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Abstract

Multilingual pre-trained language models
(mPLMs) have demonstrated notable effective-
ness in zero-shot cross-lingual transfer tasks.
Specifically, they can be fine-tuned solely on
tasks in the source language and subsequently
applied to tasks in the target language. How-
ever, for low-resource languages unseen during
pre-training, relying solely on zero-shot lan-
guage transfer often yields sub-optimal results.
One common strategy is to continue training
PLMs using masked language modeling ob-
jectives on the target language. Nonetheless,
this approach can be inefficient due to the need
to adjust all parameters for language adapta-
tion. In this paper, we propose a more effi-
cient solution: soft-prompt tuning for language
adaptation. Our experiments demonstrate that
with carefully designed prompts, soft-prompt
tuning enables mPLMs to achieve effective
zero-shot cross-lingual transfer to downstream
tasks in previously unseen languages. No-
tably, we found that prompt tuning outper-
forms continuously trained baselines on two
text classification benchmarks, encompassing
20 low-resource languages while utilizing a
mere 0.28% of the tuned parameters. These re-
sults underscore the superior adaptability of
mPLMs to previously unseen languages af-
forded by soft-prompt tuning compared to tra-
ditional fine-tuning methods.'

1 Introduction

The issue of gathering sufficient annotated data for
downstream tasks becomes particularly challeng-
ing for low-resource languages, leading to exten-
sive research on zero-shot cross-lingual transfer.
This basic approach involves fine-tuning a model
using annotated data in a source language and eval-
uating its performance directly on data in a far-
get language. Multilingual pre-trained language

!The source code is publicly available at
https://github.com/MiuLab/UnseenAdapt.
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Figure 1: An example of zero-shot cross-lingual transfer
to an unseen language with soft-prompt tuning.

models (mPLMs) have demonstrated remarkable
success in zero-shot cross-lingual transfer across
various NLP tasks (Wu and Dredze, 2019; Con-
neau et al., 2020; Deshpande et al., 2022). Despite
significant progress, it is impractical for mPLMs
to cover all languages globally due to two primary
reasons. First, including additional languages in-
creases the vocabulary size, posing challenges in
managing and maintaining. Second, there exists a
trade-off between the number of languages covered
and the model’s capacity (Conneau et al., 2020).
Consequently, when mPLMs encounter an unseen
target language, the performance of zero-shot cross-
lingual transfer often falls short of expectations.
Therefore, the task of adapting mPLMs to unseen
languages has emerged as a crucial concern. A
naive approach involves continuing to train PLMs
using the masked language modeling (MLM) objec-
tive on unlabeled text in the unseen target language,
aiming to leverage the language-specific capabil-
ities (Ebrahimi et al., 2022). However, with the
increasing number of parameters in PLMs, tuning
the entire model becomes more resource-intensive
and inefficient. Additionally, in the case of low-
resource unseen languages, the limited availability
of data for continued training may compromise
the model’s generalizability if full parameters are
tuned.

Prompting has emerged as a solution to avoid
the overhead associated with fine-tuning by leverag-
ing natural language prompts to query pre-trained
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Source Seen Unseen
(EN) Target Target
Fine-tuning 89.01 79.2 42.58
Prompt-tuning  88.94 79.9 43.35

Table 1: Gap between cross-lingual transfer to seen
and unseen target languages. The scores of seen target
languages are from Tu et al. (2022).

models. Tu et al. (2022) demonstrated the poten-
tial of prompt-tuning for zero-shot cross-lingual
transfer among languages already included in the
training data of mPLMs. Nevertheless, whether
this approach sustains comparable performance
when confronted with unseen target languages is
still questionable. To address this question, we
designed preliminary experiments to evaluate the
performance of zero-shot cross-lingual transfer for
both seen and unseen languages. We utilized XNLI
(Conneau et al., 2018b) as the task for seen tar-
get languages and AmericasNLI (Ebrahimi et al.,
2022) for unseen target language. The results are
presented in Table 1. Notably, we observed a sig-
nificant performance degradation when handling
languages unseen by mPLMs, evident in both fine-
tuning and prompt-tuning scenarios (79% to 43%).
This underscores the necessity of establishing an
effective and efficient adaptation mechanism for
mPLMs to new languages prior to engaging in
cross-lingual transfer.

Building upon prior research and empirical find-
ings, our objective is to adapt mPLMs to previously
unseen low-resource languages and achieve effec-
tive cross-lingual transfer. In this challenging sce-
nario, the model lacks prior exposure to the target
language, necessitating the development of novel
strategies to accomplish our objective. At the same
time, the adaptation process needs to be parameter-
efficient, as tuning all parameters becomes imprac-
tical with the increasing scale of mPLMs. In this pa-
per, we investigate the effectiveness of soft-prompt
tuning for adapting mPLMs to unseen languages.
Specifically, we keep all parameters in the mPLM
frozen and solely focus on tuning the prefix soft
prompts within the overall framework. Our results
demonstrate that incorporating soft prompts signif-
icantly enhances the mPLM’s ability to generalize
to new languages, leading to a superior zero-shot
cross-lingual performance on downstream tasks
compared to fine-tuning. Figure 1 illustrates a sim-
plified example of the zero-shot cross-lingual trans-
fer process in our experiments. In summary, our

contributions can be summarized in 3-fold:

* We are the first to extend the generalization
of mPLMs to unseen languages using only
soft-prompt tuning.

* We demonstrate that unseen low-resource
language adaptation based on soft prompts
outperforms fine-tuning in zero-shot cross-
lingual transfer, even with only 0.28% of the
parameters being tunable.

* Our results are comparable to MAD-X, a
strong method for zero-shot cross-lingual
transfer while utilizing 17 times fewer param-
eters.

2 Related Work

Multilingual pre-trained language models
(mPLMs) Multilingual pre-trained models focus
on learning language-agnostic embedding for a
wide range of NLP downstream tasks. In the begin-
ning, cross-lingual was achieved by aligning word
level representation(Conneau et al. (2018a); Grave
et al. (2018)). After the rise of the transformer-
based pre-trained model, many multilingual pre-
trained language models were proposed. mBERT
and XLM, introduced by Devlin et al. (2019) and
Lample and Conneau (2019) respectively, are both
multilingual models trained without supervised
cross-lingual alignment objectives. Conneau et al.
(2020) proposed XLM-R, trained in one hundred
languages solely with the masked language mod-
eling (MLM) objective, leading to notable perfor-
mance enhancements across various cross-lingual
transfer tasks. Additionally, they identify several
limitations of mPLMs, such as the transfer-dilution
trade-off and the curse of multilinguality.

Adapter Applying adapters (Rebuffi et al., 2017)
is one of the representative strategies to achieve
parameter-efficient fine-tuning. When performing
adapter tuning, the original model’s weight is un-
touched and only the newly added adapter layers
are tuned. Houlsby et al. (2019) utilize adapter to
achieve transfer learning to multiple downstream
tasks and attain near fine-tuning performance while
having significant trainable-parameter reduction.
Pfeiffer et al. (2020) introduced MAD-X, a mod-
ular framework designed to perform parameter-
efficient cross-lingual transfer through the use
of adapters. Their framework trains a language
adapter (LA) for each source and target language
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using MLM, and a task adapter (TA) for the task
from the source languages, incorporating the cor-
responding LA during training. During inference,
their method achieves impressive task performance
on the target language by stacking the task adapter
with the target language adapter, showcasing its
great potential for zero-shot cross-lingual transfer.

Prompt tuning Prompt tuning emerged as a strat-
egy to leverage knowledge from pre-trained models
and avoid the overhead associated with fine-tuning.
For instance, Lester et al. (2021) use trainable con-
tinuous prompts as input tokens for the pre-trained
model and show that prompt-tuning becomes more
competitive with scale. Similarly, Liu et al. (2022)
incorporate prefix embeddings into each layer of
the pre-trained model, resulting in more direct im-
pacts on model predictions and achieving perfor-
mance on par with fine-tuning across various model
scales. Tu et al. (2022) demonstrated the potential
of prompt-tuning for zero-shot cross-lingual trans-
fer. However, their experiments primarily concen-
trated on cross-lingual transfer among languages
that were already included in the training data of
the mPLMs. In contrast, our objective is to adapt
mPLMs to previously unseen and low-resource
languages, which poses a more challenging sce-
nario.

3 Soft-Prompt Language Adaptation

In this paper, our focus lies in investigating the
effectiveness of soft-prompt tuning in adapting
mPLMs to previously unseen low-resource target
languages. We aim to evaluate its performance in
zero-shot cross-lingual transfer across downstream
tasks. The experimental procedure comprises two
stages, as illustrated in Figure 2.

3.1 MLM on Unlabeled Data

The first stage aims to adapt the mPLM to the tar-
get language, which has not been seen before. To
ensure the adaptability of soft prompts across both
the source language and the unseen target language,
we combine unlabeled data from both languages
and fine-tune the soft prompts using the masked
language model objective. Typically, the source
language is relatively high-resource, allowing us
to obtain more unlabeled data. However, to pre-
vent the adapted model from being overly biased
towards the source language, we adjust the amount
of source language unlabeled data used based on

the quantity of unlabeled data available for each
target language, aiming for a balanced distribution.

Our soft-prompt tuning framework follows the
design proposed by Liu et al. (2022), which incor-
porates tunable prefix tokens into each layer illus-
trated in the left part of Figure 2. This design offers
a more direct influence on the model’s predictions
by modifying the output of each layer.

3.2 Tuning on Source-Language Labeled Data

The second stage involves performing soft-prompt
tuning on the downstream task in the source lan-
guage and subsequently transferring the model to
the target language in a zero-shot manner. First,
we use the tuned soft-prompt in stage 1 as initial-
ization for this stage. This design aligns with the
Soft Prompt Transfer proposed by Vu et al. (2022).
To further leverage the capacity of masked token
prediction from the soft-prompt obtained in stage 1
(see Section 3.1), we employ a template and a ver-
balizer (Schick and Schiitze, 2021) to transform
the input of the downstream task into a masked lan-
guage modeling problem. For more details about
our implementation, please refer to Appendix A.
Since we only tune the soft-prompt on source-
language labeled data, we need to ensure the trans-
ferability of tuned model and avoid the catastrophic
forgetting (McCloskey and Cohen, 1989) on the
target language. Previous works found that the
upper layers of mPLMs are more task-focused
and language-independent (Libovicky et al., 2020;
Foroutan et al., 2022). Based on this observation,
we propose to tune only the soft-prompt of Top-K
layers, shown in the right part of Figure 2. Sec-
tion 5.4 provides further analysis regarding the se-
lection of K. By tuning only the prompts in the
upper layers, we can enhance cross-lingual trans-
ferability by limiting task-focus capacity to stay
in language-dependent top layers and preserving
language-dependent information in the lower lay-
ers. After training, we evaluate our model directly
on the corresponding task in the target language.

Objective function Let M be the parameters of
the mPLM and N be the number of layers in the
mPLM. Furthermore, we denote the parameters of
the soft prompts as 0 = {6, 0s, ...,0x }, where 0;
is the parameters of the soft prompt of the i-th layer.
Finally, we define a verbalizer v to be a function
that maps each label to a specific token which can
represent the meaning of that label. The probability
of classifying input x as label y can be represented

18985



MLM on Unlabeled Data

_ - Initialization
/ - ancha qullqiy
! 1 f
Layer N
Layer 3
Prompt mPLM
Layer 2
Layer 1

(S SN S S
Manam] [MASK] kunallangal [MASK] kanchu]

Manam ancha kunallanga qullgiy kanchu
Source language 4

unlabeled data

Mixed
unlabeled data

Target language
unlabeled data

Tuning on Source-Language Labeled Data

Probability

T - ol - E>Contradiction
~ z ©
N 8 =
v L= 2
\4
Layer N
Layer N-K+1
Prompt mPLM
Layer N-K
Layer 1

?
[MASK] That's what | think. [SEP] | don’t think so.

Tuned

("That's what | think." , "l don’t think so.")

Frozen

Source language
labeled data

Figure 2: Illustration of our soft-prompt language adaptation. Left: In the first stage(Sec. 3.1), we perform soft-
prompt tuning on unlabeled data in both source and unseen target languages via MLM for language adaptation.
Right: In the second stage(Sec. 3.2), we initial the soft prompts based on the results from the first stage. The soft
prompts of selected layers are then fine-tuned using a template and a verbalizer specific to the downstream task in

the source language.
as:

P(y|x0,M)=

P({mask) = v(y) | z,0, M) W

The training objective is to maximize the like-
lihood of verbalized label tokens predicted by the
MLM head, tuning only the soft prompts in the last
K layers :

argmax ZP(y | z,0, M) (2)

ON-—K+1,0N—K+2:-0N

After training, we evaluate our model directly
on the corresponding task in the target language .

4 Experiments

4.1 Data

To evaluate the effectiveness of prompt-based lan-
guage adaptation, we conduct experiments on two
text classification datasets including multiple low-
resource languages.

1. MasakhaNEWS (Adelani et al., 2023): This
dataset focuses on news topic classification
and encompasses 16 languages commonly
spoken in Africa. Since our emphasis is on
languages unseen by the mPLMs, we only
utilize eight of these languages, which are
unseen by XLM-R, for evaluation. During

the first stage of our procedure, we use the
news articles of each language in the training
set as unlabeled data, as only the testing set
is required to assess zero-shot performance.
Furthermore, Hausa (hau) is selected as the
source language since it covers all the news
topics used in MasakhaNEWS.

2. AmericasNLI (Ebrahimi et al., 2022): Ex-
tending XNLI (Conneau et al., 2018b), this
dataset incorporates ten Indigenous languages
of the Americas, all of which are character-
ized by limited linguistic resources and are
unseen by the XLM-R model. The unlabeled
data for these languages are accessible via
the AmericaNLP repository.” English serves
as the source language, and the MultiNLI
dataset (Williams et al., 2018) is employed
as labeled data for the second stage of our
procedure.

The comprehensive list of languages along with
their corresponding unlabeled data sources is pro-
vided in Appendix B. As illustrated in Table 4,
the quantity of unlabeled data for languages in
MasakhaNEWS averages around 1K, whereas for
languages in AmericasNLI, it ranges from 4K to
125K.

Zhttps://github.com/AmericasNLP/americasnlp2021
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4.2 Setup

In this study, all experiments are conducted us-
ing the XLM-R model (Conneau et al., 2020) of
LARGE size as the baseline. We set the length
of the soft prompt to 32. For soft-prompt tuning
on unlabeled text in stage 1, we ensured that the
amount of English data used was equivalent to the
amount of data available in the target language. Fur-
thermore, We masked 15% tokens for each input
sentence. In this stage, We train soft prompts on
unlabeled data for every target language for 100K
steps, with a batch size of 32 and a learning rate of
5e-3. For soft-prompt tuning on the downstream
task in stage 2, we set the number of trainable lay-
ers of soft-prompt K to 18. In this stage, the soft
prompts are trained on labeled data in the source
language for 10 epochs, with a batch size of 32 and
a learning rate of le-3.

4.3 Baselines

Fine-tuning based baselines Our main baseline
for zero-shot cross-lingual transfer is fine-tuning
the full XLM-R (Conneau et al., 2020). We com-
pare the zero-shot performance of XLM-R with
and without adaptation to the target language, fol-
lowing the approach outlined by Ebrahimi et al.
(2022). In the without adaptation setting, XLM-R
is fine-tuned on the training set in the source lan-
guage and directly evaluated on the testing set in
target languages. In the with adaptation setting,
XLM-R is additionally trained on unlabeled data
in the target language using the MLM objective
before fine-tuning. For tuning on unlabeled data
in the target language, we set batch size to 32 and
learning rate to 5e-3. For tuning on the downstream
task in the source language, we set batch size to 32
and learning rate to le-6.

Prompt-tuning zero-shot transfer Tu et al.
(2022) demonstrated the effectiveness of prompt-
tuning for zero-shot cross-lingual transfer. We
adopt a similar experimental setup to theirs, where
we keep XLM-R frozen, conduct soft-prompt tun-
ing using the training set of the source language,
and evaluate the performance of zero-shot cross-
lingual transfer on the testing set in target lan-
guages. We set the length of the soft prompt to
32, with a batch size of 32 and a learning rate of
le-3.

Adapter-based language adaptation To further
compare with parameter-efficient language adap-

tation approaches, we use MAD-X, an adapter-
based language adaptation method, as an additional
benchmark. For a fair comparison, we perform
MAD-X experiments using the XLM-R checkpoint
of LARGE size. As the original MAD-X paper
(Pfeiffer et al., 2020) does not cover the target lan-
guage we conduct experiments on, we retrain their
models on unlabeled data for all target languages.
For English, we utilize the checkpoint provided in
their AdapterHub 3. We adopt the adapter reduc-
tion factors specified in the original paper, which
are 2 for language adapters and 16 for task adapters.
For training both types of adapters, we set batch
size to 32 and learning rate to le-4.

4.4 Results

Table 2 presents the results of zero-shot
cross-lingual transfer on target languages in
MasakhaNews and AmericasNLI, respectively.
First, it can be observed that purely zero-shot
transfer without adapting to the unseen target lan-
guage results in a lower average accuracy. All
models with adaptation outperform all models
without adaptation, highlighting the necessity of
adapting to unseen languages. Second, our soft-
prompt-based adaptation method (Ours) demon-
strates comparable zero-shot cross-lingual transfer
performance to the best baseline in both datasets,
despite introducing relatively fewer trainable pa-
rameters compared to other baselines. This under-
scores the effectiveness and parameter-efficiency
of soft-prompt-based language adaptation, as well
as its generalizability across different types of clas-
sification datasets. Further details regarding the
comparison of trainable parameter quantities are
presented in 5.1.

Finally, the impact of unlabeled data volume
discrepancies in the target language on various lan-
guage adaptation methods can also be observed
from Table 2. Adapter-based language adaptation
(MAD-X) demonstrates better performance with
a higher volume of target language data, as evi-
denced by the results for AmericasNLI. Conversely,
in MasakhaNEWS, where target language data is
relatively scarce, MAD-X is less effective com-
pared to fine-tuning. Soft-prompt-based language
adaptation shows consistently good average scores
across both datasets, indicating its higher versatility
and stable performance regardless of the quantity of
target language data. This versatility is particularly

Shttps://adapterhub.ml
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Model ibo lin lug pcm  run sna tir yor | Avg.
Zero-shot

Fine-tuning 6795 7486 6054 93.11 69.25 58.27 66.54 67.64 | 69.77
Prompt-tuning 64.36 66.86 4350 91.15 6335 4932 5441 6740 | 62.54
Zero-shot w/ adaption

Fine-tuning 81.03 85.71 6143 9541 85.71 81.03 7243 83.45 | 80.78
MAD-X 7897 78.86 56.05 86.23 76.71 7398 73.16 77.86 | 75.23
Ours 81.62 8248 7115 91.59 85.17 86.68 72.79 85.32 | 82.10

(a) MasakhaNEWS.

Model aym  bzd cni egn hch  nah oto quy shp tar ‘ Avg.
Zero-shot

Fine-tuning 40.67 4133 43.07 4293 3920 4539 4225 42.13 4827 40.53 | 42.58
Prompt-tuning 42.13 4147 44.67 4453 39.07 4593 4345 4440 48.00 39.86 | 43.35
Zero-shot w/ adaption

Fine-tuning 48.00 44.80 44.93 56.00 4240 4770 4251 49.73 46.40 42.67 | 46.51
MAD-X 60.93 46.00 41.73 62.27 37.33 47.29 4225 65.73 46.13 43.20 | 49.29
Ours 59.51 4284 44.04 6031 40.71 47.97 43.09 63.60 44.67 39.15 | 48.59

(b) AmericasNLI.

Table 2: The cross-lingual transfer results for soft prompt language (Ours) adaptation and each baseline. For Ours,

the results are averaged across 3 runs.

Method Trainable Checkpofnt

Parameter Size
Fine-tuning 816M 2.24GB
MAD-X 27TM 103MB
Ours 1.57TM 6.2MB

Table 3: The number of trainable parameters of each
language adaptation method and the checkpoint size for
one language.

crucial in low-resource language scenarios, where
acquiring substantial amounts of high-quality unla-
beled data may not be feasible.

5 Analysis

5.1 Parameter and Storage Efficiency

Table 3 shows the trainable parameters needed by
each baseline method and our soft prompt language
adaptation (Ours). The XLM-R baseline fine-tunes
the entire XLLM-R Large model, which has 560M
parameters. MAD-X with a reduction factor of 2
requires approximately 27M parameters. In con-
trast, our model has only 1.57M tunable parameters
in the soft prompts, accounting for approximately
0.28% of the original model’s parameters and 17
times fewer tunable parameters than MAD-X.

In addition, we also showed the disk space
needed to store a checkpoint when introducing a
new language. The XLM-R baseline needs an en-
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Figure 3: The average performance on Americas-
NLI (Ebrahimi et al., 2022) against different amount
of target language unlabeled data.

tire new model when adapted to a new language,
which costs the most space to store. MAD-X needs
a language adapter for a single language, while
soft prompt language adaptation requires a new
set of prefix soft prompts, which costs much less
space than the adapter. This significant reduction
in tunable parameters and storage demonstrates the
efficiency and practicality of our framework.

5.2 Size of Target Language Unlabeled Data

In this section, we look into analyzing the impact of
varying amounts of unlabeled data in the target lan-
guage on performance. As discussed in Section 4,
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there exists a notable contrast in the quantity of un-
labeled data available between MasakhaNews and
AmericasNLI, resulting in performance discrepan-
cies across different language adaptation methods.
Hence, our objective is to further examine the influ-
ence of data quantity on these language adaptation
techniques. In the experiment here, we focus on
AmericasNLI and systematically reduce the pro-
portion of unlabeled data in the target language to
25% and 50% for comparative analysis.

Figure 3 shows the zero-shot transfer perfor-
mance at each data quantity level. The figure indi-
cates that fine-tuning lacks a discernible correlation
with the amount of data available. This observation
can be attributed to the fact that, in our experi-
ment, even at full data usage (100%), the average
dataset size is only 22.6K. This size is insufficient
for fine-tuning to achieve stable performance. Con-
versely, the other two parameter-efficient tuning
methods, MAD-X and soft-prompt, show signifi-
cant improvement with increasing unlabeled data.
Previous studies have suggested that parameter-
efficient tuning demonstrates better generalizabil-
ity and achieves superior performance compared to
fine-tuning when there is limited labeled data avail-
able for downstream tasks (Li and Liang, 2021).
Our experiments reveal a similar trend when us-
ing unlabeled data for language adaptation. Addi-
tionally, soft-prompt tuning outperforms MAD-X
when there is a relatively small amount of unla-
beled data. This is consistent with observations
from MasakhaNEWS, which has only around 1,000
unlabeled data points, where soft-prompt-tuning
shows superior performance. These findings sug-
gest that soft-prompt tuning is particularly effective
for truly low-resource target languages.

5.3 Few-shot Evaluation

We further conduct a few-shot evaluation to see
the models’ generalizability when encountering
extremely few labeled data for downstream tasks.
Here, we employ MasakhaNEWS (Adelani et al.,
2023) for evaluation. Similar to the previous exper-
iments, we use Hausa (hau) as the source language.
However, in this case, we reduce the downstream
labeled data to 5, 10, 20, and 50 samples per class.
The models are trained on such limited data and
then evaluated on the testing set of target languages
for zero-shot cross-lingual transfer.

Figure 4 presents our few-shot results. We ob-
serve that models without language adaptation
perform poorly in few-shot scenarios, and soft-
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Figure 4: The average few-shot performance on
MasakhaNEWS (Adelani et al., 2023).

0.300

0.175 4

Average absolute difference

0.150 4

vvvvvvvvvvvvvvvvvvvvvvvv

12345678 9101112131415161718192021222324
Layer

Figure 5: The changes in parameter values of soft
prompts at each layer. Experiment is conducted on
MasakhaNEWS (Adelani et al., 2023).

prompt-tuning performs considerably worse than
fine-tuning. Without prior training on the target
language to initialize soft-prompt effectively, sat-
isfactory performance cannot be achieved with in-
sufficient labeled data. In cases with adaptation,
both methods exhibit significant performance im-
provement, underscoring the importance of lan-
guage adaptation for enhancing knowledge in an
unseen language. Once proficiency in the target
language is attained, favorable cross-lingual trans-
fer results can be achieved even with few-shot la-
beled data. Additionally, we note that across most
different shot numbers, prompt tuning-based adap-
tation yields better cross-lingual transfer perfor-
mance than fine-tuning. This again aligns with
previous findings that soft-prompt-tuning has supe-
rior generalizability than fine-tuning when dealing
with few-shot labeled data (Li and Liang, 2021).
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5.4 Trainable Soft-Prompt Layers for
Downstream Tasks

In this section, we delve into the performance
analysis of various configurations of trainable soft-
prompt layers for downstream tasks (refer to Sec-
tion 3.2). Firstly, we aim to validate whether the up-
per layers actually exhibit more task-centric behav-
ior. To achieve this, we fine-tune the soft prompts
across all layers (K = 24) and quantify the resul-
tant change in parameter values. This change is
defined as the absolute difference between the pa-
rameter values of the soft prompts before and after
tuning. Figure 5 illustrates the changes observed in
soft prompts across each layer. The upper layers
exhibit larger changes in parameters compared to
the lower ones, with layer 20 demonstrating the
most significant change. This discovery indicates
that the upper layers have more influence and im-
portance during fine-tuning for downstream tasks,
thereby corroborating the hypothesis of our design.

Secondly, we vary the value of K, representing
the number of trainable top layers during the la-
beled data tuning stage, and evaluate each configu-
ration using the test set from MasakhaNEWS (Ade-
lani et al., 2023). We refer to this setting as Top
K. Additionally, we conducted experiments where
the trainable layers are set to the bottom K layers,
referred to as Bottom K, and compared their per-
formance. Figure 6 illustrates the average accuracy
scores (in percentage) for each K selection, both
for the top and bottom layers settings. From the
figure, we can see a notable impact on the model’s
performance based on the selection of trainable
layers in the Top K setting. When K approaches
24, indicating nearly all layers have trainable soft
prompts, there’s a risk of overfitting to the source
language and loss of target language knowledge
acquired during the unlabeled data MLM stage.
Conversely, as K decreases towards 1, indicating
only a few top layers’ prompts are adjustable, the
model may lack the capacity to significantly adapt
its output. In addition, by comparing the Top K
and Bottom K settings, we find that selecting the
top K layers yields better performance compared
to the bottom K layers when the number of train-
able layers is the same. For instance, there is a
significant performance gap (80.53 versus 63.04)
between the top 6 layers and the bottom 6 layers.
This discovery again validates the hypothesis upon
which our design is based: the upper layers are
more task-focused and language-independent.

Accuracy (%)
N
w

67.5 1 —e— Top K layers
Bottom K layers
65.0 --- Fine-tuning

------ Adapter (MAD-X)

vvvvvvvvvvvvvvvvvvv

6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Trainable layers K

Figure 6: The average performance on
MasakhaNEWS (Adelani et al., 2023) with vary-
ing trainable layers on source-language labeled data.
When the same amount of layers are trainable, setting
them on top layers yields better performance than on
bottom layers.

Combining the findings above, we can con-
clude that it’s critical to carefully choose layers
for prompt tuning after target-language adaptation.
Selecting upper layers for prompt adjustment in
downstream tasks while preserving target language
information in lower layers is essential to prevent
catastrophic forgetting and ensure effective zero-
shot cross-lingual transfer. Though the selection
of the tunable layers affects the performance of
zero-shot transfer, the performance of the major-
ity of choices for parameter K for Top K setting
still outperforms traditional fine-tuning baseline.
These findings provide compelling evidence of the
efficacy of soft-prompt language adaptation.

6 Conclusion

In this paper, our objective is to adapt multilin-
gual pre-trained language models(mPLMs) to pre-
viously unseen languages and enhance their cross-
lingual transferability. Initially, we demonstrate
the necessity of adapting mPLMs to new languages
by comparing their performance in cross-lingual
transfer between known and unknown languages.
Subsequently, we propose using soft-prompt tun-
ing to accomplish efficient language adaptation and
effective zero-shot cross-lingual transfer to down-
stream tasks. Our primary findings indicate that
employing soft-prompt tuning for language adap-
tation can yield comparable performance to base-
line methods such as fine-tuning and adapter-based
approaches, while utilizing significantly fewer tun-
able parameters. Furthermore, we conduct various
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experiments to delve deeper into soft-prompt-based
language adaptation, examining factors such as
data and prompt settings. Our experiments reveal
that the soft prompts in lower layers function as a
language-dependent component while tuning only
the soft prompts in upper layers for downstream
tasks leads to improved results. Additionally, soft-
prompt-based language adaptation demonstrates
consistent performance even with limited amounts
of unlabeled target language data and few-shot
downstream data. These findings collectively af-
firm the superior efficiency of soft-prompt-based
language adaptation, both in terms of the number
of trainable parameters and the volume of data.

Limitations

In this work, we only focus on masked language-
based models. We leave the application of our
framework to the generative-based model as future
work. Besides, our current experiment only uti-
lizes XLM-R as the backbone model. If there are a
significant number of words or characters in the un-
seen language that cannot be properly encoded by
XLM-R, it may affect the performance of its zero-
shot cross-lingual transfer. In our future work, we
plan to conduct experiments with byte-level mod-
els to address this particular limitation and explore
alternative approaches to mitigate this restriction.

Additionally, we observe in the results that differ-
ent methods perform differently across languages,
each with their own strengths. Our experiments
suggest that the volume of unlabeled data for each
language is one of the factors influencing perfor-
mance. However, other linguistic factors may also
affect the adaptation results, such as language fam-
ily, text structure, and so on. These potential factors
were not explored in this study, but we hope to in-
vestigate them further in future work.
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A Template and verbalizer

For the template and verbalizer, we follow the no-
tation in Schick and Schiitze (2021). Let V be
mPLM’s token vocabulary which contains mask
token [M ASK], and L be the set of labels of the
downstream task. We denote an input of the down-
stream as a sequence of phrases x = (s1, S2, ..., Sp)
where s; € Vx* and the corresponding label as
y. Then We define a template to be a function
T that converts an input x to a sequence of to-
kens T'(x) € V*. Finally, we define a verbalizer
v : L = V to be a function that maps each label to
one token.

Template The template converts the origin input
phrases to another sequence that contains only one
mask token. Taking Natural Language Inference
(NLI) as an example. The input sequence contains
two phrases, the premise p and the hypothesis h.
The origin input sequence can be represented as
x = (p,h). The task involves analyzing the re-
lationship between them. Assume the template
concatenate mask token, the premise p, question
mark, the mask token, and the hypothesis &, the
actual input 7'(x) will:

18993


https://doi.org/10.18653/v1/2020.findings-emnlp.150
https://doi.org/10.18653/v1/2020.findings-emnlp.150
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://aclanthology.org/C18-1006
https://aclanthology.org/C18-1006
https://aclanthology.org/C18-1006
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://aclanthology.org/W19-6804
https://aclanthology.org/W19-6804
https://aclanthology.org/W19-6804
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://arxiv.org/abs/2210.12360
http://arxiv.org/abs/2210.12360
http://arxiv.org/abs/2210.12360
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077

Source Target Data Source(s) Size
Hausa (hau) Igbo (ibo) Adelani et al. (2023) 1.4K
Lingala (lin) Adelani et al. (2023) 0.6K
Luganda (lug)  Adelani et al. (2023) 0.8K
Naija (pcm) Adelani et al. (2023) 1K
Rundi (run) Adelani et al. (2023) 1.1K
chiShona (sna) Adelani et al. (2023) 1.2K
Tigrinya (tir) Adelani et al. (2023) 0.9K
Yorub4 (yor) Adelani et al. (2023) 1.4K

(a) MasakhaNEWS.
Source Target Data Source(s) Size
English (en) Aymara (aym) Tiedemann (2012) 6.5K
Bribri (bzd) Feldman and Coto-Solano (2020); Margery 7.5K

(2005); Jara Murillo (2018a); Adolfo Constenla
and Pereira (2004); Jara Murillo and Garcia
Segura (2013); Jara Murillo (2018b); Flores

Solérzano (2017)
Ashaninka (cni) Cushimariano Romano and Sebastian Q (2008) 3.8K
Guarani (gn) Chiruzzo et al. (2020) 26K
Wixarika (hch) Mager et al. (2018) 8.9K
Nahuatl (nah) Gutierrez- Vasques et al. (2016) 16K
Otomi (oto) https://tsunkua.elotl.mx 4.8K
Quechua (quy) Agi¢ and Vuli¢ (2019) 125K
Raramuri (tar) Galarreta et al. (2017); James Loriot and Day 14K
(1993); Montoya et al. (2019)
Shipibo-Konibo (shp) Brambila (1976) 14K
(b) AmericasNLI.

Table 4: List of the languages and the source of the unlabeled data for each of them used in our experiments.

T(x) =T(p,h) =p?[MASK]h

Verbalizer We define a specific set of vocabulary
tokens for each label, which can consist of tokens
from the source language s, the target language
t, or even other languages. After using the MLM
head of mPLM to extract the most likely substitute
token among the verbalizer’s range, we map it back
to the corresponding label as the prediction. Take
NLI for example, we can define v(entailment) =
{Yes, v(contradiction) = {No}, and v(neutral) =
{Neutral}. If the label is entailment, the model
should predict Yes on the mask token.

B Languages

The unlabeled low-resource target languages are
detailed in Table 4.
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