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Abstract

Recent progress with LLM-based agents has
shown promising results across various tasks.
However, their use in answering questions from
knowledge bases remains largely unexplored.
Implementing a KBQA system using tradi-
tional methods is challenging due to the short-
age of task-specific training data and the com-
plexity of creating task-focused model struc-
tures. In this paper, we present Triad, a unified
framework that utilizes an LLM-based agent
with multiple roles for KBQA tasks. The agent
is assigned three roles to tackle different KBQA
subtasks: agent as a generalist for mastering
various subtasks, as a decision maker for the
selection of candidates, and as an advisor for an-
swering questions with knowledge. Our KBQA
framework is executed in four phases, involving
the collaboration of the agent’s multiple roles.
We evaluated the performance of our frame-
work using three benchmark datasets, and the
results show that our framework outperforms
state-of-the-art systems on the LC-QuAD and
YAGO-QA benchmarks, yielding F1 scores of
11.8% and 20.7%, respectively.

1 Introduction

A question-answering system is designed to extract
information by converting a natural language ques-
tion into a structured query that can retrieve pre-
cise information from an existing knowledge base
(Omar et al., 2023a). The resolution of Knowledge
Base Question Answering (KBQA) typically in-
volves phases including question understanding,
URI linking, and query execution. Traditional
KBQA systems require the use of specialized mod-
els trained with domain datasets for question pars-
ing and entity linking (Hu et al., 2018; Omar et al.,
2023a; Hu et al., 2021). Large language models
(LLMs), however, have shown promising compe-
tencies in in-context learning using task-specific

fCorresponding authors.

demonstrations (Dong et al., 2022). LLMs have
recently been employed as agents in the execution
of complex problems. A framework that employs
LLM-augmented agents can generate actions or co-
ordinate multiple agents, thus improving the capac-
ity to handle complex situations (Liu et al., 2023).
Despite the remarkable performance of LLMs in
various tasks as evidenced in previous studies, a
comprehensive qualitative and quantitative evalu-
ation of KBQA frameworks empowered with an
LLM-based agent remains insufficiently explored.
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Figure 1: A system with multiple roles who focus on
sub-problems of each phase to solve a complex task.

Studies on KBQA with LLMs has attracted con-
siderable attention. Some works focus primarily
on highlighting the inability of LLMs to gener-
ate complete factoid results (Hu et al., 2023b; Tan
et al., 2023c) or demonstrating their potential ef-
ficacy in future research (Omar et al., 2023b; Tan
et al., 2023b). Other works concentrates on gener-
ating answers by prompt learning and incorporat-
ing external knowledge bases (Baek et al., 2023;
Tan et al., 2023a). Concurrently, LLMs can be
deployed to address each phase within Text2SQL
challenges(Li et al., 2023, 2024) or theorem proof
tasks(Dong et al., 2023). However, each phase of
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KBQA can be further decomposed into subtasks
and completed through an agentic approach that
provides feedback and cooperation. Additionally,
decomposing the task reduces the complexity of co-
operative working by allowing each role to concen-
trate on smaller sub-problems(Wang et al., 2020).
As illustrated in Figure 1, three roles in an orga-
nization work together to provide the final answer
for the overall task. The above observations spur
our exploration into the following question: How
does an LLLM-based agent solve KBQA tasks by
serving as multiple roles, and its performance is
comparable to systems trained specifically?

In this study, we introduce Triad, a unified
framework that leverages an LLM-based agent with
three roles to address KBQA tasks. Specifically, we
implement the agent consisting of an LLM as the
core, supplemented by various task-specific mod-
ules such as memory and executing functions. The
agent is assigned three distinct roles: a general-
ist (G-Agent) adept at mastering numerous small
tasks by the given examples, a decision maker (D-
Agent) proficient at identifying options and select-
ing candidates, and an advisor (A-Agent) skilled
at providing answers using internal and external
knowledge. The cooperation of these agent roles
composes a KBQA process containing four phases:
question parsing, URI linking, query construction,
and answer generation. We evaluate our framework
on three benchmark datasets in various difficulties.
The results show that our framework outperforms
state-of-the-art systems, demonstrated by 11.8%
and 20.7% F1 scores on the LC-QuAD and YAGO-
QA benchmarks, respectively'.

The contributions of this study can be summa-
rized as follows:

* We propose Triad, the first framework that
leverages an LLM-based agent to solve
KBQA tasks in all its four phases, without
specialized training models.

* We implement an LLM-based agent with vari-
ous task-specific modules that can act as three
roles, including a generalist, a decision maker,
and an advisor, to collaboratively solve KBQA
via focusing on subtasks.

* We evaluate the performance of Triad. The
results show a competitive ability compared

!Code and data are available at https://github.com/
ZJU-DCDLab/Triad.

to both state-of-the-art KBQA systems and
pure LLM methods.

2 Preliminaries

2.1 Phases of KBQA

A typical KBQA system has a process that encom-
passes four phases:

Question parsing involves converting natural
language questions into a structured format that
incorporates references to entities and relations.

URI linking entails associating and replacing
these entity and relation mentions with their corre-
sponding URIs within a knowledge base.

Query construction involves creating exe-
cutable queries in a standard format to extract an-
swers from knowledge bases.

Answer generation seeks to obtain the ultimate
answers either by performing queries within knowl-
edge bases or by directly querying an agent.

2.2 Roles of LLM-based Agent

Drawing an analogy to a software development sce-
nario, where coders complete small development
tasks, with the process and plan being decided by
the manager, and ultimately the outcome inspected
by the leader, we assign the following three roles
to an LLM-based agent to solve the KBQA task:

Agent as a generalist (G-Agent) is capable of
mastering various small tasks by providing a few
examples.

Agent as a decision-maker (D-Agent) adepts at
analyzing options and providing candidate results
as procedural feedback.

Agent as an advisor (A-Agent) is skilled in pro-
viding final answers with the aid of both external
and its own knowledge.

2.3 Task Formulation

A KBQA task refers to the process of solving a set
of subtasks S. Each subtask S; € S contributes to
one phase of the whole process. An LLM-based
agent Agent, with arole r can be used to resolve a
type of subtasks by its task-specific components, in-
cluding a language model L LM, a memory M emy,
a function F}, a prompt Pm¢t,; and a set of parame-
ters 6, using the set of role-related hyperparame-
ters o,.. The task can be formulated as follows:
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T
F(KBQA) = P f(S)
t=1

f(Sy) =Agent,(LLM, Memy, Fy, Pmt,, 6, 0,)
(D

, where T is the total number of subtasks, P is the

way to coordinate subtasks to solve the whole.

3 Triad Framework

The overall architecture of Triad is shown in Figure
2. Each role of the LLM-based agent, along with
its associated subtasks, is illustrated as follows.

3.1 G-Agent as a Generalized Solver

A generalized agent (G-Agent) proficiently man-
ages numerous tasks by leveraging learning from
limited examples through an LLM. In our frame-
work, a G-Agent can perform question parsing,
query template generation, or answer type classi-
fication as actions solely utilizing an LLM. These
three subtasks are illustrated as follows:

Triplet mention extraction: The process of ex-
tracting triplet mentions in question parsing in-
volves the conversion of a naturally phrased ques-
tion, denoted as (), into formatted triplets of entities
and relations. This subtask is executed employing
an LLM, which is guided by a prompt with a set
of prerequisites and a selection of examples. This
subtask can be represented as follows:

f(St'ri) :Agentg(LLMv Pmtt'l‘i7 Q:N)

Pmty; = [ITLStm‘, Shoty;, COT;%M] @
, where Agent, is the agent as a generalist to per-
form the triplet extraction subtask with N exam-
ples. Pmt,,; is the prompt to guide LLM to gen-
erate triplets from the question @), which consists
of instruction Ins;, examples Shoty,;, and chain-
of-thought prompt C'0T3},; (Kojima et al., 2022).

SPARQL template generation: The generation
of SPARQL templates in query construction in-
volves the use of an LLM to create a SPARQL
template that articulates the question using stan-
dard SPARQL syntax, replacing URI identifiers
with entity and relation variables. To derive pre-
cise and comprehensive answers from the knowl-
edge base using SPARQL queries, there are two
potential strategies. One approach involves the di-
rect generation of an executable SPARQL using

an LLM, though this method may significantly in-
crease LLM call times and error rates when nu-
merous candidate queries are in play. Alterna-
tively, a SPARQL template can initially be gen-
erated with entity and relation variables, which are
subsequently replaced with linked URIs. For the
sake of stability and efficiency, we opt for the sec-
ond strategy. This subtask can be denoted as:

f(Sqt) =Agenty(LLM, Pmtg, 0q, N),
Pmtg = [Insg, Shoty, Coly], 3)
eqt = [Qu f(Stm)]

, where Agent, is the agent as generalist to per-
form SPARQL template generation with A/ exam-
ples, f(Sti) is the triplets derived from the pre-
vious subtask, Pmty is the prompt for LLM to
generate SPARQL template.

Answer type classification: In the phase of an-
swer generation, the answer type classification sub-
task refers to the process of assigning a specific
category to a response according to the question.
This process serves as a guiding mechanism for the
framework to generate comprehensive and accurate
answers. This classification subtask is denoted as:

f(Sas) =Agenty(LLM, Pmtgs, Q,N),

4)
Pmtcls - [Inscl57 ShOtClS7 COTCZS]

, where Agent, is the agent as a generalist to per-
form type classification subtask with N examples,
Pmt is the prompt for LLM.

3.2 D-Agent as a Decision-Maker

An agent as a decision maker (D-Agent) is capable
of making candidate selections step by step through
filtering and choosing from given options, harness-
ing the capabilities of an LLM and KB as memory.
The D-Agent can effectively handle three subtasks,
which are delineated as follows:

Candidate entity selection: The selection of can-
didate entities in URI linking is pivotal to the ul-
timate efficacy of KBQA. Prior research has fo-
cused primarily on developing a semantic similarity
model to address this linking challenge. However,
the linking task requires numerous iterations of
searching within the knowledge base, which poses
a compatibility issue for LLM-oriented methods.
In our framework, an agent as a decision maker is
utilized initially to filter all potential entity URIs
from the knowledge base, subsequently deploying
an LLM to select candidate URIs from a pool of
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Figure 2: Our Triad framework leverages an LLLM-based agent with three different roles including a generalist, a
decision-maker, and an advisor to cooperatively handle a series of subtasks in the four phases of a KBQA process.

potential identifiers. For each entity, our aim is to
find the C most possible entity URIs which can be
used to traverse over the KB to get the final answer.
The entity selection subtask can be denoted as:

f(Ses) =Agentq(LLM, Memes, Fes,
Pmt687 9687 lC)a
Memes = [KB, LiStes] Ocs = [Qv f(Stm)]

&)

, where Agent, is the agent as a decision maker to
perform the entity selection subtask with question
@, extracted triplets f(Sy;) and memory M em.s,
Mem,s is composed of a knowledge base K B and
a list of entity URIs List., filtered from K B using
a text similarity matching function F,s, Pmt.s is
the prompt for LLM to perform the subtask, IC
is the hyperparameter of Agenty, indicating the
number of candidates selected by LLM.

Candidate relation selection: The task of can-
didate relation selection in URI linking presents
considerable challenges due to the discrepancies
between word forms and meanings. Nevertheless,
the existence of reasoning paths in the knowledge
base can be utilized to allow for a significant reduc-
tion of the search space in relation linking. In our
framework, an agent as a decision maker endeavors
to sieve through all potential relation URIs by nav-
igating the knowledge base with candidate entity
URIs generated from the previous subtask. Subse-
quently, an LLM is used to select the top X most
probable relation URIs for output. The relation

selection subtask can be denoted as:
f(Srs) :Agentd(LLMa Memy.s, Fys,

Pmt,g, 97‘87 K)v
Mem,s = [K37 LiStrs] 7‘9rs - [Q7 f(SES)]

(6)

, where memory M em,¢ is composed of the knowl-
edge base K B and a list of possible relation URIs
List, filtered from K B using a one-order travers-
ing function F,s. Pmt,s is the prompt for LLM
to perform relation selection. K is the number of
relation URIs selected by LLM.

Candidate SPARQL selection: The subtask of
candidate SPARQL selection in query construc-
tion involves determining the appropriate SPARQL
queries to obtain the final answers. Given a
SPARQL template generated by the G-Agent,
along with multiple candidate URIs selected from
the D-Agent in previous subtasks, our D-Agent is
targeted to identify the most plausible query. To fur-
ther reduce the difficulty of selection, an executor
function is applied to eliminate queries that can-
not retrieve any results from the knowledge base.
In conclusion, our aim in this subtask is to use D-
Agent to construct executable SPARQLs and find
the most possible one given a query candidate list
with supported information. The SPARQL selec-
tion subtask can be denoted as:

f(Sqs) =Agentq(LLM, Memys, Fys,
Pmtys, 045, K),
Memys =[KB, Listg],
Ogs =[Q, f(Ses), f(Srs), f(Sqt)]

)
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, where memory M em, is composed of a knowl-
edge base KB and a list of possible SPARQLs
List,s constructed with SPARQL template f(.Sy),
entity URIs f(S.s), and relation URIs f(.S,s) by
the function Fs, Pmtys is the prompt for LLM to
perform query selection, KL = 1 is the number of
queries selected by LLM.

3.3 A-Agent as a Comprehensive Advisor

An advisory agent (A-Agent) is capable of process-
ing a question and a corresponding type of answer
as input. Its response is generated by either extract-
ing information from an external knowledge base
or by utilizing its internal knowledge to provide
a direct answer. This comprehensive answering
subtask can be described as follows:

Comprehensive answering: The objective of
comprehensive answering in the answer genera-
tion phase is to derive a definitive response based
on an incoming question. Previous work (Omar
et al., 2023b) has demonstrated that LLMs are
more proficient in delivering single-fact responses
and making Boolean judgments. Given this un-
derstanding, we implement an advisory agent that
incorporates a simple policy to facilitate a com-
prehensive answering approach. Specifically, if a
question yields a final SPARQL generated from the
preceding steps, A-Agent extracts elements from
the knowledge base to give the answer. Conversely,
if the agent does not receive a feasible SPARQL,
A-Agent provides a direct response with LLM’s
internal knowledge, following the prompt based on
the type of the answer. Additionally, A-Agent will
send a retry signal to previous phases if no result
is generated. The subtask can be formulated as
below:

f(Seca) =Agento(LLM, Memeq, Feq,
Pmtcaa ecaa T)a (8)
Meme, = [KB] aeca = [Qa f(qu)a f(Scls)]

, where Agent, is the agent as an advisor to per-
form a comprehensive answering for the question
@ with a memory Mem,, of knowledge base,
Pmt., is the prompt for LLM to perform a di-
rect response according to the type of the answer,
f(Sgs) is the final query and f(S;) is the answer
type, 7 is the maximum times to retry for previous
phases if no result is returned from K B.

4 Performance Evaluation

4.1 Experimental Settings

Indexed Knowledge Bases: The efficacy of our
framework is assessed through the collection of
two real knowledge bases, specifically DBpedia
and YAGO. DBpedia (Auer et al., 2007) serves
as an accessible knowledge base extracted from
Wikipedia, while YAGO (Pellissier Tanon et al.,
2020) is a large knowledge base that includes in-
dividuals, cities, nations, and organizations. We
index the triples and the mentions of entities and re-
lations in a Virtuoso endpoint and an Elasticsearch
server, respectively.

KBQA Benchmark Datasets: We evaluate our
framework on datasets including YAGO-QA, LC-
QuAD 1.0, and QALD-9, which have various diffi-
culties in interpreting the questions. These datasets
contain questions in English, paired with their re-
spective SPARQL queries, and accurate responses
derived from a specific knowledge base. QALD-9
(Usbeck et al., 2018) and LC-QuAD 1.0 (Trivedi
et al., 2017) are frequently used to evaluate QA sys-
tems with DBpedia. The recently published YAGO-
QA in (Omar et al., 2023a), features questions ac-
companied by annotated SPARQL queries sourced
from YAGO. The statistics for three benchmarks,
along with their associated knowledge bases, are
depicted in Table 1.

Baseline Methods: We evaluate Triad against
traditional KBQA systems such as KGQAN (Omar
et al., 2023a), EDGQA (Hu et al., 2021) and gAn-
swer (Hu et al., 2018). This comparison shows
how our LLM-based agent framework can rival
full-shot systems with just a few examples. Addi-
tionally, we contrast our framework with pure GPT
models like GPT-3.5 Turbo and GPT-4 2 to exhibit
Triad’s architectural performance. We treat these
foundation models as few-shot methods to answer
the questions referring to some examples.

Implementation Details: Triad is implemented
with Python 3.9. We incorporate LLM capabilities
to our multi-role agent via OpenAl’s API services.
The names of entities and relations from knowl-
edge bases are indexed in an ElasticSearch 7.5.2
server for text matching. All triples are imported
into an SPARQL endpoint of Virtuoso 07.20.3237
for retrieval. Triad requires four hyperparameters:
the number of examples G-Agent uses for subtask

Zhttps://platform.openai.com/docs/models
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Benchmarks Benchmark Statistics

#Questions KB #Triples Virtuoso Size ES size
LC-QuAD 1.0 1000 DBpedia-04  397M 35.40G 1.56G
QALD-9 150 DBpedia-10  374M 36.89G 1.57G
YAGO-QA 100 YAGO-4 207TM 24.85G 0.54G

Table 1: The statistics of KBQA benchmarks, including the number of questions number, the number of triples, the
size of index in Virtuoso and Elasticsearch.

LC-QuAD 1.0 QALD-9 YAGO-QA
Type  Frameworks R F1 P R F1 P R F1
full-shot gAnswer - - - 0293 0327 0298 0585 0341 0430
EDGQA 0505 0.560 0.531 0313 0.403 0320 0419 0408 0414
KGQAN 0.587 0461 0516 0511 0387 0441 0485 0.652 0.556
few-shot GPT-3.5 0269 0251 0266 0240 0217 0228 0171 0.142 0.155
GPT-4 0336 0344 0340 0250 0249 0249 0.193 0.190 0.191
Triad-GPT3.5 0.490 0519 0504 0293 0302 0297 0.660 0.639 0.649
Triad-GPT4  0.561 0.568 0.564 0408 0425 0.416 0.690 0.664 0.677

Table 2: The performance of our proposed Triad on three benchmarks, comparing with traditional KBQA systems
(full-shot) and pure LLM (few-shot) baselines. The optimal and suboptimal scores are highlighted with bold and

underlined text, respectively.

learning, the number of candidates D-Agent selects
for entity and relation linking, and the retry times
for handling non-response SPARQLs. The opti-
mal values for these parameters are 3, 2, 2, and
3, respectively. The framework and its variants
are tested five times on each benchmark, with the
average scores reported as the final results. For
traditional systems, we report the results recorded
in their papers. For pure LLM baselines, we write
prompts to hire an LLM to answer questions di-
rectly referring to examples, and then link the men-
tions from the responses to the URIs in our indexed
knowledge bases via built-in similarity search.

4.2 Performance Comparison

The performance of Triad compared to traditional
KBQA systems and pure LLM generation meth-
ods is shown in Table 2. Evaluation metrics preci-
sion(P), recall(R), and F1-score(F1) are reported.
We can observe from the experimental results that:

Few-shot can be competitive with full-shot.
Our multi-role LLM-based agent framework,
though executing a few-shot prompt learning, ex-
hibits competitive performance with cutting-edge
full-shot KBQA systems.

Underlying capability matters. The use of GPT-
4 as the core in an LLM-based agent significantly

outperforms GPT-3.5 on all benchmarks, demon-
strating the importance of the underlying capabili-
ties of an agent.

Explicit knowledge is necessary. Pure LLM
models with GPT-3.5 and GPT-4 display deficien-
cies in generating accurate responses without an
auxiliary knowledge base as a memory for interme-
diary steps such as URI linking.

Performance varies with complexity. Triad
demonstrates superior results on the LC-QuAD
and YAGO-QA benchmarks compared to QALD-9,
due to an increasing failure in response to complex
questions, which will be discussed later.

4.3 Study on Capabilities of Agent Roles

We assess the efficacy of G-Agent with various
other language models as the core. The framework
without G-task uses the text-davinci-002, which is
not as powerful as GPT-3.5 and GPT-4 in solving
many tasks, and the one without G-chat uses text-
davinci-003 to eliminate the chat and alignment
abilities. We test the ability of D-Agent without
D-uri and D-query by replacing the URI selection
and query selection with URI matching and query
generation, respectively. We evaluate the contribu-
tion of A-Agent eliminating A-llm and A-fact by
responding to questions without using LLM’s assis-
tance or use an LLM to answer Boolean questions
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for auxiliary rather than single-fact questions. The
F1 results of the role ablation experiments on two
representative datasets are shown in Table 3. The
results indicate that every component pertaining to
each role contributes to the overall performance.
More specifically, a G-Agent that employs a less
powerful LLM as its core can drastically undermine
performance. D-Agent assumes a more pivotal role
during the linking phase compared to the query
construction phase. A-Agent, on the other hand,
proves to be an efficient solution for managing sit-
uations where SPARQL results are absent.

G-task G-chat LC-QuAD1.0 QALD-9
X X 0.343 0.159
v X 0.443 0.248
v v 0.564 0.416

D-uri D-query LC-QuAD1.0 QALD-9
X v 0.274 0.210
v X 0.431 0.301
v v 0.564 0.416

A-llm A-fact LC-QuAD 1.0 QALD-9
X X 0.459 0.382
v X 0.473 0.385
v v 0.564 0.416

Table 3: Study on the roles of LLM-based agent by
eliminating an element or downgrading the capability.

4.4 Analysis of Role Hyperparameters

We concentrate on three hyperparameters of
roles, including the number of examples (N €
{1,2,3}) provided for G-Agent to learn sub-
tasks, the number of URI candidates (X €
{(1,1),(1,2),(2,2),(2,3)}) selected by D-Agent
for query construction, and the number of retry
times (7 € {1, 2, 3}) launched by A-Agent when
there is no response. Table 4 presents the F1 results
of Triad’s performance, employing three hyperpa-
rameters on two benchmarks. We discover that:

Quality is more important than quantity. More
examples provided to G-Agent do not always im-
prove the performance. The efficacy of G-Agent is
significantly influenced by the quality of examples.

More options may harm the result. Choosing
more candidate URIs for entities and relations
could potentially disrupt subsequent query phases,
thus affecting overall performance.

Triad Variants LC-QuAD 1.0 QALD-9
Triad-1-Shot 0.556 0.376
Triad-2-Shot 0.511 0.402
Triad-3-Shot 0.564 0.416
Triad-Top1-1 0.528 0.281
Triad-Top1-2 0.562 0.375
Triad-Top2-2 0.564 0.416
Triad-Top2-3 0.558 0.384
Triad-1-Try 0.529 0.375
Triad-2-Tries 0.561 0.407
Triad-3-Tries 0.564 0.416

Table 4: Performance evaluation on three hyperparame-
ters that related to each role of an LLM-based agent.

More chances benefits the framework. Persis-
tently attempting to construct and execute SPARQL
queries is an effective strategy that improves the
probability of obtaining accurate answers. Consid-
ering the efficiency of overall execution, we set the
maximum retry times as 3 in practice.

4.5 Analysis of Linking Recall

The process of linking is a relatively complex sub-
task in both the Text2SQL and the KBQA process
(Li et al., 2024). Calculating the recall ratio of
accurate URIs using D-Agent provides clarity on
which step most adversely impacts performance.
In the entity linking phase, considering all URIs
of entities in the testing set as the ground truth of
the linking results, 80. 75% of the correct URIs are
contained from the output of the entity matching
filter in D-Agent and 70. 50% of the correct URIs
are retained from the entity selection performed
by the LLM in D-Agent. Whereas, in the relation
linking phase, only 52. 54% of the correct relation
URIs survive from the selection of LLM, which
indicates a greater difficulty in relation linking.

4.6 Study on Complex Cases

Despite the impressive performance of Triad in
certain benchmarks, notable deficiencies remain
in its ability to understand questions and generate
queries for complex questions. A critical analysis
of unsuccessful cases in QALD-9, which has the
lowest F1 score, has revealed three primary reasons
for this failure, as detailed below:

Complex Syntax signifies that advanced
SPARQL queries incorporate keywords such as
GROUP BY and HAVING. These terms augment
the error propensity in the generation of SPARQL
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Fail Reason Ratio Example
Q42: Which
Complex countries have
20% .
Syntax places with more
than two caves?
Unexploited Q199: Give me all
. 17% .
Semantics Argentine films.
Q133: What are
Implicit 59, the names of the
Reasoning v Teenage Mutant

Ninja Turtles?

Table 5: The major reasons of complexity that result in
failures, with their corresponding ratios of occurrence
in failed cases.

templates such as the example: Which frequent
flyer program has the most airlines?

Unexploited Semantics indicates that semantics
of an implicit entity should be comprehended in
order to exclude irrelevant URIs. In the example
Give me all Argentine films, the meaning of films
should be used to narrow down the scope of poten-
tial entities in order to eliminate unrelated answers.

Implicit Reasoning presents a challenge that re-
quires a deeper level of traversal by the framework
to deduce accurate results from the posed question.
For example, another failure question, How many
grand-children did Jacques Cousteau have?, the
term grand-children must be interpreted to son of
son to ensure an accurate response.

4.7 Cost Comparison and Analysis

According to our evaluation on the three datasets,
the average cost of running a single case is 0.007
USD on average using Triad-GPT3.5 and 0.05 USD
on average using Triad-GPT4. Specifically, most
API calls occur in the phases of URL linking and
comprehensive answering. Meanwhile, traditional
KBQA baselines require a lot of training data and
local training resources to achieve the SOTA perfor-
mance, whereas Triad follows a zero- or few-shot
manner to save computational cost locally. Further-
more, as shown in Section 4.4, in practice, adjust-
ing the hyperparameters can make the cost as low
as possible while preserving overall performance.
As the cost of LLM services decreases, the value
of Triad will increase accordingly.

5 Related Work
5.1 SPARQL-based and LLM-based KBQA

Traditional KBQA methods transform natural lan-
guage queries into SPARQL requests for data ex-
traction. Specific models are employed either for
question understanding or URI linking, utilizing
domain-based training datasets. Hu et al. (2018)
introduces a semantic query graph to structurally
represent the natural language query, thereby sim-
plifying the task into a subgraph matching prob-
lem. Hu et al. (2021) proposes an entity descrip-
tion graph to represent natural language queries for
question parsing and element linking. Omar et al.
(2023a) restructures the question parsing task as a
text generation issue using a sequence-to-sequence
model. With the advent of LLMs, certain phases
of KBQA can be enhanced with LL.M-integrated
methods. Baek et al. (2023) aims to augment LLM-
based QA tasks with pertinent facts extracted from
knowledge bases, offering a fully zero-shot archi-
tecture. Tan et al. (2023a) leverages the general ap-
plicability of LLMs to filter linking candidates by
making selections via few-shot in-context learning.
Omar et al. (2023b) provides a thorough compari-
son between LLMs and QA systems, recommend-
ing further studies to improve KBQA with LLM
capabilities. However, apart from the above studies,
our study proposes a complete framework incorpo-
rating both an LLLM and few-shot learning across
all KBQA phases from a systematic perspective.

5.2 LLM-based Agents for Complex Tasks

LLMs have recently gained significant attention
due to their ability to approximate human-level in-
telligence. This has led to numerous studies focus-
ing on LLM-based agents. A recent survey(Wang
et al., 2023) proposes a unified architecture for
LLM-based agents, which consists of four mod-
ules that include profile, memory, plan, and ac-
tion. CHATDB(Hu et al., 2023a) employs an LLM
controller to generate SQL instructions, which al-
lows for symbolic memory and complex multi-hop
reasoning. ART(Paranjape et al., 2023) uses a
frozen LLM to generate reasoning steps and fur-
ther integrates tools for new tasks with minimal hu-
man intervention. Toolformer(Schick et al., 2024)
takes a different approach by training an LLM to
plan and execute tools for the next token predic-
tion by learning API calls generation. ReAct(Yao
et al., 2023) focuses on overcoming LLM hallucina-
tion by interacting with external knowledge bases,
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thus generating interpretable task-solving strate-
gies. CodeAgent(Tang et al., 2024) designs a multi-
agent collaboration system across four phases in
a code review process. Divergent from the afore-
mentioned studies, our framework concentrates on
the solving KBQA tasks by introducing a multi-
role LLM-based agent that specializes in various
subtasks distributed across different phases.

6 Conclusion

In this study, we aim to bridge the gap between
KBQA tasks and the investigation of LLM-based
agents. We introduce Triad, a framework to ad-
dress the KBQA task through an LLM-based agent
acting as multiple roles, including a generalist ca-
pable of mastering diverse tasks given minimal ex-
amples, a decision-maker concentrating on option
analysis and candidate selection, and an advisor
skilled in answering questions with the aid of both
external and internal knowledge. Triad achieves
the best or competitive performance across three
benchmark datasets compared to traditional KBQA
systems and pure LLM models. In future research,
we plan to broaden our framework to handle more
intricate questions, such as multi-hop reasoning,
and exploring the integration between our frame-
work and retrieval-augmented generation.

Limitations

The limitation of our research lies in following
aspects: (1) In terms of data, a broader range of
QA datasets needs to be evaluated, encompassing
datasets from different domains, languages, and
difficulty levels. (2) In terms of model, more LLMs
need to be evaluated, including open-source and
commercial models from different organizations
and on various scales. (3) In terms of framework,
more types of agent collaboration methods can be
explored to solve KBQA problems.

Ethics Considerations

All datasets utilized in this study are publicly avail-
able and we have adhered to ethical considerations
by not introducing additional information as input
during LLM text generation.
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A Response Time Analysis

We analyze various QA frameworks in response
time to a question. The average latency of each
phase including question parsing (QP), URI link-
ing (UL), and answer generation (AG) for each
knowledge base is reported. We randomly select
10 samples from each dataset for evaluation to ob-
tain the average response times for Triad-1 and
Triad-3, which represent retrying three times and
generating an answer in one go, respectively, dur-
ing the answer generation phase. The compari-
son between traditional QA systems and Triad is
shown in Figure 3. Triad generally shows a compet-
itive time-consuming performance to latest tradi-
tional QA systems. Specifically, compared to other
phases, URL linking consumes more time due to
the need to invoke LLM multiple times. Moreover,
according to Section 4.4, with smaller retry times
of A-Agent, Triad can significantly reduce time
cost while only causing slight performance degra-
dation, revealing the advantages of our framework
in balancing performance and efficiency.
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Figure 3: Response time of traditional KBQA systems
and Triad on three datasets. Each bar shows average
response time of a particular phase of KBQA.

B Role Performance on YAGO-QA

We choose LC-QuAD 1.0 and QALD-9 as our two
representative datasets in Section 4.3, as the ques-
tions among them vary in difficulty, and the tasks in
these two datasets are relatively more challenging
than YAGO-QA. We provide the performance of
agent roles on YAGO-QA in Table 6, which shows
a consistent result with other datasets in Table 3.

C Prompts Provided to LLLMs of G-Agent
for Solving Various Subtasks in KBQA

The prompt given to LLMs of Agent, to perform
triplet extraction from the question () is as follows:

G-task G-chat YAGO-QA
X X 0.427
v X 0.553
v v 0.677

D-uri D-query YAGO-QA
X v 0.346
v X 0.534
v v 0.677

A-llm  A-fact YAGO-QA
X X 0.626
v X 0.647
v v 0.677

Table 6: Performance of roles of LLM-based agent by
eliminating an element or downgrading the capability.

You are an assistant to identify triples within a
provided sentence. Please adhere to the following
guidelines:

1. Triples should be structured in the format
<entity1, relation, entity2>.

2. The sentence must contain at least one triple, so
you should provide at least one.

3. Entities should represent the smallest semantic
units and should not contain descriptive details.

4. Entities can take the form of explicit or implicit
references. Explicit entities refer to specific named
resources, whereas implicit entities are less certain.
5. When an entity is implicit, utilize a variable
format such as ’?variable’ to denote it, for example,
’?location’ or ’?person’.

Here are some examples:

Which city’s founder is John Forbes?
foundeer, John Forbes>

How many races have the horses bred by Jacques
Van’t Hart participated in? : <?horse, participated
in, ?race> <?horse, breeder, Jacques Van’t Hart>
Is camel of the chordate phylum? <camel,
phylum, chordate>

1 <city,

Sentence: <Question Sentence>
Output:

The prompt given to LLMs of Agent, for
SPARQL template generation is as follows:
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You are an assistant to generate a SPARQL
query to address a specific question. Here are the
guidelines to follow:

1. Ensure that the resulting SPARQL query is
designed to answer the provided question.

2. Adhere to the commonly accepted SPARQL
standards when generating the query.

3. Make an effort to leverage the information
provided to assist in the creation of the SPARQL
query.

4. Strive to keep the generated SPARQL query as
straightforward as possible.

5. Avoid including ’PREFIX’ or ’:* in the SPARQL
query.

6. Enclose condition entities and predicates within
angle brackets, such as <entity> or <predicate>.
7. Maintain the original order of the given triples
without altering their sequence.

Question: <question sentence>
Triplets: <extracted triplets>
Output:

You are an assistant to select <K> URIs from a
provided list of possible URIs for a specified entity,
following these guidelines:

1. Identify the <K> most appropriate URIs from
the given list that best represent the entity in
question.

2. Seek to understand the semantic information
associated with the specified entity by examining
the provided question.

3. The output should consist of <K> URIs chosen
from the provided list of possible URISs.

4. Simply output these <K> target URIs, each on
a separate line, without providing any additional
explanations.

Sentence: <question sentence>

Entity: <entity mention>

Possible entity URIs: <Entity URI list>
Output:

The prompt given to LLMs of Agent, for ques-
tion type classification is as follows:

The prompt given to LLMs of Agent, for candi-
date relation selection is as follows:

You are an assistant to determine the specific type
of a given question according to the following
guidelines:

1. You must determine the most probable question
type for the input question.

2. The type of question should be enclosed within
angle brackets, denoted as ’<’ and ’>’.
3. Possible question types include:
<select>, and <yes or no>.

<count>,

Question: <question sentence>
Output:

D Prompts Provided to LLMs of D-Agent
for Solving Selection Subtasks in
KBQA

The prompt given to LLMs of Agent, for candi-
date entities selection is as follows:

You are an assistant tasked with selecting the <K>
relation URIs between entities mentioned in a
sentence. Here are the guidelines:

1. The two entities are listed one after the other,
without a specific order.

2. Use the provided sentence to discern the
semantic meaning of these entities.

3. The potential relation URIs are listed one by
one.

4. Your output should consist of a maximum of
<K> possible relation URIs, although you may
also output fewer if appropriate.

5. Ensure that your output is organized, prioritizing
the most likely relationship first.

6. Provide a list of no more than <K> relation
URIs (each on a separate line if there are multiple)
without any additional descriptions.

Sentence: <question sentence>
Entities: <entity pair>

Possible relation URIs: <URI list>
Output:

The prompt given to LLMs of Agenty for the
final SPARQL selection is as follows:
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You are an assistant to select an appropriate
SPARQL query from the provided list in order to
respond to a specific question. Please adhere to the
following guidelines:

1. Select the most suitable SPARQL query from
the given query list to address the question.

2. Select a SPARQL query solely from the
provided list; avoid crafting your own SPARQL
query.

3. The selected SPARQL query must be applicable
to answer the given question.

Sentence: <question sentence>
SPARQL candidates: <SPARQLSs to choose>
Output:

E Prompts Provided to LLLMs of A-Agent
for Solving Answering Subtask in
KBQA

The prompt given to LLMs of Agent,, to generate a
yes or no answer for the give question is as follows:

You are an assistant to answer a yes-or-no ques-
tion. Please adhere to the following guidelines:

1. If you believe that the answer is yes, provide
an output of "True’. If not, provide an output of
"False’.

2. Please do not include additional information or
explanations in your response.

Sentence: <question sentence>
Output:

The prompt given to LLMs of Agent,, to gener-
ate a single-fact answer for the give question is as
follows:

You are an assistant to answer a question. Please
adhere to the following guidelines:

1. The answer to the question is a single entity.

2. You should just output the full expression of the
answer without any punctuation.

3. Do not output any other description.

Sentence: <question sentence>
Output:
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