages an LLM as the “rea-
soning module” and operates over a given meme.
In the M3Hop-CoT approach, we first extract the
Entity-object-relationship (EORs) of the meme-
image using a scene graph (Tang et al., 2020). Sub-
sequently, the meme text, image, and EORs are fed
into the multi-hop CoT LLM, enabling it to identify
three crucial hidden cues for inferring the meme’s
rationales: (i) emotion, (ii) target, and (iii) con-
text. M3Hop-CoT eliminates the need for external
resources, also bridging the gap between the modal-
ities by utilizing both textual and visual aspects of
the meme in rational generation at zero cost. To
ensure the weighted contribution of each reason-
ing step, we employ a hierarchical cross-attention
mechanism that assesses the contribution of each
rationale in decision-making.
The main contributions of this work are summa-
rized below: (i) This is the first study where we
introduce multimodal LLM in a CoT manner to
identify the misogynous memes. (ii) We introduce
the M3Hop (Misogynous Meme Identification with
Multimodal Multi-hop Chain-of-Thought) frame-
work, where we utilize the meme text and EORs
of the meme-image as a prompt to the LLM in
a multi-hop CoT manner, enabling it to identify
three crucial rationales helpful to detect misogy-
nous memes: (a) emotion, (b) target, and (c) con-
text. (iii) Our empirical evaluation, including both
qualitative and quantitative analysis, validates the
efficacy of the M3Hop-CoT framework on several
datasets, highlighting its strong performance.

2 Related Work

Detection of Misogynous memes. Previous stud-
ies on memes have predominantly focused on iden-
tifying hate or offensive content (Rijhwani et al.,
2017; Sharma et al., 2020; Kiela et al., 2020a;
Suryawanshi et al., 2020; Sharma et al., 2022a;
Hossain et al., 2022; Yadav et al., 2023). While
most of the existing meme research has focused on
refining multimodal representations by exploring
interactions between textual and visual elements
(Kumari et al., 2021; Akhtar et al., 2022; Sharma
et al., 2022b; Bandyopadhyay et al., 2023; Sharma
et al., 2023), still error analyses in these studies
have revealed a significant gap in the contextual
comprehension of memes (Cao et al., 2022). While
existing research on detecting misogynous content
has largely focused on unimodal data (primarily
text) (Hewitt et al., 2016; Fersini et al., 2018; Nozza

22106



et al., 2019), the integration of multimodality (text
and image), on the other hand, is still a work in
progress (Zhou et al., 2022; Zhi et al., 2022; Arango
et al., 2022; Singh et al., 2023).
Large Language Models. Pre-training of lan-
guage models has garnered significant interest for
its ability to enhance downstream applications (Raf-
fel et al., 2019). Recently, large-scale language
models (LLMs), such as GPT-3 (Kojima et al.,
2023), ChatGPT (Ouyang et al., 2022), LLaMA
(Touvron et al., 2023) etc., have demonstrated re-
markable potential for achieving human-like intelli-
gence. LLMs have shown exceptional capabilities
in common-sense understanding (Paranjape et al.,
2021; Liu et al., 2022) with the incorporation of
the chain of thought (CoT) method which has revo-
lutionized the way machines approach reasoning-
intensive tasks (Wei et al., 2023; Zhou et al., 2023).
While previous research has often struggled with
incorporating external knowledge and common-
sense understanding and has been limited by fitting
spurious correlations between multimodal features,
our proposed model M3Hop-CoT bridges this gap
with a novel prompt-based approach by employing
a Multimodal Multihop CoT based approach to si-
multaneously analyze the meme text and the entity-
object relationship of the meme image, thereby
deciphering the emotional, targeted, and contextual
dimensions of a misogynous meme. By doing so,
we aim to integrate culturally diverse reasoning
into our proposed misogynous meme classifier.

3 Dataset

For our experiments, we employ two misogynous
meme datasets: MAMI (SemEval2022 Task 5, Sub-
task A) (in English) (Fersini et al., 2022) and
MIMIC (in Hindi-English Code-Mixed) (Singh
et al., 2024) (Refer to Table 1). To demonstrate
the generalizability of our CoT-based approach, we
conduct experiments on three benchmark meme
datasets: Hateful Memes (Kiela et al., 2020b),
Memotion2 (Ramamoorthy et al., 2022), and Harm-
ful Memes (Sharma et al., 2022a) (See Appendix
Table 7 for data statistics)

Dataset Train set Test set Task

MAMI 10,000 1,000 Misogynous Meme Detection
MIMIC 4,044 1,010 Misogynous Meme Detection
Hateful Meme 8,500 1,000 Hateful Meme Detection
Memotion2 7,500 1,500 Offensive Meme Detection
Harmful Meme 3,013 354 Harmful Meme Detection

Table 1: Dataset Statistics

4 Methodology

This section illustrates our proposed M3Hop-CoT
model to identify the misogynous meme. The over-
all workflow of our proposed M3Hop-CoT model
is shown in Figure 2, and its components are dis-
cussed below.

4.1 Problem Formulation

Let D = (xi, yi)
N
i=1 represent the dataset of misog-

ynous memes, where N is the number of sam-
ples, xi ∈ X is the i-th meme (comprising text
and images), and yi ∈ {0, 1} is its correspond-
ing misogyny label (1 for misogynous, 0 for non-
misogynous). Our objective is to train a classifier
fθ : X → Y to predict correct misogynous label
Ŷ , parameterized by θ, to minimize a loss function
L(Ŷ|X , θ), defined over the output space Y and
the predicted label Ŷ .

4.2 Encoding of Meme

A meme sample Xi comprises of meme text Ti =
(ti1 , ti2 , . . . , tik), which is tokenized into sub-word
units and projected into high-dimensional fea-
ture vectors, where k is the number of tokens in
the meme text, and image Ii with regions ri =
{ri1 , ri2 , . . . , riN }; for rij ∈ RN , where N is
the number of regions. These components are in-
put into a pre-trained CLIP model (Radford et al.,
2021) designed to extract features by understanding
text and images at a semantic level.

fti, fvi = CLIP (ti, ri) ; (1)

where fti ∈ Rdt and fvi ∈ Rdv are the extracted
text and visual features, respectively, with dt and
dv denoting the dimensions of the text and visual
feature spaces. To integrate these features, we use
the Multimodal Factorized Bilinear (MFB) pool-
ing technique (Kumari et al., 2021; Bandyopad-
hyay et al., 2023). The interaction between tex-
tual and visual features was limited in earlier fu-
sion techniques (Zhang et al., 2022) (e.g., concate-
nation, element-wise multiplication, etc.). These
methods did not allow for comprehensive interac-
tion between textual and visual features, essential
for generating robust and nuanced multimodal fea-
tures. Bilinear pooling, while effective in capturing
detailed associations between textual and visual
features through outer products, introduces high
computational costs and risks of overfitting due to
the large number of parameters required (Yu et al.,
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Figure 2: Illustration of the proposed M3Hop-CoT
model.

2018). In contrast with this, MFB provides an ef-
ficient solution by factorizing the bilinear pooling
operation. This approach effectively maximizes
the association between textual and visual features
while mitigating the computational and overfitting
concerns associated with traditional bilinear pool-
ing (Yu et al., 2017; Kumari et al., 2023).
MFB combines fti and fvi to produce a multi-
modal representation Mi with dimensions Ro×1.
The MFB module employs two weight matrices,
U and V , to project and sum-pool the textual and
visual features, respectively. The resulting fusion
is expressed in the following equation:

Mi = SumPool(UT fti ◦ V T fvi, k) ; (2)

Here, ◦ represents element-wise multiplication, and
SumPool(x, k) refers to a sum-pooling operation
over x using a one-dimensional non-overlapping
window of size k.

4.3 Entity-Object-Relationships (EoRs)
Extraction

Improving the representation of textual and visual
components in meme analysis is crucial to bridge
the semantic gap between these modalities. To re-
trieve a better visual representation, we utilize an
unbiased scene graph model proposed by Krishna
et al. (2016), which leverages Faster RCNN (Ren
et al., 2015) and joint contextual feature embed-
ding to extract unbiased Entity Object Relationship
(EOR) data from the visual modality of each meme
(c.f. Figure 8). For a meme image Ii in meme Xi,
the scene graph is defined as TI ⊆ (EI×RI×EI),
where TI is the set of visual triples, EI is the entity

set, and RI is the relation set, with RI ⊆ R. Each
entity eI,k = (et,I,k, AI,k, bI,k) ∈ EI consists of
the entity type et,I,k ∈ Et, where Et is the set of en-
tity types (Refer to Appendix Figure 7). For meme
Xi, the extracted entity-object-relation triplets from
its scene graph are denoted as EORi. The notation
EORi represents the top k (in this case, k=5) entity-
object relations from the scene graph of image Ii,
expressed as EORi = (EOR1

i ,EOR2
i , . . . ,EORk

i ).
Integrating this visual understanding into our LLM
is intended to uncover such hidden cues in images
that are crucial for making informed, human-like
decisions for detecting misogynous memes.

4.4 Chain-of-Thought Prompting

Our M3Hop-CoT model (refer to Figure 2)
employs a Chain-of-Thought (CoT) prompting
approach (Wei et al., 2023; Zhou et al., 2023)
to facilitate multi-step reasoning during meme
analysis. Rather than directly querying the LLM
for the final label ŷ, we aim for the LLM to infer
detailed information about the meme’s emotional
content, its potential targeting of women, and the
broader context of its creation and interpretation.
The three-hop prompts are constructed as follows:
Step 1. The first prompt queries the LLM about
the emotions E conveyed by the meme with the
following template:
REi [Identify the primary emotions conveyed
through Ti and EORi of the meme Xi. ]

REi is the first prompt context, which infers the
emotions-related rationale to provide the hidden
cues for Xi. REi = argmax(E|Ti, EORi) where
REi is LLM-generated output text which explicitly
mentions primary emotions E.
Step 2. After that, we ask LLM whether the
meme is targeted towards women or not with the
following template:
RT i [Based on the Ti and the EORi of the
meme Xi, provide a rationale for whether this
meme targets women. Include specific elements
that support this claim.]

RT i is the second prompt context, designed
to extract a target-enriched rationale revealing
cues of misogynous memes. It is defined as
RT i = argmax(T |Ti, EORi), where RT i is the
LLM-generated text that explicitly provides the
rationale for whether the meme targets women.
Step 3. Finally, to understand the broader context
of a meme, we ask LLM to define the contextual
information of the meme with the following
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template:
RCi [Given the text Ti and the Entity-Object
Relationships EORi of the meme, provide the
broader context C of meme Xi.]

Finally, RCi is the third prompt context, aimed
at uncovering contextual knowledge highlighting
social cues associated with memes. It is defined
as RCi = argmax(C|Ti, EORi), where RCi is
the LLM-generated text explicitly outlining the
meme’s context C.

4.5 Encoding of LLMs Generated Rationale
To leverage the sequential and contextual in-
formation within the LLM-generated rationale
Rri = {w1i , w2i , . . . , wki}, where r ∈ {e, t, c}
corresponds to emotion-rich, target-aware, and
contextually-enriched rationale of meme sample
Xi, respectively, with varying word lengths k ∈
{l,m, n}, we employ the textual encoder of the
pre-trained CLIP model:

(REi , RTi , RCi) = CLIP(Rei , Rti , Rci) ; (3)

4.6 Enhancing CoT Reasoning via
Cross-Attention

We use three-layer hierarchical cross-attention to
enable the interaction between the representations
of rationales (REi , RTi , RCi) before determining
the final label ŷ.
Emotive Multimodal Fusion (EMF): To derive
an emotion-enriched multimodal representation
of the meme Xi, we calculate the cross-attention
H1i between Mi from Equation 2 and REi . Ini-
tially, we perform linear transformations to ob-
tain query (QMi = MiWMq ), key (KREi

=
REiWEk

), and value (VMi = MiWMv ) vectors
for both the multimodal representation and the
emotion-rich rationale using learned weight ma-
trices (WMq ,WEk

,WMv ):

H1i = softmax

(
QMiK

T
REi√

dk

)
VMi ; (4)

where dk is the dimension of the key vector. The
final representation HF1i is obtained by adding
H1i to the original multimodal representation Mi

through a residual connection and then applying
layer normalization (Ba et al., 2016):

HF1i = LayerNorm(H1i +Mi) ; (5)

Target Insight Multimodal Representation
(TIMR): To integrate the target-aware informa-
tion of meme sample X i into the emotion-enriched

representation obtained in Equation 5, we compute
the cross-attention H2i between the emotive repre-
sentation HF1i and the target-aware rationale RTi .
We perform linear transformations to obtain query
(QHF1i = HF1iWHF1q ), key (KRTi

= RTiWTk
),

and value (VHF1i = HF1iWHF1v ) vectors using
learned weight matrices (WHF1q ,WTk

,WHF1v ):

H2i = softmax

(
QHF1iK

T
RTi√

dk

)
VHF1i ; (6)

where dk is the dimension of the key vector. The fi-
nal target-aware multimodal representation HF2i
is obtained by adding H2i to the emotive repre-
sentation HF1i through a residual connection and
applying layer normalization:

HF2i = LayerNorm(H2i +HF1i) ; (7)

Comprehensive Contextual Multimodal Insight
(CCMI): To obtain a comprehensive contextual
multimodal representation of meme sample X i,
we compute the cross-attention H3i between the
target-aware representation HF2i and the context-
aware rationale RCi . We perform linear transfor-
mations to obtain query (QHF2i = HF2iWHF2q ),
key (KRCi

= RCiWCk
), and value (VHF2i =

HF2iWHF2v ) vectors using learned weight ma-
trices (WH2q ,WCk

,WH2v ):

H3i = softmax

(
QHF2iK

T
RCi√

dk

)
VH2i ; (8)

where dk is the dimension of the key vector. The
final comprehensive representation HF3i is ob-
tained by adding H3i to the target-aware repre-
sentation HF2i through a residual connection and
applying layer normalization:

HF3i = LayerNorm(H3i +HF2i) ; (9)

4.7 Network Training
We use a singular feed-forward neural net (FFN)
with softmax activation, which takes the Com-
prehensive Contextual Multimodal representation
(HF3i) in Equation 9 as input and outputs class
for misogynous meme identification, shown in the
following Equation 10:

ŷt = P (Yi|HF3i,W, b) = softmax(HF3iWi + bi); (10)

The proposed classifier is trained using cross-
entropy loss:

L1 = −
∑

[yt log ŷt + (1− yt) log(1− ŷt)] ; (11)
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Reasoning Revising with Supervised Con-
trastive Learning Loss: In addition to cross-
entropy loss, we incorporate supervised contrastive
loss (SCL) to enhance the CoT-based learning and
provide empirical evidence of its effectiveness in
learning cultural diversity-enriched representations
for a more robust classifier (Li et al., 2023; Shen
et al., 2021). This loss component encourages
well-separated representations for the misogynous
meme identification task, creating equitable repre-
sentations and correct predictions. All three multi-
modal representations that enhance the CoT reason-
ing,i.e., (HF1i,HF2i,HF3i in Equation 5, 7, and
9) and multimodal representation Mi, are assumed
to capture similar contexts for a given meme Xi.
During training, these representations are aligned
within the same semantic space, enabling effective
utilization through contrastive learning.

LEm = − log
exp (sim (HF1i,Mi) /τ)∑2N

l=1[l ̸=i] exp (sim (HF1i,Ml) /τ)
;

LTa = − log
exp (sim (HF2i,Mi) /τ)∑2N

l=1[l ̸=i] exp (sim (HF2i,Ml) /τ)
;

LCo = − log
exp (sim (HF3i,Mi) /τ)∑2N

l=1[l ̸=i] exp (sim (HF3i,Ml) /τ)
;

(12)

where, sim is the cosine-similarity, N is the batch
size, and τ is the temperature to scale the logits.
Therefore, the overall loss LF is a weighted sum of
the cross-entropy loss L1 in Equation 11, and these
contrastive losses (LEm,LTa,LCo) in Equation
12. The weights (α, β,γ, and θ) control the relative
importance of each loss.

LF = α · L1 + β · LEm + γ · LTa + θ · LCo ; (13)

5 Results Analysis

In this section, we present the results of our compar-
ative analysis, which examines the baseline models
3, LLM-based models, our proposed model, and
their respective variations for misogynous meme
identification tasks4. We use the macro-F1 (F1)
score on both the dev and test sets as the preferred
metrics to measure this.

5.1 Model Results and Comparisons

Models Notation: CLIP_MM: This is the CLIP-
based classifier. M3Hop-CoT: Proposed scene

3Details of the baseline models are given in the Appendix
Section B.1

4Additional details of experimental setups and hyperpa-
rameters explored are provided in the Appendix Section B.5

graph with CoT-based model with emotion, target,
and context-aware prompts. M3Hop-CoT−E :
Proposed model without emotion-aware prompt,
M3Hop-CoT−T : Proposed model without target-
aware prompt, M3Hop-CoT−C : Proposed model
without context-aware prompt, M3Hop-CoT−SG:
This model is trained solely with all the CoT based
modules, excluding the scene graph, M3Hop-
CoTE : Proposed model with only emotion-aware
prompt, M3Hop-CoTT : Proposed model with only
target-aware prompt, M3Hop-CoTC : Proposed
model with only context-aware prompt and
M3Hop-CoT−Lk where k∈ {Em,Ta,Co}:
Proposed model without respective kth loss.

5.1.1 Results on MAMI Dataset

Comparison with Baseline Models: Table 2
presents the performance of various baseline
models on the task of misogynous meme identifi-
cation. Notably, our CLIP-based baseline classifier
(CLIP_MM) achieves superior performance with
an F1 score of 73.84% on both the dev and test
sets, serving as the foundation for our proposed
method. We also observed that multimodal
baselines give better results than unimodal ones.
Furthermore, our proposed model, M3Hop-CoT,
surpasses all other baseline models in terms of F1
scores for both the dev and test datasets. It shows
the robustness of our proposed model for such a
challenging task.
Comparison with LLMs: When extending the
CLIP_MM with a prompt-based approach, Mistral
LLM surpasses other LLMs by achieving a ∽ 2%
increment on the dev set, whereas ∽ 4% higher
F1-score on the test set, establishing a strong
foundation for subsequent CoT-based methods.
Moreover, when implementing the CoT-based
approach across various LLMs, M3Hop-CoT,
which incorporates Mistral LLM, consistently
outperforms other CoT-based models. It validated
the robustness of the proposed model, which
understands the hidden complex cues of any meme
by means of their hidden emotions, target, and
contextual information (A detailed discussion
about the comparison of only prompt-based
models with CoT-based models with different
LLMs is given in Appendix Section C).
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Models Text Image
MAMI MIMIC

Dev Test Test

P R M-F1 P R M-F1 P R M-F1 W-F1

Baseline

LFT (1) ✓ 56.23 56.69 56.47 44.7 47.9 46.2 47.39 46.93 47.16 47.29
BERT(2) ✓ 63.29 71.81 67.28 58.0 50.9 54.2 61.45 61.06 61.25 61.26

LaBSE (3) ✓ 63.59 61.99 63.72 49.4 54.2 51.6 63.59 61.39 62.48 62.66
VGG19 (4) ✓ 64.29 60.79 62.49 47.40 49.40 48.38 44.48 42.35 43.39 43.84

ViT (5) ✓ 69.21 67.36 68.27 54.30 52.40 53.37 49.99 48.91 49.45 49.29

Early Fusion
(1)+(4) ✓ 72.60 62.52 67.19 52.5 47.0 49.6 52.39 50.38 51.37 51.2
(2)+(4) ✓ ✓ 58.19 64.48 61.18 54.4 51.3 52.7 64.29 62.49 63.38 63.24
(2)+(5) ✓ ✓ 70.81 64.09 68.27 53.48 59.29 56.21 69.49 67.97 68.72 68.49
(3)+(5) ✓ ✓ 69.09 61.93 65.28 55.93 51.19 53.0 63.85 63.94 63.89 63.91

Pretrained Model
LXMERT ✓ ✓ 78.94 69.45 73.88 69.01 65.18 65.9 66.03 61.39 63.63 63.21

MMBT ✓ ✓ 73.60 69.09 71.27 56.4 49.0 52.4 68.39 65.91 67.13 67.39
VisualBERT ✓ ✓ 81.03 77.79 79.38 78.2 61.2 68.7 73.98 70.39 72.15 72.38

BLIP ✓ ✓ 70.95 68.28 69.58 62.39 53.39 57.54 74.39 72.39 73.38 73.74
ALBEF ✓ ✓ 72.30 70.98 71.62 59.2 53.5 56.1 71.21 69.38 70.28 70.13

*CLIP_MM ✓ ✓ 85.3 83.4 84.3 75.4 69.2 72.1 76.39 74.05 75.24 75.25

Pr
om

pt
-b

as
ed CLIP_MM

+ ChatGPT ✓ ✓ 85.89 83.99 84.98 80.0 69.3 74.2 76.71 74.59 75.63 75.34
+ GPT 4 ✓ ✓ 87.11 84.81 85.93 75.5 71.3 72.3 76.47 72.43 74.39 74.12
+ Llama ✓ ✓ 83.70 81.29 82.46 77.83 69.40 73.38 78.01 73.97 75.94 75.75

+ Mistral (Ours) ✓ ✓ 88.80 84.76 86.72 81.20 72.70 76.94 78.15 75.39 76.75 76.35

C
oT

-b
as

ed

CLIP_MM
+ChatGPT ✓ ✓ 86.20 84.40 85.29 81.0 76.0 77.0 78.69 76.34 77.49 77.41

+ GPT4 ✓ ✓ 89.52 85.20 87.38 71.9 70.8 71.4 75.16 73.39 74.26 74.21
+ Llama ✓ ✓ 91.38 86.28 88.85 77.50 76.40 76.98 77.17 75.10 76.12 76.91

M3Hop-CoTMistral ✓ ✓ 96.39 87.59 91.75 82.38 78.29 80.28 80.29 78.98 79.63 79.41(Proposed)

Table 2: Results from the proposed model and the various baselines on the MAMI and MIMIC datasets. Here, the
bolded values indicate maximum scores. Here, T: Text, I: Image, M-F1: Macro F1, and W-F1: weighted F1-score. *
represents the best-performing baseline model. We observe that the performance gains are statistically significant
with p-values (<0.0431) using a t-test, which signifies a 95% confidence interval.

Models Text Image
Macro F1-score

MAMI MIMIC

dev test M-F1 W-F1

M3Hop-CoT (Ours) ✓ ✓ 91.75 80.28 79.63 79.41

M3Hop-CoT−E ✓ ✓ 86.83 76.3 73.74 73.01
M3Hop-CoT−T ✓ ✓ 86.92 75.1 75.37 74.92
M3Hop-CoT−C ✓ ✓ 85.92 75.3 73.91 73.24
M3Hop-CoT−SG ✓ ✓ 84.21 73.9 72.35 72.47
M3Hop-CoTE ✓ ✓ 82.99 70.2 69.28 70.14
M3Hop-CoTT ✓ ✓ 84.21 73.2 73.58 73.76
M3Hop-CoTC ✓ ✓ 84.38 71.2 75.86 75.97
M3Hop-CoT−L_Em ✓ ✓ 89.29 76.2 77.94 77.05
M3Hop-CoT−L_Ta ✓ ✓ 88.73 77.0 75.62 75.33
M3Hop-CoT−L_Co ✓ ✓ 88.28 77.9 77.95 77.01

Table 3: Ablation Study: Role of different modules
in our proposed model. We observe that the perfor-
mance gains are statistically significant with p-values
(<0.0553) using a t-test, which signifies a 95% confi-
dence interval.

5.1.2 Results on MIMIC Dataset

To show the robustness of our proposed model in
another language, in Table 2, we have shown the
results on the MIMIC dataset, which is in Hindi-
English code-mixed. Our proposed model follows
a behavior similar to the MAMI dataset (outper-
forming by more than ∽ 4− 5% from CLIP_MM),
whereas CoT-based LLM is not only leveraging the
language-related dependency but also performing
superbly by utilizing the different cultural-based
hidden cues of the dataset (A detailed analysis of
results on this dataset is provided in the Appendix

Section A).

5.1.3 Ablation Study
To assess our proposed architecture, we created
several multimodal variants of our proposed model
M3Hop-CoT by training it on MAMI and MIMIC
datasets, as shown in Table 3, which allows us
to evaluate the contribution of each component
to the model’s overall performance. M3Hop-CoT
emerged as the most effective model, achieving a
significant increase of 6-7% in F1 scores for both
development and test sets. Additionally, incorpo-
rating SCL further enhanced M3Hop-CoT’s per-
formance, as evidenced by the impact of each loss
component. The model’s superior performance
is attributed to its balanced use of textual and vi-
sual modalities, integration of entity-object rela-
tionships, and leveraging key factors such as emo-
tion, target, and context-enriched LLM-generated
rationales. M3Hop-CoT effectively captures the se-
mantic relationships between objects in the meme,
which is crucial for identifying misogynous con-
tent.

5.2 Detailed Analysis
5.2.1 Result Analysis with Case Study
Using Appendix Figure 5, we qualitatively analyze
our proposed framework through the predictions
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obtained from the baseline CLIP_MM and our pro-
posed model M3Hop-CoT. For meme sample (a)
with the text “I WAS BROUGHT UP TO NEVER
HIT A WOMAN. SHE’S NO WOMAN," and an
image showing a slap and a woman, “CLIP_MM,"
classified it as non-misogynous. In contrast, our
model M3Hop-CoT correctly classified it as misog-
ynous using a CoT-based rationale from an LLM
with multi-hop reasoning. While CLIP_MM
slightly preferred text (as depicted by T= 13.85)
over visuals (V= 11.27), M3Hop-CoT provided a
balanced contribution by considering both text and
visuals and context. It is evident in GradCAM,
where M3Hop-CoT distinctly highlights both the
slap and the woman, unlike CLIP_MM, which fails
to concentrate on these critical elements. Simi-
larly, the meme sample (b) conveys the disrespect
towards women using domestic violence. The
LLM’s generated rationale offers insight into the
meme’s intended message. Once again, CLIP_MM
struggles to accurately classify the meme, whereas
“M3Hop-CoT" correctly identifies it as misogynous.
M3Hop-CoT effectively recognizes the sarcastic
nature of memes by underlying emotions, target,
and context, showcasing their ability to understand
the meme’s subtleties. In example (c), the meme,
which compares a woman to a pig, is identified as
misogynous. The CLIP_MM fails to classify it cor-
rectly, focusing only on the words "EX WIFE/FOL-
LOW/ WEDDING PHOTOS" and missing the im-
age’s subtle cues. In contrast, “M3Hop-CoT" accu-
rately detects its misogynous nature by considering
both modalities and integrating contextual knowl-
edge through multimodal reasoning. Enhanced by
CoT prompting and EoRs, M3Hop-CoT provides
a more comprehensive analysis and outperforms
baseline models in recognizing misogynous con-
tent (Similar qualitative analysis for the MIMIC
dataset is shown in the Appendix Section A.1.)

5.2.2 Result Analysis for Cultural Diversity
In the Appendix Figure 12, we present three illus-
trative examples from the MAMI dataset, showcas-
ing how M3Hop-CoT leverages cultural knowledge
from diverse demographics. The model better rec-
ognizes misogyny by incorporating emotional cues,
target identification, and context in a CoT frame-
work. Each example in the figure delves into differ-
ent cultural references. These include historical be-
liefs surrounding the Church and women’s roles in
the 1500s (c.f. example (i)), comparisons between
women and witches within Japanese mythology (

c.f. example (ii)), and Christian interpretations of
the Bible’s teachings (c.f. example (iii)). Notably,
CLIP_MM fails to grasp the underlying misogynis-
tic connotations within these examples. Conversely,
our proposed model effectively utilizes these cul-
tural references, leading to accurate predictions of
misogynistic labels.

5.2.3 Quantitative Analysis with Error Rates
We illustrate the impact of various M3Hop-CoT
model variants on test error rates in the Appendix
Figure 3. CLIP_MM model exhibits the highest
error rate, highlighting the necessity of LLMs for
such complex tasks. Models like M3Hop-CoT−E ,
M3Hop-CoT−T , and M3Hop-CoT−C , lack emo-
tion, target, and context-aware prompts, respec-
tively, have higher error rates than the proposed
M3Hop-CoT, indicating the importance of these
components. Additionally, M3Hop-CoT−SG, ex-
cluding the scene graph module, shows an in-
creased error rate, emphasizing the significance of
visual semantics. Models M3Hop-CoTE , M3Hop-
CoTT , and M3Hop-CoTC , focusing on individual
rationale, demonstrate that a balanced approach is
essential for optimal performance. The M3Hop-
CoT model achieves the lowest error rates, demon-
strating its superior ability to identify such memes.

5.3 Generalibity of the Proposed Model

To demonstrate the adaptability of our proposed ar-
chitecture, M3Hop-CoT, we assess its performance
across three English benchmark datasets: Hate-
ful Memes, Memotion2, and the Harmful dataset
(c.f. Table 4). This evaluation validates the gen-
eralizability of our architecture, demonstrating its
effectiveness not only in misogynous tasks but also
in various benchmark datasets and tasks (See the
detailed discussion in Appendix Section D).

5.4 Comparison with State-of-the-Art Models

Table 5 presents a detailed comparison between
M3Hop-CoT and other state-of-the-art (SOTA)
models. In the MAMI task, M3Hop-CoT surpasses
existing SOTA. Despite PromptHate achieving high
accuracy on the MAMI dataset, it struggles with
contextual knowledge, leading to modality-specific
biases. Another model, Multimodal-CoT, attempts
to leverage multimodal features with LLM but
lacks essential psycholinguistic factors that our
model incorporates, such as emotions, target aware-
ness, and contextual information (c.f. Figure 13 ).
Our M3Hop-CoT model outperforms, mainly due
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Models Modality Memotion2 Hateful Harmful

T I F1↑ F1↑ AUC↑ F1↑
FasterRCNN ✓ 48.9 38.81 59.97 65.9
BERT ✓ 50.01 58.41 67.92 77.92
ViT ✓ 51.17 — — 67.88
Late-Fusion ✓ ✓ 51.4 64.40 72.51 78.50
MMBT ✓ ✓ 52.1 58.29 76.77 80.2
V isualBERTCOCO ✓ ✓ 50.86 59.28 73.85 86.1
ALBEF ✓ ✓ 50.8 — — 87.5
V iLBERT ✓ ✓ 49.92 52.60 76.32 85.83
VisualBERT ✓ ✓ 51.06 67.46 74.63 84.57
UNITER ✓ ✓ 52.7 61.66 60.02 61.66
LXMERT ✓ ✓ 52.3 69.45 76.15 69.45
ϕSOTA ✓ ✓ φ55.17 γ66.71 73.43 γ89.0
DisMultiHate ✓ ✓ 50.57 63.31 75.97 84.57
Momenta ✓ ✓ 50.9 66.71 73.43 88.3
PromptHate ✓ ✓ 50.89 71.22 77.07 89.0

CLIP_MM (Full-Train) ✓ ✓ 48.4 53.22 75.98 82.9
CLIP_MM+GPT4 (Full-Train) ✓ ✓ 56.39 62.18 77.13 85.64
CLIP_MM+ ChatGPT (Full-Train) ✓ ✓ 55.74 60.39 76.21 86.29
CLIP_MM+Llama (Full-Train) ✓ ✓ 56.23 59.63 78.29 88.29
CLIP_MM+Mistral (Full-Train) ✓ ✓ 57.75 65.58 79.02 88.75

M3Hop-CoT (Zero-Shot) ✓ ✓ 53.47 78.36 79.93 85.38
M3Hop-CoT (Full-Train) ✓ ✓ 59.95 79.24 83.29 91.01

Table 4: Results from the proposed model and the vari-
ous baselines on the Memotion2, Hateful Memes, and
Harmful Memes datasets. Φ: SOTA model on respec-
tive datasets. φ by (Ramamoorthy et al., 2022) for
Memotion2, γ by (Cao et al., 2022) for Hateful meme,
and Harmful Memes. We observe that the performance
gains are statistically significant with p-values (<0.05)
using a t-test, which signifies a 95% confidence interval.

Figure 3: Misclassification rate comparison between
proposed model M3Hop-CoT and their various variants

to its use of EoRs and the above psycholinguistic
factors.

Models Macro-F1↑
dev test

ΨZhang and Wang (2022) 83.4 77.6
DisMultiHate (Lee et al., 2021) 67.24 61.89
Momenta (Pramanick et al., 2021b) 72.81 68.29
MMBT (Kiela et al., 2019) 74.8 68.93
PromptHate (Cao et al., 2022) 79.98 73.28
Multimodal-CoT (Zhang et al., 2023) 82.98 72.19
Kumari et al. (2024) 79.59 —

M3Hop-CoT 91.75 80.28

Table 5: Comparison of our proposed model with the ex-
isting SOTA models, Ψ is the SOTA on MAMI Dataset

5.5 Error Analysis
Despite its high performance, our proposed model
occasionally misclassifies memes in following sce-
narios: (i) Cartoonist image: In certain scenar-
ios, M3Hop-CoT overlooks the extracted rationale
from CoT LLMs and solely concentrates on the
image featuring cartoon characters, leading to a

Figure 4: Categorization of error analysis (%) of pro-
posed model M3Hop-CoT and other SOTA models

misclassification of the meme as “Non-misogynous
(c.f. Appendix Figure 11 (a))." (ii) Reasoning Fail-
ure: M3Hop-CoT sometimes struggle to produce
accurate rationales using LLMs due to the implicit
nature of memes (c.f. Appendix Figure 11 (b)),
such as failing to recognize external references
(e.g., the significance of grey sweatpants). (iii)
Overgeneralization of identity terms: M3Hop-
CoT overgeneralize specific “identity terms (e.g.,
the presence of the word ‘SANDWICH’)," leading
to a misclassify a meme as “Misogynous" based
solely on these words while disregarding other in-
formation such as images and rationales extracted
by LLMs (c.f. Appendix Figure 11 (c)). (iv) An-
notation Error: In our analysis, we encountered
situations where our proposed model accurately
predicted the correct label for a given sample. How-
ever, due to the problematic annotation issues, mis-
classification happens (c.f. Appendix Figure 11
(d)). (More detailed error analyses are discussed in
Appendix Section E).

6 Conclusion

In conclusion, our work introduces a novel ap-
proach for detecting misogynous content in memes,
leveraging the power of LLMs with CoT reason-
ing. Our proposed model, M3Hop-CoT, integrates
multimodal information and employs a three-step
reasoning process to effectively capture memes’
emotional, target-oriented, and contextual nuances.
By incorporating scene graphs, we enhance the
model’s ability to understand the visual aspects
of memes. Our results demonstrate that M3Hop-
CoT outperforms existing SOTA models, signifi-
cantly improving F1 scores on both dev and test
sets. In the future, we could explore extending
our approach to other forms of online content and
integrating additional modalities to enhance the
model’s effectiveness.
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Limitations

In Section 5.5, we discussed a few limitations of
our proposed model. Despite its strengths, our
model encounters difficulties in accurately detect-
ing misogynous memes, especially when the im-
ages are cartoonish or when the misogynous ref-
erences are subtle and require nuanced reasoning.
These challenges highlight areas for further refine-
ment and improvement. Understanding these limi-
tations is crucial for advancing our model’s capabil-
ity to identify misogynous content more effectively
in future iterations (See a detailed future discussion
in the Appendix Section F).

Ethics Statement

Broader Impact: The broader impact of this work
is significant in the field of misogynous meme iden-
tification. This research promotes a safer and more
respectful online environment by developing ad-
vanced techniques for detecting misogynous con-
tent. Our proposed model, M3Hop-CoT, can help
reduce the prevalence of harmful content, foster-
ing a more inclusive and peaceful digital commu-
nity. Addressing the issue of detecting misogy-
nous memes is essential for promoting equality and
fostering peace and justice. We create a more in-
clusive and fair online environment by developing
methods to identify such internet memes. This ef-
fort also supports the principle by ensuring that
marginalized and vulnerable genders are included
in development initiatives. However, it is impor-
tant to acknowledge the ongoing discussion of au-
tomated content moderation and potential biases
within such systems. We will explore techniques
to ensure fairness, transparency, and accountabil-
ity in future work in such models (See a de-
tailed future discussion in the Appendix Section F).
Intended Use: This research is intended to ad-
vance the detection of misogynous content on so-
cial media, aiming to improve the experiences of
social media users, content moderators, and the
broader online community. By enhancing the abil-
ity to identify and moderate such content, we hope
to contribute positively to safer online interactions.
Misuse Potential: The dataset utilized in this study
includes memes with slur words and offensive im-
ages, which are included solely for understanding
and analyzing the dataset. It is important to clarify
that our use of such content is strictly for research,
and we do not intend to harm any individual or
group. We emphasize the ethical use of our findings

and the importance of handling sensitive content
with care.
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A Detailed Results Analysis on MIMIC
Dataset

In Table 2, we have mentioned the results of our
proposed model and several baseline models for
the MIMIC dataset. Notably, the baseline model

CM_CLIP performed better than other baselines,
showcasing the efficiency of the pre-trained CLIP
model for multimodal data. It is performing better
than other baselines, with more than ∽ 4% incre-
ment on the test dataset in terms of macro-F1 and
weighted F1-scores. Now, moving towards using
LLMs, it replicates results similar to those of the
MAMI dataset. Although Llama’s performance on
the MIMIC dataset is better than the MAMI dataset,
Mistral LLM is again providing better context than
other LLMs, resulting in an increment of ∽ 3%.
For the proposed model

A.1 Qualitative Analysis of the MIMIC
Dataset

In Appendix Figure 6, we present a qualitative anal-
ysis comparing the performance of our proposed
model, M3Hop-CoT, with the baseline model,
CM_CLIP, on the MIMIC dataset. Sample (i) de-
picts a meme intended to degrade women through
prejudice. CM_CLIP fails to understand the un-
derlying prejudices. In contrast, M3Hop-CoT, by
leveraging its ability to understand emotions, tar-
geted information, and context, correctly identifies
the misogynistic nature of this meme. Similarly,
samples (ii) and (iii) showcase memes designed to
humiliate women by referencing a specific Indian
context. M3Hop-CoT demonstrates human-like
comprehension of the subtle humiliation conveyed
within these memes, leading to accurate predic-
tions of the misogynistic label. These findings
highlight the effectiveness of M3Hop-CoT in iden-
tifying misogyny compared to the baseline model.

B Experiments

B.1 Baseline Models

To compare the performance of our proposed model
with some existing state-of-the-art models, we cre-
ate several baseline models.

B.2 Unimodal Systems

For the unimodal setting, we implement the follow-
ing variants of the baseline models:

1. LSTM with FastText-based Embedding
(LFT ): We utilize LSTM (Long Short-
Term Memory) (Hochreiter and Schmidhu-
ber, 1997) networks combined with FastText
embeddings (Joulin et al., 2016) to leverage
both sequential processing capabilities and en-
riched word vector representations.
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2. BERT (Bidirectional Encoder Representa-
tions from Transformers): Next, we lever-
age the BERT model (Pires et al., 2019) to
extract contextually rich feature representa-
tions from meme text.

3. LaBSE (Language-agnostic BERT Sen-
tence Embedding): We utilized the LaBSE
(Feng et al., 2020) model to obtain high-
quality language-agnostic text embeddings of
the meme text.

4. VGG-19: This VGG-19 (Simonyan and Zis-
serman, 2015) architecture is included to cap-
ture visual features from meme images. VGG-
19 is highly effective in extracting intricate
patterns and textures from visual data, which
are crucial for analyzing image-based content.

5. Visual Transformer (ViT): The ViT (Doso-
vitskiy et al., 2020) model applies the prin-
ciples of transformers for image recognition.
This model segments images into patches and
processes them sequentially, enabling the cap-
ture of global dependencies across the entire
image.

After feature extraction from each model, the result-
ing feature vectors are processed through a softmax
function for final prediction.

B.3 Multimodal Systems
Early Fusion: In our early fusion approach, we
leverage the strength of combining textual and vi-
sual features at an initial processing stage by con-
catenating them to enhance the model’s understand-
ing of misogynous context.

1. LFT+VGG: Combines LSTM with FastText-
based embedding for text and VGG19 for im-
age features, integrating rich textual embed-
dings with image features.

2. BERT+VGG: This model utilizes BERT for
its superior text features and VGG-19 for ro-
bust image feature extraction.

3. BERT+ViT: This model concatenates
BERT’s contextual understanding of the text
with a visual transformer for image features
for the final prediction.

4. LaBSE+ViT: In this model, we paired
Language-agnostic BERT Sentence Embed-
dings with a Visual Transformer for process-
ing multilingual text alongside complex image
data.

Pre-trained Models: To get a better multimodal
representation, we employ different pre-trained
models that are specifically designed for handling

complex multimodal data:
1. LXMERT (Tan and Bansal, 2019): This

model is specifically tailored for learning
cross-modality representations and has shown
exceptional performance on tasks that require
joint understanding of text and image content.

2. VisualBERT (Zhou et al., 2022): A variant of
BERT incorporating visual features into the
BERT architecture, enhancing its applicability
to scenarios where visual context is crucial.

3. MMBT (Supervised Multimodal Bitransform-
ers) (Kiela et al., 2019): MMBT integrates
information from heterogeneous sources (text
and image) using transformer architectures,
making it well-suited for tasks where both
modalities are equally important.

4. BLIP (Li et al., 2022): We utilize this model
to bridge the gap between vision and lan-
guage tasks by effectively leveraging image-
language pre-training.

5. ALBEF (Li et al., 2021): The Alignment of
Language and Vision using BERT leverages a
dual-transformer structure that synchronizes
learning between visual and textual represen-
tations.

B.4 LLM Based Models.

We used ChatGPT (Ouyang et al., 2022), LLaMA
(Touvron et al., 2023), GPT 4 (OpenAI et al., 2024),
along with Mistral LLMs for zero-shot simple
prompt-based and CoT-based models.

B.5 Experimental Details

All models, including baselines, were implemented
using the Huggingface Transformers library5,
with a fixed random seed of 42 for consistency.
The details of hyper-parameters are given in the
Appendix Table 6. The training was conducted
on a single NVIDIA-GTX-1080Ti GPU with
16-bit mixed precision. For the proposed model,
hyperparameters α, β, γ, and θ in the overall
loss function LF (Equation 13) were determined
through grid search and set to 0.5, 0.5, 0.3, and 0.4,
respectively.
LLM: For our proposed model M3Hop-CoT, we

used Mistral-7B-Instruct-v0.1 (Jiang et al., 2023)
LLM, which has 7 billion parameters.

Tokenizer: To extract the textual and visual
features, we have utilized a pre-trained CLIP

5https://huggingface.co/docs/transformers/index
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Hyper-Parameter MAMI MIMIC Hateful Memotion2 Harmful

epoch 60 60 60 60 60
batch size 64 64 64 64 64
Learning Rate 3e-5 3e-5 1e-4 3e-5 5e-4
Optimizer Adam Adam Adam Adam Adam
Image Size 224 224 224 224 224
Random seed 42 42 42 42 42

Table 6: Details of Hyper-parameters

(Contrastive Language-Image Pretraining) model.
CLIP is a transformer-based architecture focusing
solely on the encoder (no decoder) and utilizes
contrastive learning to make textual and visual
features semantically similar. Our model leverages
the CLIP tokenizer, which employs byte pair
encoding (BPE) with a lowercase vocabulary of
49,152 tokens. To facilitate model processing, text
sequences are padded with special tokens: "[SOS]"
at the beginning and "[EOS]" at the end, signifying
the start and end of the sequence, respectively.

For the MAMI dataset, we used the clip (clip-ViT-
B-32) model, and for the MIMIC dataset, we uti-
lized multilingual CLIP (mCLIP) (M-CLIP/XLM-
Roberta-Large-Vit-L-14).

C Detailed Discussion of Different
LLMs-generated Context and the
Impact of Prompts

In the results Table 2, we have shown the results
of four highly robust LLMs ((a) ChatGPT, (b)
GPT 4, (c) Llama and (d) Mistral (Ours) ) on the
MAMI and MIMIC datasets. We have shown four
variations of each LLM used: (i) utilizing simple
prompts with only meme text, (ii) utilizing multi-
modal prompts with meme text with EoRs, (iii) uti-
lizing simple prompts with only meme text by CoT
technique, and (iv) utilizing multimodal prompts
with meme text with EoRs by CoT technique.

1. Utilizing only meme text as prompt to
LLM: The first example presents a meme
with the text "When I see a woman," accom-
panied by an image depicting violence against
a woman ( Refer to Figures 14 (a), 15(a), 16
(a)). In the absence of the image modality by
EOR, all three LLMs (ChatGPT, Llama, and
Mistral) struggle to identify the misogynistic
content within the meme. Llama and Chat-
GPT respond with uncertainty, indicating a de-
pendence on the broader context. Conversely,
Mistral offers a distinct response, stating that
the text itself is not inherently misogynistic
but could be interpreted as such depending

on accompanying visual information. This
suggests that Mistral, unlike the other models,
attempts to generate context similar to humans
even without additional modalities. This be-
havior presents a promising avenue for further
exploration and development. The second ex-
ample (Figure 21 (a), 22 (a), 23 (a)) presents
a meme with the text "Woman in 1500s: Look
at the magic trick. The Church." This meme
appears to mock and portray a woman’s al-
leged inability to comprehend 15th-century
technology, juxtaposed with the Church ex-
hibiting a similar lack of understanding. Here
also, unlike other LLMs, Mistral provides a
comprehensive explanation, elucidating how
this meme perpetuates stereotypes targeting
women. Mistral highlights the meme’s role in
disseminating and reinforcing gender-based
and negative stereotypes about the Church.

2. Utilizing multimodal prompts with meme
text and EoRs to LLM: Now, comparing
only text-based LLMs with multimodal LLMs
by adding EORs surely adds the extra bene-
fit of the model’s understanding of memes
while making the prediction. In Figures 14(b),
15(b), and 16(b), the prompt "When I see a
woman" is presented alongside an image of
man depicting violence against a woman. In-
cluding visual elements as EoRs significantly
enhances understanding of the meme’s con-
text for all LLMs. The Figures 21 (b), 22 (b),
23 (b), demonstrate that EoRs alone are in-
sufficient for grasping the deeper meaning of
memes with implicit offensiveness, as seen in
the meme text "Woman in 1500s: Look at the
magic trick. The Church:". This highlights
the limitations of EoRs and underscores the
need for a CoT-based approach, as employed
by our proposed model, for comprehensive
understanding.

3. Utilizing only meme text as prompt by CoT
technique: Now, we have explored the effec-
tiveness of CoT prompting using only meme
text to understand the need for human-like
reasoning for identifying misogyny. Figures
17 and 24 showcase the rationale generated
by the Mistral model using the CoT technique.
This rationale analyzes emotions, targets, and
context within the meme. As seen in Figure
17, the model identifies emotions like surprise,
anger, and disappointment, along with the tar-
geted nature and context of the meme. This
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Figure 5: Case studies comparing the attention-maps for the baseline CLIP_MM and the proposed model M3Hop-
CoT using Grad-CAM, LIME (Ribeiro et al., 2016), and Integrated Gradient (Sundararajan et al., 2017) on the
MAMI dataset test samples. Here, T and V are the normalized textual and visual contribution scores in the final
prediction using Integrated Gradient.

analysis helps our proposed model (M3Hop-
CoT) to understand the underlying claim of
degrading women and make a correct predic-
tion. Similarly, Figure 24 demonstrates how
human-like reasoning, achieved through CoT
prompting, allows M3Hop-CoT to analyze the
three crucial cues (emotions, target, and con-
text) and accurately identify the misogynis-
tic label. However, without a visual element,
the LLM fails to generate accurate reasoning
about the meme.

4. Utilizing multimodal prompts with meme
text and EoRs by CoT technique: Finally,
we showcase the impact of CoT prompting
with multimodal prompts, incorporating both
meme text EoRs. Figures 18, 19, 20, and cor-
responding Figures 25, 26, and 27 present the
rationale generated by different LLMs using
the CoT technique for the same two exam-
ples. The results demonstrate the superiority
of Mistral with multimodal prompts. As seen
in Figures 18 and 25, Mistral generates highly
relatable, human-like rationales for both ex-
amples. These rationales consider emotions,
targets, context, and cultural nuances within
the meme. Compared to Mistral, LLMs like

ChatGPT and Llama struggle to produce such
comprehensive and culturally rich rationales
(Figures 19, 26, 20, 27). This highlights the
effectiveness of Mistral in leveraging CoT
prompting with multimodal information for
superior performance in misogyny detection.

D Result analysis on Hateful meme,
Memotion2 and Harmful meme dataset

To evaluate the robustness of our proposed method
across various datasets and to understand how
common, language-specific taboo elements affect
generalization, we conducted a comprehensive
generalization study, as highlighted in (Nozza,
2021; Ranasinghe and Zampieri, 2021, 2020). We
tested our model on three well-known datasets:
the Hateful Memes dataset (Kiela et al., 2020a),
the Memotion dataset (Sharma et al., 2020),
and the Harmful Memes dataset. Notably, these
datasets are predominantly in English and were
used to evaluate our model in a zero-shot manner,
meaning the model was not directly trained on
these specific datasets. These datasets include
unique linguistic elements, such as slang and
jargon that differ significantly from those found
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Figure 6: Case studies comparing the attention-maps for the baseline CLIP_MM and the proposed model M3Hop-
CoT using Grad-CAM, LIME (Ribeiro et al., 2016), and Integrated Gradient (Sundararajan et al., 2017) on the
MIMIC dataset test samples. Here, T and V are the normalized textual and visual contribution scores in the final
prediction using Integrated Gradient.

Figure 7: Illustration of scene graph for an image I.

in misogynous memes, making them challenging
out-of-distribution samples for our model.

Despite these challenges, our model demonstrated
robust performance across all datasets, underscor-
ing its effectiveness as shown in Table 4 and illus-
trating its broad applicability. The model’s abil-

Figure 8: Illustration of the architecture of model used
for scene graph.

ity to handle linguistic and cultural variances ef-
fectively showcases its versatility and potential
for widespread use across diverse data sources.
The performance metrics from the Hateful Memes
dataset, detailed in Table 4, offer valuable insights
into how our novel M3Hop-CoT model compares
with various baseline and state-of-the-art (SOTA)
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models.

D.1 Results on Memotion meme dataset
Our proposed model’s performance through
zero-shot learning on the Memotion dataset gives
balanced results. While pre-trained vision and
language models deliver significantly good results,
the prompt-based model, PromptHate, surpasses
all other models, highlighting the efficacy of
prompting techniques. However, when evaluating
the performance of our proposed model, it shows
improvement over other pre-trained models, but
the increment is not significant. The performance
increment is 5.03% lower compared to the
Hateful Meme dataset. This discrepancy can be
attributed to the different nature of the Memotion
dataset. Unlike the Hateful Memes dataset, which
is synthetically generated following a specific
template, the Memotion dataset comprises real data
collected from social media platforms and features
a variety of generalized templates. Considering
the real-world nature of the Memotion dataset, an
improvement of 5.03% is nevertheless substantial,
demonstrating the transferability and robustness
of our M3Hop-CoT model. This supports our
hypothesis that our model effectively captures
critical aspects such as emotion, target, and context
of the memes, consistent with the observed trend
where social media content frequently targets
women. This outcome underscores the prevalence
and impact of gender-targeted content in the social
media discourse.

Now, when we trained our model on the entire
dataset using simple prompts and CoT prompts
with LLMs, we obtained better results than the
PromptHate, Momenta, and even the SOTA model
(∽ 6% increment). It shows the efficiency of
LLMs’ understanding of meme’s hidden emotions,
targeted knowledge, and contextual information,
which helped the model outperform baselines.

To illustrate the effectiveness of our proposed
model, M3Hop-CoT, over baseline and SOTA mod-
els, we present a few examples from the memotion
dataset in Figure 9. Each example highlights the
crucial role emotions, contextual information, and
targeted knowledge play in accurately identifying
meme labels. For instance, sample (i) shows an
offensive image degrading a political leader. While
baseline and SOTA models fail to capture these
cues, M3Hop-CoT leverages its LLM strength to

provide rationales based on three key elements:
emotions, context, and targeted knowledge. Simi-
larly, in samples (ii) and (iii), where indirect racism
is subtly conveyed within the memes, M3Hop-CoT
accurately identifies the offensive nature of the
memes. These findings demonstrate M3Hop-CoT’s
enhanced ability to understand the nuances of com-
plex memes compared to existing models.

D.2 Results on Hateful meme dataset
The Hateful Memes dataset is specifically designed
for a hateful meme challenge by synthetically gen-
erating memes that alter keywords and images
within a template context. Despite being synthet-
ically generated, the Hateful Memes dataset is a
task-specific dataset, similar to the MAMI dataset.
It encompasses a broad spectrum of what consti-
tutes hate, which also explicitly includes samples
that are offensive towards women. This allows
for targeted analysis of hate speech and misogyny
within memes, reflecting the complexity of the is-
sues being addressed.

Consequently, when evaluating the Hateful
Memes dataset using our M3Hop-CoT model,
we achieved remarkably consistent results. Our
analysis showed that pre-trained models like
VisualBERT, CLIP, and ALBEF also performed
well. Among prompt-based models, PromptHate
exhibited high accuracy on this dataset. However, a
deeper analysis highlighted the significance of our
M3Hop-CoT model, which extends beyond mere
prompting techniques. M3Hop-CoT enhances its
capability by integrating cultural diversity through
hierarchical prompts and effectively utilizing
Entity-Object Relationships (EoRs), providing a
more nuanced understanding of the memes.

Now, training M3Hop-CoT on the complete
dataset yielded superior performance compared to
all baseline and state-of-the-art (SOTA) models,
as shown in Table 4. For a qualitative compari-
son, in Figure 10, we have shown four meme sam-
ples with the actual label of “Offensive." where
offensiveness in all the memes are implicit in na-
ture. Compared to the SOTA models like Momenta
and PromptHate, M3Hop-CoT excels at identify-
ing implicit offensiveness. While these models
leverage image entities and captions respectively,
still they fail to grasp the underlying meaning. No-
tably, LLMs (CLIP_MM+Mistral) are helping in
recognizing subtle cues within samples (ii) and (iv).
However, LLMs alone struggle with more complex

22124



Actual Label

CM_CLIP

Momenta

PromptHate

CLIP_MM+Llama

(i) (ii) (iii) (iv)

very_offensive very_offensive hateful_offensive hateful_offensive

not_offensive not_offensive not_offensive not_offensive

Slight Offensive not_offensive Slight Offensive not_offensive

Slight_offensive Slight Offensive Slight_offensive not_offensive

Slight Offensive not_offensive Slight Offensive not_offensive

M3Hop-CoT+Misteral very_offensive very_offensive hateful_offensive hateful_offensive

CLIP_MM+Mistral Slight Offensive Slight_offensive very_offensive not_offensive

Figure 9: Predictions from different models on a few test samples from Memotion Dataset.

Figure 10: Predictions from different models on a few test samples from hateful meme dataset.

patterns of offensiveness, as seen in samples (i) and
(iii). In such cases, M3Hop-CoT’s with CoT-based
prompting approach, mimicking human reasoning,
empowers it to predict the offensive label accu-
rately.

D.3 Results on Harmful meme dataset

When evaluating our M3Hop-CoT model using the
Harmful Memes dataset, we observed a greater dif-
ference in the results compared to the MAMI and
other datasets. The Harmful Memes predominantly
focuses on the domain of U.S. politics and COVID-
19, and both the textual and visual modality of

these memes differ significantly from those in the
MAMI dataset. The image in the Harmful Memes
dataset frequently includes scenes of strikes, fires,
group gatherings, and riots. Consequently, the emo-
tional tone, target, and contextual background of
these memes diverge significantly from the MAMI
dataset, which primarily addresses issues related
to targeting and hatred against women. This varia-
tion in content underscores the unique challenges
posed by the Harmful Memes dataset, affecting
the model’s ability to generalize across different
themes and contexts effectively. Although another
prompt-based model, such as PromptHate, is deliv-
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ering good performance on this dataset, our model,
when applied in a zero-shot manner, does not out-
perform the state-of-the-art (SOTA) models. This
highlights areas for further refinement and adapta-
tion of our approach to enhance its performance un-
der zero-shot conditions and across diverse datasets.

Dataset Split Label #Memes

MAMI
Train Misogynous 5,000

Non-Misogynous 5,000

Test Misogynous 500
Non-Misogynous 500

MIMIC
Train Misogynous 2,012

Non-Misogynous 2,032

Test Misogynous 503
Non-Misogynous 507

Memotion2
Train Offensive 1,933

Non-Offensive 5,567

Test Offensive 557
Non-Offensive 943

Hateful meme
Train Offensive 3,050

Non-Offensive 5,450

Test Offensive 500
Non-Offensive 500

Harmful meme
Train Harmful 1,064

Non-harmful 1,949

Test Harmful 124
Non-Harmful 230

Table 7: Class-wise (MAMI, Memotion2, Hateful
meme, and HarmMeme dataset) distribution in Train
Set and Test Set

E A note on Error Analysis

Among various types of errors, we mostly cate-
gorized these errors as (i) Cartoonist image, (ii)
Reasoning Failure, (iii) Overgeneralization of iden-
tity terms, and (iv) Annotation Error. As depicted
in Appendix Figure 11 (a), when the scene graph
misidentifies objects and their relationships in the
meme image, the LLM struggles to accurately
correlate EoRs with the meme’s text and context,
leading to the generation of irrelevant rationales. In
this instance, the scene graph mistakenly identifies
the scrub sponge for utensil cleaning as a cake,
resulting in altering the contextual interpretation.
Despite the meme’s intention to insult women,
the generated rationale paradoxically praises
the woman for her achievements. These errors
are particularly prevalent in memes featuring
cartoonist illustrations or images with unclear
visibility.

Beyond scene graph errors, Appendix Figure
11 (b) showcases another limitation: LLMs can

struggle with complex contextual reasoning. Even
with accurate EoRs generated by the scene graph,
in some scenarios, the LLM fails to understand
the overall meaning of the meme. In this example,
the meme satirizes the stereotype used to degrade
women. However, the LLM misunderstands the
context, generating a rationale that targets men
for cheating on women. Furthermore, the term
“baby" is used figuratively in the meme, but the
LLM interprets it literally, resulting in a misguided
rationale. This highlights the ongoing challenge
of LLM comprehension when dealing with
wordplay, sarcasm, and other forms of nuanced
communication within memes.

The third category of error observed is the over-
generalization of certain keywords identified as
identity terms. In Appendix Figure 11 (c), the LLM
misinterprets the context due to this limitation.
The presence of the word "sandwich" triggers a
bias within the classifier, leading the model to
predict the meme as misogynous wrongly. Despite
the meme’s offensive nature, it does not aim to
degrade women; instead, it advocates violence in
general. However, the LLM misunderstood the
context based on the keyword and generates, “The
use of the word ‘sandwich’ is also significant, as it
is often used to describe women in a derogatory
way." showcasing the overgeneralization of this
term without contextual consideration.

The last error category we address involves dis-
crepancies arising from subjectivity inherent in the
annotation process. Despite the LLM generating
accurate rationales aligned with the meme’s con-
text, misclassification occurs when the predicted
label fails to align with the actual label (Appendix
Figure 11 (d)). Identifying and rectifying such
subjectivity is a complex and ongoing area of re-
search. Prior studies on annotation highlight the
challenge of effectively mitigating bias and sub-
jectivity despite the implementation of annotation
schemes (Davidson et al., 2019). This underscores
the need for further exploration and refinement of
annotation methodologies to enhance the reliabil-
ity and objectivity of classification tasks in natural
language processing.

E.1 Further Categorization of Errors
In Appendix Figure 4, we performed a compre-
hensive error analysis to assess the performance
variations of the proposed models across the above-
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Figure 11: Error analysis of wrong predictions done by our proposed model M3Hop-CoT

mentioned error categories. CLIP_MM exhibited
limitations in reasoning and comprehending iden-
tity terms, demonstrated by a high rate of overgen-
eralization errors (23.93%). This suggests potential
deficiencies in understanding the diverse identities
within the meme text. While CLIP_MM+GPT4
improved reasoning and identity comprehension,
it still struggled with annotation errors, point-
ing towards potential data labeling issues. Con-
versely, CLIP_MM+ChatGPT achieved enhance-
ments across all the metrics, indicating superior
overall performance and improved contextual un-
derstanding. CLIP_MM+Llama showed relatively
lower overgeneralization and annotation errors, but
reasoning failures still exist. Finally, our M3Hop-
CoT model achieved the lowest overall error rate,

demonstrating significant advancements in reason-
ing and identity term comprehension. However,
annotation errors remain an area for further refine-
ment. These findings highlight the importance of
continuous improvement to mitigate errors and en-
hance the capabilities of these models for tackling
complex meme tasks.

F Future Works

While our current zero-shot prompting approach
effectively encourages the LLM to generate ratio-
nales for misogyny detection, future work could
explore fine-tuning the LLM specifically for misog-
yny detection within memes. Fine-tuning can
enhance contextual reasoning by understanding
the dataset’s pattern, potentially leading to more
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Figure 12: Analysis of rationale generated by the LLMs for the cultural diversity

context-rich rationales and improved misogyny de-
tection. Additionally, it can be particularly bene-
ficial for low-resource domains like misogynous
meme identification, offering the potential for su-
perior performance compared to a general-purpose
LLM. However, the increased computational cost
associated with fine-tuning requires careful consid-
eration, especially when dealing with large datasets
or computationally expensive LLM architectures.
A future evaluation comparing zero-shot prompting
and fine-tuning within our LLM-based model will
be crucial for determining the optimal approach
for achieving both accurate and efficient misogyny
detection in memes.
Another dimension of this work could be related
to the scene graph. In the future, we can aim to

improve scene graph analysis to mitigate object
and relationship recognition errors within memes.
This can done by exploring the creation of dynamic
scene graphs that adapt in real time to the evolv-
ing themes and symbols within memes. This can
work better for handling cartoon illustrations and
low-visibility images.
Another critical area for future work lies in en-
hancing the ability of LLMs to perform complex
contextual reasoning within the domain of memes.
As discussed in the error analysis (c.f. Section
5.5), misogyny in memes often relies on subtle
cues, wordplay, sarcasm, and other forms of com-
munication. Current LLMs may struggle to grasp
these subtleties, potentially leading to misinterpre-
tations and inaccurate rationale generation. LLMs
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could benefit from being equipped with pragmatic
reasoning techniques that enable them to consider
the meme’s context, including the speaker’s intent,
cultural references, and social norms. This would
allow the LLM to move beyond the literal meaning
of words and understand the underlying message.

G Frequently Asked Questions (FAQs)

Que 1: Why did we choose an emotion, target-
aware information, and context as the key
factors to generate rationale with LLMs.
Response: Extensive previous research demon-
strates the critical role of meme emotions in
identifying potential toxicity in memes (Chauhan
et al., 2020; Akhtar et al., 2022; Ramamoorthy
et al., 2022; Bandyopadhyay et al., 2023; Sharma
et al., 2024). These studies also indicate that a
major limitation of existing meme identification
classifiers is their insufficient contextual under-
standing (Kumari et al., 2021). Our approach
leverages Large Language Models (LLMs) to
bridge this gap by integrating comprehensive
contextual analysis. Furthermore, targeted
information is essential for identifying harmful
content, as emphasized by Sharma et al. (2022a).
Previous methods primarily relied on supervised
learning, which requires extensive data annotation,
thereby increasing costs and potential for error. In
contrast, our methodology utilizes the capabilities
of LLMs to process psycholinguistic features in
a cost-effective and error-minimizing manner,
thereby enhancing the rationality and effectiveness
of meme analysis.

Question 2: Why are the results of the MAMI
dataset presented for both the development and
test sets?
Response: The MAMI dataset, part of SemEval-
2022 Task 5 on Multimedia Automatic Misogyny
Identification, aims to explore detecting misogy-
nous memes. This dataset’s authors have provided
development (dev) and test sets to enable compre-
hensive evaluation. Presenting results on both sets
allows us to assess the model’s generalizability
and robustness across different subsets of data.
This dual-set evaluation strategy ensures that
our findings are significant and that the model’s
performance is robustly demonstrated under varied
conditions.

Que 3: Which model serves as the baseline for
implementing CoT reasoning?
Response: The baseline model for implement-
ing CoT reasoning is our CLIP-based model,
CLIP_MM. This model integrates the CLIP
framework’s textual and visual encoders to extract
respective features from memes. Feature fusion is
achieved using the Multimodal Factorized Bilinear
(MFB) pooling technique, with a softmax classifi-
cation layer with two neurons for label prediction.
CLIP_MM is optimized using cross-entropy loss
and has demonstrated superior performance across
all other pre-trained visual-language models for
Misogynous meme identification, as evidenced
in Table 2. Its effectiveness establishes it as the
foundational model for subsequent enhancements
with LLM-based techniques.

Que 4: We have written in the results analysis
part: “We also observed that multimodal
baselines give better results than unimodal
ones." Isn’t it obvious in a scenario like meme
analysis?
Response: While it might seem intuitive that mul-
timodal approaches would outperform unimodal
ones in meme analysis, this is not universally true.
Thomason et al. (2019) has shown instances where
unimodal inputs surpass multimodal ones, often
due to noise and interference in multimodal signals,
which can obscure rather than clarify the context.
The intention behind highlighting this observation
in our study was not to restate the obvious but
to provide empirical evidence supporting the
efficacy of multimodal systems, specifically in
meme analysis tasks within our dataset. This
empirical validation emphasizes the practicality
and effectiveness of using multimodal techniques
for handling memes, strengthening our research’s
findings. But, yes, we agree that multimodal
systems should be better than unimodal systems.

Que 5: Why were uniform metrics not em-
ployed across all datasets? This approach could
potentially enhance the uniformity of the paper.
Response: The four datasets utilized in our
evaluation are publicly available and have been
widely adopted in SemEval or other competitions
hosted by respective organizations, with the
exception of the harmful memes dataset. The
authors of the original dataset papers employed
specific metrics that have since become standard
for these datasets. We opted to use the same
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Figure 13: Predictions from different models for the MAMI Dataset

metrics to facilitate direct comparisons with the
state-of-the-art (SOTA) results reported in these
papers. This approach ensures that our evaluation
is relevant and consistent with existing literature,
thereby clearly benchmarking against established
results.

22130



Figure 14: Illustration of context generation using only prompt by Llama LLM for test case 1. (a). Prompt without
using Entity-Object-Relationship, (b). Prompt with visual information i.e., using Entity-Object-Relationship

Figure 15: Illustration of context generation using only prompt by ChatGPT LLM for test case 1. (a). Prompt
without using Entity-Object-Relationship, (b). Prompt with visual information i.e., using Entity-Object-Relationship
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Figure 16: Illustration of context generation using only prompt by Mistral LLM for test case 1. (a). Prompt without
using Entity-Object-Relationship, (b). Prompt with visual information i.e., using Entity-Object-Relationship

Figure 17: Illustration of context generation without scene graph using our CoT prompt with Mistral LLM for test
case 1.
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Figure 18: Illustration of context generation using our CoT prompt with Mistral LLM for test case 1.

Figure 19: Illustration of context generation using our CoT prompt with ChatGPT LLM for test case 1.
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Figure 20: Illustration of context generation using our CoT prompt with Llama LLM for test case 1.
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Figure 21: Illustration of context generation using only prompt by Llama LLM for test case 2. (a). Prompt without
using Entity-Object-Relationship, (b). Prompt with visual information i.e., using Entity-Object-Relationship

Figure 22: Illustration of context generation using only prompt by ChatGPT LLM for test case 2. (a). Prompt
without using Entity-Object-Relationship, (b). Prompt with visual information i.e., using Entity-Object-Relationship
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Figure 23: Illustration of context generation using only prompt by Mistral LLM for test case 2. (a). Prompt without
using Entity-Object-Relationship, (b). Prompt with visual information i.e., using Entity-Object-Relationship

Figure 24: Illustration of context generation without scene graph using our CoT prompt with Mistral LLM for test
case 2.
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Figure 25: Illustration of context generation using our CoT prompt with Mistral LLM for testing case 2.

Figure 26: Illustration of context generation using our CoT prompt with ChatGPT LLM for testing case 2
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Figure 27: Illustration of context generation using our CoT prompt with Llama LLM for testing case 2.
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