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Abstract

Network pruning has emerged as a potential
solution to make LLMs cheaper to deploy.
However, existing LLM pruning approaches
universally rely on the C4 dataset as the cal-
ibration data for calculating pruning scores,
leaving its optimality unexplored. In this
study, we evaluate the choice of calibration
data on LLM pruning, across a wide range of
datasets that are most commonly used in LLM
training and evaluation, including four pre-
training datasets as well as three categories of
downstream tasks encompassing nine datasets.
Each downstream dataset is prompted with In-
Context Learning (ICL) and Chain-of-Thought
(CoT), respectively. Besides the already in-
triguing observation that the choice of cali-
bration data significantly impacts the perfor-
mance of pruned LLMs, our results also un-
cover several subtle and often unexpected find-
ings, summarized as follows: (1) C4 is not
the optimal choice for LLM pruning, even
among commonly used pre-training datasets;
(2) arithmetic datasets—when used as calibra-
tion data—performs on par or even better than
pre-training datasets; (3) pruning with down-
stream datasets does not necessarily help the
corresponding downstream task, compared to
pre-training data; (4) ICL is widely beneficial
to all data categories, whereas CoT is only use-
ful on certain tasks. Our findings shed light on
the importance of carefully selecting calibra-
tion data for LLM pruning and pave the way
for more efficient deployment of these powerful
models in real-world applications. We release
our code at: https://github.com/abx393/
11m-pruning-calibration-data.

1 Introduction

In the 2020s, the landscape of Al has transi-
tioned into a new era, propelled forward by the
“Work done while the author was at University of Wash-

ington. Correspondence to: Abhinav Bandari
<abhinavbandari @utexas.edu>

advancements made in large language models
(LLMs) (Brown et al., 2020; Gemini Team et al.,
2023; Touvron et al., 2023). The astonishing lan-
guage capacities of LLMs have significantly shaped
the solutions to various real-life tasks such as nat-
ural language understanding (Brown et al., 2020;
Touvron et al., 2023), text generation (Kocon et al.,
2023; Anil et al., 2023), vision tasks (Radford et al.,
2021; Zhou et al., 2022a), coding (Chen et al.,
2022), and math (Romera-Paredes et al., 2024).
However, the enormous size of these powerful
LLMs poses a significant challenge for deployment
in many real-world applications. For instance, de-
ploying a 7B LLM requires around 10GB of main
memory (DRAM) even after adopting INT8 quan-
tization, which unfortunately exceeds the memory
capacity of most commodity edge devices.

Network pruning, as one of the most well-
established approaches in model compression,
demonstrated the possibility of removing around
50% of the parameters (Frantar and Alistarh, 2023a;
Sun et al., 2023; Zhang et al., 2023), or even
more (Yin et al., 2023b; Agarwalla et al., 2024)
with minimal performance degradation. Interest-
ingly, while consistently producing robust perfor-
mance in small-scale deep neural networks (Han
et al., 2015; Frankle and Carbin, 2019; Mocanu
et al., 2018; Gale et al., 2019), magnitude pruning
(Han et al., 2015) seems to lose importance in the
context of LLM pruning. All state-of-the-art LLM
pruning approaches unanimously choose to use a
small set of data (known as calibration data) from
the C4 training dataset (Raffel et al., 2020) to cal-
culate their pruning scores (Frantar and Alistarh,
2023a; Sun et al., 2023; Yin et al., 2023b).

Using C4 as the calibration data for pruning
makes sense if the models are pre-trained on it to
preserve better the desired distribution learned dur-
ing pre-training. However, not all large language
models are pre-trained with the C4 dataset, rais-
ing the question of whether the C4 is the optimal
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choice for the calibration data for LLM pruning.
In addition, it is well-known that LL.Ms are very
sensitive to how the input is structured and pro-
vided to them (Zhou et al., 2022b; Shi et al., 2023).
As a result, it is unclear how the input format of
calibration data would affect LLM pruning.

To answer these questions, in this work, we con-
duct a comprehensive study to investigate the effect
of calibration data on LLM pruning across a broad
range of evaluation tasks, along two dimensions
of interest: varying types of datasets and different
data input formats. Specifically, we investigate the
following possible alternatives of calibration data
for LLM pruning, as illustrated in Figure 1:

e Pre-training Data: Apart from the C4 dataset,
several other datasets are widely used for pre-
training LLMs. We examine three of the most
representative datasets: Pile (Gao et al., 2020),
OSCAR (Suérez et al., 2020), and RedPajama
(Together Computer, 2023).

* Downstream Data: While pruning with pre-
training datasets is intuitively preferred to pre-
serve pre-training knowledge, it is essential to
empirically verify this assumption and iden-
tify whether pruning with any downstream
datasets may yield superior outcomes for
LLM pruning. To investigate this, we consider
three categories of downstream tasks, encom-
passing a total of nine datasets (see Section 3.1
for details). An intriguing research question
arises: will pruning with downstream data
produce a better sparse model for the corre-
sponding downstream task than pruning with
pre-training data?

Prompted Downstream Data: Acknowl-
edging the significant impact of prompts on
LLM performance, we explore two variants
of prompting strategies to construct different
formats of calibration data: In-Context Learn-
ing (ICL) (Brown et al., 2020) and In-Context
Learning w/ Chain-of-Thought (ICL w/ CoT)
(Wei et al., 2022).

Nonsense Data: In addition, we ex-
plore two variants of nonsensical calibra-
tion data—ellipses and random alphanumeric
strings—to investigate the necessity of seman-
tically meaningful calibration data for effec-
tive LLM pruning.

To investigate the impact of these datasets, we
prune LLMs using various calibration datasets and
evaluate the resulting sparse models across nine
downstream tasks. Our key and encouraging find-
ing is that, while C4 consistently produces robust
sparse models, it is not the best calibration dataset
for pruning. In addition, our study unveils several
more subtle and unexpected findings, which can be
summarized as follows:

* (4, although consistent in producing robust
sparse models, is not the optimal choice for
LLM pruning, and it is also not the best among
various pre-training datasets. Pile consistently
outperforms C4 with higher average accuracy.

* Certain types of downstream data lead to
better sparse LLMs than others. Arithmetic
downstream datasets in general perform on
par or even better than pre-training datasets in
this context of LLM pruning.

* Pruning with downstream data does not neces-
sarily lead to the best performance on that
downstream task than pruning with a pre-
training dataset like Pile.

* ICL calibration data broadly benefits all data
categories, while ICL w/ CoT calibration data
is only advantageous for arithmetic reasoning
datasets.

2 Related Work
2.1 Large Language Model Pruning

Network pruning is a widely utilized technique to
reduce model size with negligible performance loss
(Mozer and Smolensky, 1989; Han et al., 2015;
Molchanov et al., 2017). While numerous prun-
ing approaches have been proposed, the success
of pruning is inextricably linked to sufficient re-
training (Liu et al., 2022; Wang et al., 2023). How-
ever, training large language models is prohibitively
expensive and not feasible for most practitioners.
Fortunately, recent research efforts have proposed
effective methods that enable accurate pruning of
LLMs without the need for extensive fine-tuning.
SparseGPT (Frantar and Alistarh, 2023a) employs
second-order pruning followed by column-wise
weight updates, allowing the removal of 50% of
weights while maintaining the original perplexity.
Wanda (Sun et al., 2023), motivated by the goal of
preserving crucial outliers in LLMs, proposes prun-
ing weights based on the multiplication of weight
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Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How
much did she earn?

Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How
much did she earn?
Answer: 10

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she
needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much as her
parents. How much more money does Betty need to buy the wallet?

Answer: 5

Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How
much did she earn?

Answer: \Weng earns 12/60 = $<<12/60=0.2>>0.2 per minute. Working 50 minutes, she earned 0.2 x 50 =
$<<0.2*50=10>>10. So the answer is 10.

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she
needs. Her parents decided to give her $15 for that purpose, and her grandparents twice as much as her

parents. How much more money does Betty need to buy the wallet?
Answer: In the beginning, Betty has only 100 / 2 = $<<100/2=50>>50. Betty's grandparents gave here 15 * 2
= $<<15*2=30>>30. This means, Betty needs 100 - 50 - 30 - 15 = $<<100-50-30-15=5>>5 more. So the

answer is 5.

Nonsense Data
(Random Alphanumeric

Characters) skskskkkkkskkkxnx9

'R

a03x93js0dIdjdnfmbi39gndkdfhbOw4t239tgsjj923jrwksks9xkxkxkgk3jnskdfnskdfn9snj3n3knsknknsnsnsk J

Nonsense Data
(Ellipses)

|

Figure 1: Examples of various calibration data formats examined in this paper.

magnitude with their input activation, demonstrat-
ing strong performance. OWL (Yin et al., 2023b)
introduces a novel non-uniform layerwise sparsity
approach for LLM pruning, showing promising
results at high levels of sparsity. In addition to
exploring accurate pruning methods, other studies
focus on efficiently fine-tuning sparse LLMs to fur-
ther enhance their performance (Zhang et al., 2023;
Zimmer et al., 2023). In contrast to these previ-
ous works, our paper investigates the efficacy of
input data for LLM pruning. This novel perspective
is crucial for understanding and improving LLM
pruning methodologies, as LLMs are sensitive to
their input (Zhao et al., 2021).

2.2 Prompting for Sparse LLMs

Prompting involves providing instructions to a pre-
trained language model, either as a single instruc-
tion (zero-shot) or through one or more examples
(one/few-shot) that demonstrate the task. Brown
et al. (2020) demonstrated that prompt design is
highly effective for guiding a non-modifiable GPT-

3 model in zero, one, and few-shot settings. Ini-
tially, efforts in prompt-tuning focused on the dis-
crete selection of prompt template tokens, as ex-
plored by Jiang et al. (2020). Later studies, such
as those by Lester et al. (2021), shifted towards us-
ing continuous prompts that were refined through
backpropagation.

Xu et al. (2023) first discovered that the gen-
eration quality of a compressed LLM could be
significantly improved by adding carefully de-
signed hard prompts and proposed a soft prompt
learning method to improve the compressed LLM.
Hoang et al. (2023) argued that the performance
drop caused by pruning is because the pre-trained
knowledge is displaced rather than being forgot-
ten. Williams and Aletras (2023) examined the
impact of multiple pre-training data sources on
pruning. However, their study was confined to pre-
training data sources. Our research extends this
investigation by not only analyzing four commonly
used pre-training datasets but also exploring vari-
ous downstream datasets with In-Context Learning
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and Chain of Thought prompts, leading to more
intriguing findings and a deeper understanding of
the effects of different data sources on pruning.

Table 1: Pruning metrics of Wanda and SparseGPT.

Method Weight Update Pruning Metric S;;
SparseGPT v {\W|2/diag[(XXT + )\I)_l]} »

ij
Wanda X IWijl - 11Xl

3 Methodology

In this section, we describe in detail how we assess
the effects of various calibration datasets and data
formats on LLM pruning.

3.1 Pruning Methods

We choose the two most widely-used pruning meth-
ods, i.e., Wanda (Sun et al., 2023) and SparseGPT
(Frantar and Alistarh, 2023b) as our pruning meth-
ods. Both pruning methods necessitate a small sub-
set of calibration data to calculate pruning scores,
which are shown in Table 1. In this context, X
symbolizes layer activations and W represents
weights. The expression X7 X 4 A in the de-
nominator forms the Hessian H, essential for the
layer-wise reconstruction issue, with A serving as
a dampening factor to prevent computational col-
lapse during inversion. Wanda augments the stan-
dard weight magnitude pruning metric by integrat-
ing input activations, whereas SparseGPT incorpo-
rates an additional weight update step within its
column-wise pruning process. The weights with
the lowest scores will be pruned, resulting in a
sparse LLM.

3.2 Model, Dataset, and Evaluation

Model. We use the common models used in previ-
ous work (Sun et al., 2023; Yin et al., 2023a), i.e.,
Llama 2-Chat 7B (Touvron et al., 2023) and Llama
7B (Touvron et al., 2023) as the base models for
pruning.

Dataset. The source of our calibration data is di-
vided into two categories: pre-training datasets
and downstream datasets. For pre-training data,
we selected four widely-used datasets: C4 (Raf-
fel et al., 2020), Pile (Gao et al., 2020), OSCAR
(Sudrez et al., 2020), and RedPajama (Together
Computer, 2023). To ensure the diversity of the
downstream calibration data, we focused on three
major tasks: arithmetic reasoning, natural language

inference, and commonsense reasoning, selecting
three datasets for each category.

For arithmetic reasoning, we chose the following
three datasets:

* GSMS8K (Cobbe et al., 2021) is a dataset of
grade school math word problems, where each
problem takes between 2 and 8 steps to solve.

* SVAMP (Patel et al., 2021) is another dataset
of grade school math word problems, where
each problem requires no more than 2 arith-
metic operations to solve.

* MAWPS (Koncel-Kedziorski et al., 2016) is
another dataset of grade school math word
problems of varying complexity.

For natural language inference, we use the follow-
ing datasets:

» e-SNLI (Camburu et al., 2018) is a dataset
of entailment relations along with human-
annotated natural language explanations of
the labels.

e ANLI (Nie et al., 2020) is a dataset of entail-
ment relations that was iteratively and adver-
sarially generated with a human-and-model-
in-the-loop procedure. ANLI R1 represents
the data produced in the first round of this.

* ANLI R3 (Nie et al., 2020) represents the data
produced in the third round of the aforemen-
tioned iterative procedure. The adversarial
model is trained on data produced in previ-
ous rounds, so crowdworkers are incentivized
to create distinct entailment relations to chal-
lenge the model, so ANLI R3 is distinct from
ANLIRI.

For commonsense reasoning, we use the following:

¢ CommonsenseQA (CSQA) (Talmor et al.,
2019) is a commonsense question answering
dataset with multiple choice questions that
require some prior knowledge not provided in
the question.

* RACE (Lai et al., 2017) is a commonsense
question answering dataset where each ques-
tion is related to a provided text passage. It
evaluates understanding and reasoning abili-
ties.

18092



Evaluation | Dense Wanda w. Calibration Data SparseGPT w. Calibration Data
C4 RedPajama Oscar Pile C4 RedPajama Oscar Pile

GSMS8K 0.0576 | 0.0457 = 0.0008 0.0412 £+ 0.0062  0.0450 £ 0.0088  0.0404 + 0.0048 | 0.0440 + 0.0052 0.0430 = 0.0048 0.0412 £ 0.0046 0.0384 + 0.0038
SVAMP 0.3867 | 0.2756 £ 0.0102  0.2733 £0.0133  0.2922 +0.0102  0.2878 4 0.0038 | 0.3011 4 0.0193  0.3033 £ 0.0370  0.3089 =+ 0.0278  0.3445 + 0.0139
MAWPS 0.4462 | 0.3160 £ 0.0293 0.3154 +0.0308 0.3436 £ 0.0097 0.3635 = 0.0115 | 0.3295 £ 0.0235 0.3487 £ 0.0289 0.3500 & 0.0416  0.3820 =+ 0.0262
e-SNLI 0.6050 | 0.4934 4+ 0.0096 0.4940 + 0.0377 0.4812 £ 0.0205 0.5376 + 0.0023 | 0.5447 + 0.0326 0.5641 + 0.0295 0.5485 + 0.0487 0.5498 + 0.0289
ANLIR1 0.3900 | 0.3250 £ 0.0156 0.3240 & 0.0255 0.3203 £ 0.0042  0.3420 £ 0.0087 | 0.3580 & 0.0356  0.3640 + 0.0183 0.3463 £ 0.0261  0.3380 + 0.0020
ANLI R3 0.4192 | 0.3361 £0.0106  0.3405 + 0.0058  0.3220 + 0.0042  0.3597 & 0.0145 | 0.3575 4+ 0.0153  0.3478 £ 0.0226  0.3480 £ 0.0136  0.3408 + 0.0043
CSQA 0.6208 | 0.5171 £0.0024 0.5184 £0.0184 0.5225 £+ 0.0043  0.5239 £ 0.0078 | 0.5266 + 0.0314  0.5304 £ 0.0204 0.5233 £+ 0.0141 0.5258 £ 0.0331
RACE 0.6501 | 0.4686 &+ 0.0052 0.4386 +0.0109 0.4632 + 0.0224 0.4692 + 0.0079 | 0.5305 + 0.0272 0.5407 + 0.0101 0.5374 £+ 0.0279 0.5376 £+ 0.0215
WinoGrande | 0.5122 | 0.5141 & 0.0094  0.5141 + 0.0067 0.5141 £ 0.0087 0.5125 + 0.0051 | 0.5183 £0.0143  0.5193 +£0.0016  0.5240 + 0.0311 0.5164 £+ 0.0194

Average | 0.4542 | 0.3657 & 0.0041

0.3622 £ 0.0005  0.3671 £ 0.0055  0.3819 £ 0.0029 ‘ 0.3900 £ 0.0063  0.3957 £ 0.0090  0.3920 £ 0.0153  0.3970 £ 0.0045

Table 2: Accuracy of Llama 2-Chat 7B model pruned with Wanda and SparseGPT to 50% unstructured sparsity
using different pre-training datasets, averaged over three random seeds. The value after & indicates 2 standard
deviations. Results for both pruning methods are shown alongside the original dense model for comparison. The
best performance on each evaluation task for each pruning algorithm is bold.

Evaluation task | Dense Model ‘Wanda w. Calibration Data
C4 RedPajama Oscar Pile

GSMS8K 0.0576 0.0269 0.0186 0.0208 0.0239
SVAMP 0.3867 0.0200 0.0133 0.0200 0.0133
MAWPS 0.4462 0.0019 0.0000 0.0000  0.0000
e-SNLI 0.6050 0.1313 0.2432 0.0687  0.3249
ANLIR1 0.3900 0.0000 0.0000 0.0000 0.1190
ANLIR3 0.4192 0.0000 0.0000 0.0000 0.0925
CSQA 0.6208 0.2138 0.2072 02113  0.2170
RACE 0.6501 0.2528 0.2197 0.2514  0.2540
WinoGrande 0.5102 0.5012 0.4925 0.4743  0.4972
Average | 04542 |01275 01327  0.1163 0.1713

Table 3: Accuracy of Llama 2-Chat 7B model pruned
with Wanda to 70% unstructured sparsity using different
pre-training datasets. Results are shown alongside the
original dense model for comparison. The best perfor-
mance on each evaluation task is bold.

* WinoGrande (Sakaguchi et al., 2019) is
a commonsense question answering dataset
with fill-in-the-blank statements and binary
answer options.

Evaluation. To evaluate the performance of dif-
ferent calibration datasets, we first prune the dense
LLM with certain calibration data and then evalu-
ate the resulting sparse LLM on all the downstream
tasks considered using few-shot prompting (Brown
et al., 2020).

3.3 Calibration Data Formulation

The pruning calibration data have 128 sequences
of length 2048 tokens each, following prior
work (Frantar and Alistarh, 2023a; Sun et al., 2023;
Yin et al., 2023b).

Pre-training Data. For each pre-training dataset,
we create each calibration data sample of length
2048 tokens by concatenating text segments from
the dataset until it exceeds 2048 tokens and then
selecting a segment of length 2048 from this.
Downstream Data. To provide a comprehensive

evaluation of downstream data, we use the follow-
ing three variants.

» Zero-Shot. We create each calibration data
sample by selecting a random question from
the dataset without the answer. We fill up the
remaining context length with padding tokens.

* In-Context Learning. We create each cali-
bration data sample by concatenating multiple
randomly selected question-answer pairs to
fill up the context length of 2048 tokens.

* In-Context Learning w/ Chain-of-Thought.
We create each calibration data sample by con-
catenating randomly selected question-answer
pairs, where the answer contains CoT ratio-
nale, to fill up the context length of 2048 to-
kens.

4 Results

In this section, we report the results of our exper-
iments. Our primary goal is to explore how per-
formance fluctuates when using various calibration
data across different formats. We analyze overall
performance trends across these differing setups.

4.1 Pre-training Dataset as Calibration Data

We evaluate pruning performance using calibration
data derived from a range of pre-training datasets
including C4, RedPajama, Oscar, and Pile. The
results are detailed in Table 2. Our analysis re-
veals that the average accuracy of Pile consistently
outperforms the C4 dataset. Using Wanda with
target sparsity 0.5, calibration with the Pile dataset
exhibits superior performance in terms of average
accuracy across nine downstream tasks, surpassing
other pre-training datasets in six out of nine tasks.
Similarly, for SparseGPT pruning, the Pile dataset
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achieves the highest average accuracy, although the
differences among the four pre-training datasets
are small.

Notably, when compared with the commonly
used C4 dataset, our analysis reveals that Red-
Pajama achieves comparable performance, and
Pile demonstrates an improvement, outperform-
ing C4 in Wanda pruning across a majority of
downstream tasks. Specifically, using the Llama
2-Chat 7b model, Pile leads C4 in seven out of nine
tasks when using Wanda. Although when using
SparseGPT, Pile outperforms C4 in only four out
of nine tasks, Pile still has higher average accu-
racy across nine tasks. In Table 3, when we target
70% sparsity, we can clearly see that RedPajama
and Pile achieve significantly higher average ac-
curacy than C4. These findings underscore that
C4 is not the optimal choice of calibration data for
LLM pruning. Pile consistently serves as better
calibration data in LLM pruning.

4.2 Downstream Dataset as Calibration Data

While using pre-training datasets for pruning may
preserve acquired knowledge, it is crucial to em-
pirically validate this strategy and determine if al-
ternative downstream datasets might yield superior
results for pruning LL.Ms. To this end, we utilized
downstream datasets both as calibration data for
pruning and as benchmarks for evaluation.

We compare three formats of downstream data:
Zero-Shot, ICL and ICL w/ CoT. We systematically
assessed the pruning performance across various
downstream tasks using different calibration data
formats: single GSM8K question (Zero-Shot), con-
catenated GSMS8K question-answer pairs (ICL),
and concatenated GSM8K question-answer pairs
with Chain of Thought (ICL w/ CoT). Our findings,
detailed in Table 4, reveal that ICL consistently en-
hances performance across all data categories com-
pared to the baseline zero-shot approach, achieving
an average accuracy improvement of 0.1754. We
also observed that GSM8K (ICL w/ CoT) calibra-
tion data outperforms GSM8K (ICL) data in Arith-
metic Reasoning tasks. An explanation for this
could be that the step-by-step reasoning in CoT cal-
ibration data helps guide the pruning to better pre-
serve the model weights for arithmetic reasoning.
However, GSM8K (ICL) surpasses GSM8K (ICL
w/ CoT) in average performance across a broader
set of downstream tasks as GSM8K (ICL) outper-
forms GSM8K (ICL w/ CoT) for tasks outside of
arithmetic reasoning. This may be because the step-

by-step reasoning in CoT introduces biases that are
detrimental when the sparse model is used outside
of the domain of the calibration data.

We also compare the pruning performance of e-
SNLI (Zero-Shot), e-SNLI (ICL) and e-SNLI (ICL
w/ CoT) in Table 4. We find that ICL again en-
hances performance compared to the baseline zero-
shot format, with an average accuracy improve-
ment of 0.0826. We also find that, compared to the
ICL format, including CoT in the calibration data
only improves performance on ANLI R3 among
the three NLI evaluation tasks. For the other cat-
egories of evaluation tasks, we find that e-SNLI
(ICL) and e-SNLI (ICL w/ CoT) have similar prun-
ing performance, and the former is better for some
tasks and the latter is better for others.

4.3 Winning Dataset?

We evaluated the performance of ICL tasks against
the top-performing pre-training dataset, Pile, with
both the Llama 2-Chat 7B and LLaMA 7B models
and have presented our findings in Table 5. Specif-
ically, using the Llama 2-Chat 7B model, in the
Arithmetic Reasoning category, Pile led in two out
of three tasks. For NLI and Commonsense Rea-
soning tasks, the best calibration datasets come
from the downstream dataset and from different
task categories. Upon reviewing average perfor-
mance across all tasks, we observed that Arithmetic
Reasoning generally matched the performance of
the best pre-training dataset, Pile. Notably, SVAMP
emerged as the most effective dataset overall, out-
performing Pile with an average accuracy margin
of 0.52% with the Llama 2-Chat 7B model and
with an average accuracy margin of 2.21% with the
Llama 7B model. Consequently, SVAMP has been
designated as the winning dataset.

Additionally, an intriguing observation from our
study was that the optimal calibration data for each
downstream task did not necessarily coincide with
the data from the corresponding task itself. This
suggests that calibration data efficacy may not be
task-specific and invites further exploration into the
dynamics of calibration data across varied contexts.

S Further Analysis

Can we do better by including more steps in
CoT? In our previous construction of the calibra-
tion data, we selected question-answer pairs with
no restriction on the number of steps in CoT in the
answer. This inspires a follow-up question: does

18094



Evaluation task | Dense Model Wanda w. Calibration Data
GSMS8K (Zero-shot) GSMSK (ICL) GSMS8K (ICL w/ CoT) e-SNLI (Zero-shot) e-SNLI (ICL) e-SNLI (ICL w/ CoT)

GSMS8K 0.0576 0.0205 0.0425 0.0432 0.0303 0.0432 0.0379
SVAMP 0.3867 0.0233 0.2867 0.3067 0.1233 0.2100 0.2133
MAWPS 0.4462 0.0058 0.3442 0.3519 0.0635 0.2635 0.2404
e-SNLI 0.6050 0.3292 0.5438 0.5080 0.3428 0.5541 0.5517
ANLIRI 0.3900 0.2920 0.3180 0.3050 0.3340 0.3350 0.3330
ANLIR3 0.4192 0.2417 0.3567 0.3108 0.3350 0.3450 0.3717
CSQA 0.6208 0.2138 0.5381 0.5184 0.4087 0.5127 0.5201
RACE 0.6501 0.2067 0.4793 0.4698 0.3522 0.4653 0.4710
‘WinoGrande 0.5122 0.5114 0.5130 0.5154 0.5051 0.5091 0.5075
Average | 04542 | 0.2049 0.3803 0.3699 | 0.2772 0.3598 0.3607

Table 4: Accuracy of Llama 2-Chat 7B model pruned with Wanda to 50% unstructured sparsity using different
formats of GSM8K and e-SNLI as calibration data. For each evaluation task, the best performance among the
GSMSK calibration data variants and the best performance among the e-SNLI calibration data variants is bold.

Model ‘ Evaluation ‘ Dense ‘

Wanda w. Calibration Data

PD Arithmetic Reasoning NLI Commonsense Reasoning
Pile | GSM8K SVAMP MAWPS | e-SNLI ANLIR1 ANLIR3 | CSQA RACE WinoGrande

GSMSK | 0.0576 | 0.0404 | 0.0425  0.0425  0.0462 | 0.0432  0.0417 00455 |0.0417 00409  0.0432

" SVAMP | 0.3867 | 0.2878 | 02867 02833  0.2733 | 02100 02633 02667 | 02233 02667  0.2600

= MAWPS | 0.4462 | 0.3635 | 0.3442 03365 03346 | 02635 03038 03038 | 02654 0.3231 0.2731
<

5 e-SNLI | 0.6050 | 0.5376 | 05438 05711  0.5436 | 05541 05345 05441 | 05768 0.5317  0.5955

o ANLIR1 | 0.3900 | 0.3420 | 03180 03440 0313 | 03350 03500 03490 | 03360 03370  0.3520

£ ANLIR3 | 04192 | 03597 | 03567  0.3875 03700 | 03450 03700 03575 |0.3633 03642 03792

= CSQA [ 0.6208 | 0.5239 | 05381 05233 05045 | 05127 05045  0.5364 |0.5479 05373 0.5070

RACE | 0.6501 | 04692 | 0.4793 04793 04726 | 04653 04341 04645 | 04706 04625 04422

WinoGrande | 05122 | 05125 | 0.5130  0.5162 05114 | 05091  0.5257 05241 | 05107 05162 05209

| Average |04542]03819| 03803 03871 03744 | 03598 03697  0.3768 | 0.3706 03755  0.3748

GSMSK | 0.0447 | 0.0409 | 0.0462  0.0440  0.0417 | 0.0394  0.0394  0.0417 |0.0462 0.0387  0.0447

SVAMP | 0.3267 | 0.2733 | 0.1533 02533  0.1900 | 0.1833  0.0867  0.1067 |0.0733 0.0967  0.0800

“ MAWPS | 0.3596 | 03173 | 0.3327 03577 03096 | 0.1615  0.2942 02846 | 0.1615 02808  0.2385

< e-SNLI | 0.5556 | 0.3284 | 03433 03767  0.3678 | 03653 03430 03411 |03304 03306 03291

= ANLIR1 | 0.3800 | 0.3210 | 0.4000  0.4000  0.3700 | 03340 02600 03100 | 03800 0.2600  0.3900

= ANLIR3 | 03167 | 03625 | 0.3833  0.3833 03750 | 03317  0.3583  0.4167 | 03417 03667 03917

CSQA [ 0.3948 | 0.2613 | 0.2907 02793 02523 | 0.1974 02604 02735 |02629 02752  0.2883

RACE | 0313402758 | 02972 02748 02525 | 0.2839  0.2657  0.3103 | 0.2698 02880  0.2748

WinoGrande | 0.5130 | 0.4964 | 0.5154  0.5067 05264 | 05138  0.5162 05036 |0.5043 05178 05225

| Average |03561|0.2974| 03069 03195 02984 | 02678  0.2693  0.2876 | 0.2633 0.2727 0.2844

Table 5: Accuracy of Llama 2-Chat 7B model and LLaMA 7B model pruned with Wanda to 50% sparsity using
various downstream datasets with ICL format. PD denotes pre-training data. The best performance on each

evaluation task among sparse models is bold.

the number of steps of CoT rationale in the calibra-
tion data affect the sparse LLM’s performance? We
investigated this by constructing calibration data
by concatenating multiple question-answer pairs,
where each answer rationale contains exactly x
steps. Since 1-step or 2-step CoT data was scarce,
we performed this for z = {3,4,5} as seen in Ta-
ble 6. We find no clear relationship between the
number of steps of CoT in calibration data and the
performance of the sparse LLM. However, we note
that it is possible to produce a better sparse LLM
for a given task by restricting the calibration data to
a specific number of steps, which may vary based
on the evaluation task.

Does more Q-A pairs in ICL calibration data

lead to a better sparse model? To investigate
this, we evaluated the pruning performance when
calibration data contains 5, 10, 15, 20, and 25 Q-A
pairs, filling the rest of the context window with
padding tokens. Our default ICL calibration data
fills the context window with Q-A pairs until it
reaches length 2048 tokens, which in practice can
be anywhere from 25 to 30 Q-A pairs. We compare
the pruning performance of all of these calibration
data formats in Table 7. The results confirm our
conjecture that an increase in in-context examples
in the pruning calibration data generally correlates
with enhanced performance of the sparse model.

How does input length affect the pruning perfor-
mance? In our main experiments, the calibration

18095



Evaluation task | Dense Model Sparse Model
Pile GSMSK (ICL w/ CoT)
‘ Default (any # of steps of CoT) 3-Step CoT 4-Step CoT 5-Step CoT
GSMS8K 0.0576 0.0404 0.0432 0.0402 0.0409 0.0387
SVAMP 0.3867 0.2878 0.3067 0.3100 0.3133 0.3033
MAWPS 0.4462 0.3635 0.3519 0.3558 0.3673 0.3808

Table 6: Accuracy of Llama 2-Chat 7B model pruned with Wanda to 50% sparsity using different numbers of steps
of CoT in the calibration data. For instance, GSM8K (ICL w/ z-step CoT) indicates the calibration data consists of
concatenations of several question-answer pairs where each answer has exactly z steps of reasoning. The default
configuration of GSM8K (ICL w/ CoT) has no restriction on the number of steps of CoT.

Evaluation task ‘ Dense Model ‘ Calibration Data ‘ # In-Context Q-A Pairs ‘ Sparse Model
GSMSK 0.0576 C4 - 0.0455
GSMSK 0.0576 Pile - 0.0404
GSMSK 0.0576 GSMSK 5 0.0288
GSMSK 0.0576 GSMSK 10 0.0440
GSMSK 0.0576 GSMSK 15 0.0455
GSMSK 0.0576 GSMSK 20 0.0417
GSMSK 0.0576 GSMSK 25 0.0470
GSMBK 0.0576 GSM8K Fill Q-A pairs to sequence length (2048 tokens) 0.0425

Table 7: Accuracy of Llama 2-Chat 7B model pruned with Wanda to 50% unstructured sparsity using GSM8K with

different calibration data lengths and pre-training data.

Evaluation task ‘ Dense Model Sparse Model

Pile  ellipses random alphanumeric
GSMSK 0.0576 | 0.0404 | 0.0273 0.0402
SVAMP 0.3867 | 0.2878 | 0.0576 0.1433
MAWPS 04462 | 0.3635 | 0.0096 0.1462
e-SNLI 0.6050 | 0.5376 | 0.3295 03679
ANLIRI 0.3900 | 0.3420 | 0.3100 0.3250
ANLIR3 04192 | 0.3597 | 0.3300 0.3275
CSQA 0.6208 | 0.5239 | 0.1925 03170
RACE 0.6501 0.4692 | 0.2631 0.3293
WinoGrande 05122 | 0.5125 | 0.4972 0.5043
Average | 04542 | 0.3819 | 0.2241 | 0.2779

Table 8: Accuracy of Llama 2-Chat 7B model pruned
with Wanda to 50% unstructured sparsity using Pile,
ellipses, and random alphanumeric characters.

data for pruning consisted of 128 sequences, each
2048 tokens in length. It is crucial to investigate
whether this specific token length is necessary for
effective pruning. To address this question, we used
the C4 dataset for calibration and systematically
varied the calibration data lengths between 256,
512, 1024, and 2048 tokens. We then evaluated
the perplexity of Llama 2-Chat 7B pruned to 50%
unstructured sparsity using Wanda. As detailed in
Table 9, our findings confirm that increased input
lengths correlate positively with improved model
performance, aligning with our initial expectations.
Does input data for pruning have to be sensi-
ble? In our previous setup, calibration data for
pruning is sourced from either pre-training datasets
or task-specific downstream datasets. It is intrigu-

Evaluation task | Dense Model | Pruning Input Length | Sparse Model
WikiText 128 29.22
WikiText 256 15.72
WikiText 6.94 512 11.82
WikiText 1024 9.27
WikiText 2048 8.48

Table 9: Perplexity of Llama 2-Chat 7B model on Wiki-
Text pruned with Wanda to 50% unstructured sparsity
using different input lengths of C4.

ing to compare this with the pruning performance
of nonsense data calibration data, such as ellipses
and random alphanumeric strings, in this context.
Consequently, we substituted conventional calibra-
tion data with these unconventional types for prun-
ing the Llama 2-Chat 7B model to 50% unstruc-
tured sparsity using the Wanda pruning method.
The performance outcomes are shown in Table
8. The results clearly show that the Pile dataset,
which contains human-readable data, consistently
outperforms both ellipses and random alphanu-
meric strings in nearly all cases except one sce-
nario within the GSM8K task. Moreover, random
alphanumeric data generally exhibited better perfor-
mance compared to ellipses. Therefore we affirm
the importance of utilizing sensible calibration data
for the effective pruning of LLMs.

6 Conclusion

This study critically examines the widely held
belief that the C4 dataset is the optimal calibra-
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tion choice for pruning LL.Ms. Through an ex-
tensive evaluation encompassing a variety of cal-
ibration data types—both pre-training and down-
stream datasets, our findings reveal that C4 does
not hold universal superiority. Specifically, our
analysis demonstrates that the pretraining dataset
Pile consistently outperforms C4, while alternative
downstream datasets, particularly those involving
arithmetic reasoning tasks, yield comparable prun-
ing outcomes.

Furthermore, our investigation into various
downstream task formats has uncovered that In-
Context Learning (ICL) offers significant benefits
across all data categories. In-Context Learning
w/ Chain-of-Thought (ICL w/ CoT) calibration is
particularly effective in enhancing performance in
arithmetic reasoning tasks. Our study advocates
for a more nuanced selection and curation of cal-
ibration data, which could lead to more efficient
and effective LLM pruning strategies, ultimately
facilitating the deployment of more robust models
in practical settings.

7 Limitations

Our study has several limitations. First, all experi-
ments were conducted using the Llama 2-Chat 7B
and LLaMA 7B models; we aim to expand our in-
vestigations to other LLM architectures and larger
models. Second, our analysis was limited to the
Wanda and SparseGPT pruning algorithms. Fu-
ture work will explore a broader range of pruning
methods. Third, we plan to evaluate the effects
of combining multiple datasets on pruning perfor-
mance. We believe that our insights regarding cali-
bration data will inspire further research within the
community.

Another limitation of this work we aim to ad-
dress in the future is that we have not rigorously
investigated why Pile is better calibration data than
C4 for LLM pruning. We conjecture the bene-
fits come from that Pile is a more diverse dataset
with higher quality of examples, which is designed
such that models trained on it have improved down-
stream generalization capabilities, compared to the
more noisy Common Crawl datasets like C4, as
also pointed out in recent work in the context of
LLM pretraining (Li et al., 2024). As such, we
believe Pile could provide more robust calibration
data to guide the pruning of LLMs to optimize the
performance of the sparse model on a variety of
downstream tasks. We leave the investigation on

the correlation between a dataset’s effectiveness
for LLM pretraining and model pruning as a future
direction to explore.
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