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Abstract

Multi-turn intent classification is notably chal-
lenging due to the complexity and evolving
nature of conversational contexts. This pa-
per introduces LARA, a Linguistic-Adaptive
Retrieval-Augmentation framework to enhance
accuracy in multi-turn classification tasks
across six languages, accommodating a large
number of intents in chatbot interactions.
LARA combines a fine-tuned smaller model
with a retrieval-augmented mechanism, inte-
grated within the architecture of LLMs. The
integration allows LARA to dynamically uti-
lize past dialogues and relevant intents, thereby
improving the understanding of the context.
Furthermore, our adaptive retrieval techniques
bolster the cross-lingual capabilities of LLMs
without extensive retraining and fine-tuning.
Comprehensive experiments demonstrate that
LARA achieves state-of-the-art performance
on multi-turn intent classification tasks, enhanc-
ing the average accuracy by 3.67% from state-
of-the-art single-turn intent classifiers.

1 Introduction

A chatbot is an essential tool that automatically
interacts or converses with customers. It plays a
crucial role for international e-commerce platforms
due to the rising consumer demand for instant and
efficient customer service. Chatbots represent a
critical component of dialogue systems (Weld et al.,
2021) that can answer multiple queries simultane-
ously by classifying intent from the user’s utterance
to reduce waiting times and operational costs. Nat-
urally, the interaction with users could turn into
a multi-turn conversation if they require more de-
tailed information about the query. Developing an
intent classification model for a dialogue system
is not trivial, even if it is a typical text classifica-
tion task. As we must consider contextual factors
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such as historical utterances and intents, failing to
understand session context while recognizing user
intention often leads to visible errors. It would in-
voke a completely wrong application or provide an
unrelated answer (Xu and Sarikaya, 2014). As a
result, it faces several challenges in dialogue under-
standing.

The biggest challenge is that multi-turn datasets
are hard to collect. While there are some studies on
dialogue understanding in multi-turn intent classifi-
cation (Ren and Xue, 2020; Wu et al., 2021a; Qu
et al., 2019), they are made under the assumption
of the availability of multi-turn training data, which
is usually not the case in the real world.

Figure 1 shows the annotation pipeline of multi-
turn intent classification. Unlike emotion recog-
nition in conversation (ERC) with only less than
10 classes or topic classification within dialogue
state tracking (DST) with tens of topics, there are
hundreds of intents within the knowledge base of
a chatbot to cover users’ specific intents in each
market, which increases the complexity of classi-
fication tasks and multi-turn data annotation. An-
notators can easily make mistakes and spend more
time making decisions due to the numerous intents.
Combined, these make it a high-cost and time-
consuming annotation task, and it is unrealistic to
annotate large-scale multi-turn datasets manually.
However, the performance will most likely suffer
without enough training sample size. This calls for
a more efficient method in solving the challenge
(Mo et al., 2023).

To tackle the above challenge, we propose
Linguistic-Adaptive Retrieval-Augmentation, or
LARA, which offers a pipeline of techniques to
adopt only single-turn training data to optimize
multi-turn dialogue classification. LARA first
leverages an XLM-based model trained on single-
turn classification datasets for each market, thus
simplifying data construction and maintenance.
Subsequently, LARA advances the field by select-
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Figure 1: Annotation pipeline of multi-turn intent classification dataset

ing plausible candidate intents from user utterances
and employing a retriever to gather relevant ques-
tions for prompt construction. This process facili-
tates in-context learning (ICL) with multi-lingual
LLMs (MLLMs), significantly enhancing model ef-
ficacy without requiring market-specific multi-turn
models.

In summary, the contributions of this paper are
as follows:

1. We introduce LARA as a multi-turn classi-
fication model only leveraging single-turn
datasets to effectively address multi-turn data
collection issues.

2. We conduct experiments on our e-commerce
multi-turn dataset across six languages.
LARA achieves state-of-the-art results and
reduces inference time during ICL with
MLLMs.

2 Related Work

Modeling Multi-turn Dialogue Context: Mod-
elling the multi-turn dialogues is the foundation
for dialogue understanding tasks. Previous works
adopt bidirectional contextual LSTM (Ghosal et al.,
2021; Liu et al., 2022) to create context-aware utter-
ance representation on MultiWOZ intent classifica-
tion (Budzianowski et al., 2018). Recent works use
PLM as a sentence encoder (Shen et al., 2021) on
emotion recognition in conversation (ERC). Specif-
ically, (Lee and Lee, 2022) used PLM to encode
the context and speaker’s memory and (Qin et al.,
2023) enhance PLM by integrating multi-turn info
from the utterance, context and dialogue structure
through fine-tuning. However, all of their tasks
adopt the multi-turn dialogue training set, which
is hard to collect for an e-commerce chatbot. Our
method attempts to combine an XLM-based model

trained on the single-turn dataset into an in-context
retrieval augmented pipeline with LLM, solving the
multi-turn intent classification task in a zero-shot
setting.
In-context Retrieval: In-context learning (ICL)
with LLM like GPT-3 (Brown et al., 2020)
demonstrates the significant improvement on few-
shot/zero-shot NLP tasks. ICL has been successful
in utterance-level tasks like intent classification (Yu
et al., 2021). As for the Retrieval part, most re-
search on in-context learning (ICL) usually deals
with single sentences or document retrieval, but
we are interested in finding and understanding dia-
logues. Generally, there are two types of systems
to find the relevant dialogues: the first is LM-score
based retrieval. They (Rubin et al., 2021; Shin et al.,
2021) check the probability of a language model,
like GPT-3, to decode the right answer based on an
example. The second type defines similarity met-
rics between task results and uses them as the train-
ing objective for the retriever. Both K-highest and
lowest examples are used as positive and negative
samples to help the system learn. The most perti-
nent research on dialogue retrieval concentrates on
areas such as knowledge identification (Wu et al.,
2021b) and response selection (Yuan et al., 2019).
Our objectives and settings differ from them.

3 Problem Formulation

3.1 Hierarchical Text Classification

Hierarchical text classification (HTC) is a type of
text classification where the classes or categories
are organized in a hierarchy or tree structure. In-
stead of having a flat list of categories, the cate-
gories are arranged in a nested manner, so we need
to consider the relationships of the nodes from dif-
ferent levels in the class taxonomy.

The intents in our scenario are organised in a
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hierarchical tree structure. Specifically, each cate-
gory can belong to at most one parent category and
can have arbitrary number of children categories.
Our class taxonomy T is a tree with fixed depth 3
and one meta root node, that is, the distance from
the root node to all leaf nodes is 3, and the unique
path from the root node to each leaf node will form
one intent.

We formulate the single-turn HTC task in our
scenario as such, given a text qi, the purpose is
to predict a subset I of the complete intent set
I, where the size of the subset |I| containing the
category from each layer is 3 (excluding root node).
Generally, the number of intent sets exceeds 200.

3.2 Multi-turn Intent Classification

Multi-turn scenario shares the same T and I as
single-turn scenario. It involves a series of user
queries Q = {qi}ni=1 in dialogues, the objective is
to identify the intent of the final query qn. Multi-
turn recognition must account for the entire con-
versational context C = {qi}n−1

i=1 , which includes
the historical queries. This context-dependency in-
troduces additional complexity, requiring models
to interpret nuanced conversational dynamics and
adjust to evolving user intentions over the course
of an interaction.

3.3 Objective

This work aims to use easily accessible single-turn
data to improve the accuracy of multi-turn intent
recognition without requiring any multi-turn train-
ing datasets.

4 LARA: Linguistic-Adaptive
Retrieval-Augmentation

The LARA framework shown in Figure 2 ad-
dresses the multi-turn intent recognition challenge
through zero-shot in-context learning with single-
turn demonstrations guided by a crafted instruction
prompt. First, a single-turn classification model
Mc is trained on single-turn dataset and used to
narrow down the intents to be included in the ICL
prompt, which are henceforth referred to as candi-
date intents. This step is necessary due to the lim-
ited LLM context window, and it also helps to filter
out extra noise from direct demonstration retrieval.
Then, for every candidate intent, in-context demon-
strations are selected by retrieving single-turn ex-
amples that are semantically similar to the multi-
turn test sample. Finally, an instruction prompt for

multi-turn classification is formulated by combin-
ing the demonstrations and test user queries.

4.1 Single-turn Classification Model (Mc)

Before diving into LARA, we must train a single-
turn hierarchical text classification model on our
single-turn dataset D. The model is an ensemble of
a simple label-attention model (Zhang et al., 2020)
and a state-of-the-art HTC approach named HiTIN
(Zhu et al., 2023). The label-attention model only
considers the semantic info of user utterances and
label-query attention info, which ignores the hi-
erarchical tree-like structure in our intent system.
So, we build model Mc, integrating taxonomic
structure via the tree isomorphism network within
HiTIN into our label-attention model. More details
are provided in Appendix A.

We conduct some experiments on our multi-
lingual dataset. The result in Table 1 shows
that HiTIN alone performs better than the label-
attention model, and ensembling the two methods
further improves performance on average scores.
We will use this model as our baseline and generate
candidate intents within LARA.

4.2 Candidate Intents Selection

Query Combination: After receiving the con-
text from user side, the last query qn is first com-
bined with each historical query in conversational
context C to form a query combination set Qc =
{qn, q1n, ..., qn−1

n }, where qin means the text con-
catenation of qi with qn using a comma.
Candidate Intent Recognition:Mc predicts few
candidate intents Ic from all intents I on these
query combinations Qc. The Mc is then used
to perform inference on each of the concatenated
queries to get a set of candidate intents Ic =
{Iqn , Iq1n , ..., Iqn−1

n
}. Finally, we will select the top

3 intents with the highest scores. Note that Ic is
a set, so duplicated intents will be removed, and
the maximum size of Ic is equal to the number of
queries n in a session.

4.3 ICL Retrieval

However, not all training examples under the can-
didate’s intent Ic will be used in the prompt as
demonstrations. Here, the demonstrations refer
to a sequence of annotated examples that provide
LLM with decision-making evidence and specify
an output format for natural language conversion
into labels during ICL. Our strategy is to sample
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Figure 2: The pipeline of Linguistic-Adaptive Retrieval-Augmentation

BR ID MY PH SG TH TW VN avg

Traffic weight 150k 212k 27k 46k 5k 36k 36k 43k
Label-attention model 81.55% 87.91% 83.73% 73.29% 83.69% 83.11% 71.55% 74.44% 82.30%
HiTIN 81.85% 89.41% 84.57% 74.75% 84.17% 83.67% 75.38% 75.99% 83.53%
Ensembled 82.66% 89.62% 85.33% 75.98% 84.57% 83.89% 75.19% 75.52% 83.94%

Table 1: Noticeable improvement from adding a state-of-the-art HTC approach.

training examples that are similar to the test se-
quence for each candidate intent, a method intro-
duced by (Liu et al., 2021). In this process, we
first concatenate all the queries in the session with
a comma to get the test sequence qall. Then, qall
is mapped to a vector Hq using the [CLS] token
embedding from a pre-trained sentence encoder,
ΦXLMR. After that, we retrieve all the single-turn
training samples for each candidate intent from D
using a sample retriever and also encode them using
ΦXLMR. With Hq as query, we use an embedding
retriever to search through the sampled examples
to retrieve top K - 1 nearest data examples of each
candidate intent based on their cosine similarity to
Hq. Together with the representative query of each
candidate intent, the retrieved single-turn samples
of all candidate intents form the demonstrations
E for in-context learning. We show the detailed
algorithm in 1 below.

4.4 Prompt Construction and LLM Inference

A task instruction T is hand-crafted to guide the
model to perform multi-turn intent recognition
task by referring to the single-turn demonstra-
tions. The task instruction T , combined with
demonstrations E , conversational context C, and
the query qn, forms the input prompt P for the
LLM. The concatenation of each prompt compo-

nent into one long text is shown in the appendix C.
To accommodate real-time application latency re-
quirements, two additional methods were explored
to constrain the model to generate single-token
symbols representing intents, detailed as Psymbolic

and Pprepend, with examples also provided in the
appendix. Model outputs are greedily decoded,
ensuring efficient and accurate intent recognition.

5 Experiments

5.1 Experimental Setup

Dataset. The dataset is obtained from the conver-
sation history of a large e-commerce company. It
consists of user queries in the local languages of
eight markets: Brazil, Indonesia, Malaysia, Philip-
pines, Singapore, Thailand, Taiwan, and Vietnam.
All the labelled data are collected through man-
ual annotation by local customer service teams of
each market. The samples with consistency labels
from 3 taggers are selected to ensure the annotation
quality. More details are in Appendix B.
Metrics. We evaluate the accuracy of the methods
based only on the label of the last query qn in each
conversation session Q. Other metrics which con-
sider class imbalance are not used as the sampled
sessions are expected to reflect the online traffic of
each intent, thus more accurately simulating true
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Algorithm 1 ICL Demonstrations Retrieval
Require: Ic, Q, a positive integer K
I ′ = remove_duplicate(Ic)
qall = text_concatenate(Q)
Hq = ΦXLMR(qall)

[CLS]

for each item Ii in I ′ do
/* Sample retriever: Get the single-turn train-

ing samples under intent Ii */
Xi = sample_from_D_for_intent(Ii)

/* Embedding retriever: Get embedding for
each training sample */

HXi = {ΦXLMR(xj)
[CLS]}|Xi|

j=1, x ∈ Xi

/* Calculate text similarity of each training
sample with test queries */

Si = {cosine_similarity(Hq, hj)}
|HXi

|
j=1 ,

where h ∈ HXi

/* Get top K nearest demonstrations */
Ei ← Top (K − 1) x ∈ Xi based on Si

Append r of Ii to Ei /* add representative
query to demonstrations of Ii */
end for

E = {Ei}|I
′|

i=1 /* collect demonstrations of all
candidate intents */
S = {Si}|I

′|
i=1

Sort E by their scores S in ascending order

return E

online performance.

5.2 Baselines

Current multi-turn models are trained with multi-
turn datasets, but our methods did not require such
data. For a fair comparison, we adopt a state-of-the-
art single-turn model mentioned in 4.1 with two
types of concatenation approaches as baselines:

5.2.1 Single-turn approach
Inference on only the last utterance of a session us-
ing the single-turn modelMc, all previous contexts
are ignored.

5.2.2 Naive concatenation
All queries in a single session Q are concate-
nated using comma, and the concatenation result
is fed into the single-turn modelMc, which is en-

hanced by HTC approach mentioned above, for
inference. HTC methods which optimally utilise
the overall label hierarchy information often out-
perform the methods which simply disregard the
structure(Rojas et al., 2020).

5.2.3 Selective concatenation
In this approach, only one query from Cq is selected
to be concatenated with qn. The intuition is that not
all history queries are helpful in understanding the
last query, and the excessive use of them might in-
troduce unwanted noise. A concatenation decision
model is trained to select the most appropriate his-
torical query. Depending on the model confidence,
there might be cases where no expansion is needed
at all. The concatenation result is then also fed into
the single-turn modelMc for inference.

6 Results and Discussions

Table 2 compares the performance of baselines and
LARA on our multi-turn dataset. The single-turn
approach has the worst performance due to the lack
of context from history queries. The single-turn
model with Naive concatenation is lower than Se-
lective concatenation by 0.89% on average, show-
ing that naively including all history queries will
introduce noises, which in turn jeopardizes the per-
formance. However, pseudo-labelling the dataset
used to train the concatenation decision model will
need to be carefully carried out, and despite the
extra steps, it will not necessarily be more effective
than the naive method.

LARA, on the other hand, with prompt
Pformatted, achieves the best results on most mar-
kets without any multi-turn training data. On aver-
age, it improved accuracy by 3.67% compared with
Selective concatenation. Especially on the non-
English markets, it also improved by 2.96%, 4.18%
and 4.00% on TH, VN and BR separately. This
highlights the linguistic-adaptivity of the method
on broad languages. The only market that does
not outperform the baselines is ID, which most
probably can be attributed to the language ability
of open-sourced LLMs in handling the local slang
and abbreviations in casual conversation. After all,
the backbone model used in baselines is pre-trained
directly on the in-domain chat log data, while the
LLM models are used out of the box.

Replacing the label names with non-related sym-
bols in Psymbolic significantly hurts the perfor-
mance of in-context learning. On the other hand,
minimal changes to label names in Pprepend does
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Model Prompt BR ID MY PH SG TH TW VN avg

Single-turn - 30.98% 52.14% 56.81% 40.21% 51.13% 52.99% 58.07% 65.90% 53.76%
Naive Concat. - 50.81% 60.61% 57.02% 47.62% 60.52% 56.97% 65.44% 76.95% 60.08%
Selective Concat. - 52.69% 63.23% 60.20% 51.32% 56.99% 57.77% 64.02% 74.10% 60.97%
Vicuna-13B P 52.69% 61.48% 65.42% 54.50% 65.26% 60.96% 67.14% 77.90% 64.18%
Vicuna-13B Psymbolic 51.88% 60.00% 64.57% 53.97% 65.26% 58.96% 65.44% 74.67% 62.92%
Vicuna-13B Pprepend 54.03% 61.75% 64.50% 53.44% 65.94% 61.55% 66.86% 75.81% 63.97%
Vicuna-13B Pformatted 55.65% 62.88% 64.71% 55.03% 65.40% 61.95% 66.86% 78.10% 64.64%

Table 2: Performance of LARA compared to baselines, the average here is weighted on the number of test samples
in each market. The best performance for each dataset is in boldface, while the second best is underlined.

not heavily impact the performance. In turn, the
inference time is improved by 77%, from 0.75it/s
to 1.32it/s on a single V100 card using Hugging
Face python library. Interestingly, the model also
stopped generating labels which cannot be matched
with the options provided in demonstrations, while
previously the rate is on average 1.6% using P . Fi-
nally, we also tried a new prompt Pformatted based
on Pprepend. Only a very slight change to the con-
text format is done, but it can outperform the other
prompt variants in all datasets, suggesting that giv-
ing CQ a closer format to E and the targeted qn will
be more beneficial in the context utilization. Be-
sides, this also hints that the prompt could also be
worked on more in the future as it is not extensively
tuned in this work.

7 Ablation Studies

To validate our motivation and model design, we
ablate single-turn model Mc in candidate intent
selection and retrievers in ICL retrieval. The com-
parison is made on the original P prompt variant.

7.1 The necessity of modelMc

Mc is used to recognise the intent candidates be-
fore ICL retrieval. If so, all demonstrations are
directly retrieved based on their cosine similar-
ity to qall and the quality of in-context learning
is adversely impacted. The accuracy on all mar-
kets dramatically dropped except PH, which only
dropped by 0.53% due to the least number of in-
tents. The average score across all markets dropped
from 64.18% to 53.99%. For instance, "refund
timeline" and "refund timeline for cancelled or-
der" could be confusing to retrieval-based models,
while classification models trained on each market
dataset can discern them better.

7.2 The role of retrievers in ICL retrieval

Demonstration selection via retrievers may have an
impact on the performance. Thus, we remove all

Figure 3: Ablation on different components of LARA.

retrievers and randomly sample the demonstrations
for each intent. The results are reported with 10
runs on the random sampling. As shown in Fig-
ure 3, the overall performance decreased by 0.71%
without retrievers, highlighting the importance of
selecting demonstrations which are more similar
to test queries. ID and VN, with demonstration
pool two to three times bigger than others (refer to
Appendix B for pool size), are affected the most
because the chance of selecting samples which are
not so similar is higher.

7.3 Quality of Embedding Model

We also experimented with open-source, multilin-
gual semantic similarity models provided by Sen-
tenceTransformers (Reimers and Gurevych, 2019)
for in-context demonstration mining. These models
are easily accessible to the public and cover a wide
range of languages. Due to the training method,
the similarity metric used is still cosine similarity.

The multilingual models selected in this exper-
iment have lower or roughly the same number of
parameters as our own XLM-RoBERTa-base model
used in the paper. They are

• Models with all-rounded abilities which
have the best average performance reported
by the authors: all-MiniLM-L12-v2 and all-
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Encoder BR ID MY PH SG TH TW VN avg

Our own encoder 55.65% 62.88% 64.71% 55.03% 65.40% 61.95% 66.86% 78.10% 64.64%
all-MiniLM-L12-v2 54.57% 61.05% 64.36% 53.97% 65.13% 59.56% 68.27% 75.81% 63.63%
all-mpnet-base-v2 55.91% 60.79% 63.30% 54.50% 64.31% 58.57% 67.42% 76.95% 63.24%
paraphrase-multilingual
-MiniLM-L12-v2 54.03% 62.01% 64.42% 57.14% 64.31% 62.35% 69.12% 76.95% 64.25%
paraphrase-multilingual
-mpnet-base-v2 55.38% 61.57% 65.42% 55.56% 64.99% 59.96% 68.56% 76.95% 64.29%

Table 3: Performance of LARA using different encoders for in-context demonstration mining. The best performance
for each dataset is in bold, while the second best is underlined.

mpnet-base-v2

• Models for paraphrase mining as it is simi-
lar to our task of comparing multi-turn utter-
ances to single-turn utterances: paraphrase-
multilingual-MiniLM-L12-v2 and paraphrase-
multilingual-mpnet-base-v2

All comparisons are done using the same prompt,
Pformatted. From the table 3, the best open-source
model of selections (from row 2 - 5) is overall only
0.35% behind our own model, which means that
the quality of the embedding model does not matter
much and can easily be replaced by open-source
models. That said, we would recommend para-
phrase mining models over the general purpose
ones as they are more suited for the scenario. Fur-
thermore, if resource is a concern, smaller models
like MiniLM-L12 can be selected with 3x speed up
compared to mpnet-base, all while maintaining the
same overall quality.

8 Limitation

LARA does not currently address the detection of
out-of-domain utterances, a critical aspect for on-
line dialogue systems. Future research is necessary
to explore methods for incorporating this capability
and to assess their feasibility. Furthermore, the re-
silience of the method to user intent shifts has not
been examined. Additionally, the multi-component
architecture, which integrates text classification,
retrieval, and ICL, adds to the implementation com-
plexity. In Appendix D, we propose a lightweight
solution that is more suitable for applications with
limited deployment resources.

9 Conclusion

This paper introduced LARA, a framework
that leverages Linguistic-Adaptive Retrieval-
Augmentation to address multi-turn intent classifi-
cation challenges through zero-shot settings across

multiple languages. Unlike other supervised Fine-
Tuning (SFT) models, which require a hard-to-
collect multi-turn dialogue set, our method requires
only a single-turn training set to train a conven-
tional model, combining it with an innovative in-
context retrieval augmentation for multi-turn in-
tent classification. LARA substantially improved
user satisfaction by 1% over multi-turn sessions, re-
duced the transfer-to-agent rate by 0.5% and saved
the cost of hundreds of agents, which is a key busi-
ness metric in our industrial application.

The empirical results underscore LARA’s capa-
bility to enhance intent classification accuracy by
3.67% over existing methods while reducing infer-
ence time, thus facilitating real-time application
adaptability. Its strategic approach to managing ex-
tensive intent varieties without exhaustive dataset
requirements presents a scalable solution for com-
plex, multi-lingual conversational systems.

For future work, we intend to extend and apply
the LARA framework to recommendation tasks in
other domains, such as understanding how user in-
tent may shift during a POI or itinerary recommen-
dation for tourism purposes (Halder et al., 2024).
This will enable us to better capture evolving user
preferences due to temporal shifts, changing con-
texts, and individual or group behavioural patterns,
which is also applicable to general sequence rec-
ommendations.
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A The details of single-turn model (Mc)

A text classification model is trained on the an-
notated single-turn dataset D. The model is an
ensemble of a simple label-attention model and a
state-of-the-art global HTC approach. The label-
attention model exploits local information per layer
of the taxonomy by having separate classifier head
for each intent taxonomy layer, whereas the global
approach addresses the task with a single model for
all the classes and levels. In our implementation,
both approaches are trained as a single network and
back propagation is performed on the ensembled
output.

The approaches share the same encoder and sen-
tence representation. Given a query q, we adopt
the [CLS] token embedding from XLM-RoBERTa-
base model with weight ΦXLMR as the text repre-
sentation H . Formally,

H = ΦXLMR(q)
[CLS] ∈ Rd

where d is the hidden dimension. ΦXLMR had
been further pretrained with our in-domain corpus
to give meaningful representation to [CLS] token.

In the label-attention model, we have one classi-
fier head for each intent layer. Each of the classifier
heads has one hidden linear layer to obtain the layer
intermediate output Ll, which encodes the layer in-
formation. This layer information will be utilised
in the input of of the next layer classifier head.

Ll =

{
HW 1

l + b1l , if l = 1,

(H ⊕ Ll−1)W
1
l + b1l , if l > 1,

where W 1
l ∈ Rd×d for l = 1 and W 1

l ∈
R2d×d for l > 1. b1l ∈ Rd, l is the layer num-
ber, ⊕ denotes tensor concatenation. Finally, we
obtain the local logits H l

local for each layer classes
by using another linear layer

H l
local = Ll ·W 2

l + b2l ,W
2
l ∈ Rd×|Il|, b2l ∈ R|Il|

where |Il| is the number of classes in the layer.
However, the label-attention model used is not

aware of the overall hierarchical structure. There-
fore, we ensemble it with another method. We
refer to HiTIN (Zhu et al., 2023) for the implemen-
tation of state-of-the-art HTC global approach. In
this method, a tree network is constructed based
on the simplified original taxonomy structure, and
the messages are propagated bottom-up in an iso-
morphism manner, which complements the label-
attention model used. The embedding for leaf
nodes are obtained by broadcasting the text rep-
resentation H . After the tree isomorphism network
propagation, all embedding from all layers are ag-
gregated to form single embedding, and a classi-
fication layer is used to obtain the logits Hglobal

of all tree nodes. The logits are then split by the
number of classes in each layer to obtain H l

global.
The final class probabilities for each layer Pl is

then obtained by

Pl = softmax(H l
local +H l

global)

B Implementation Details

The traditional single-turn model, the retriever, and
the concatenation decision model used are using
backbone initialized with ΦXLMR, a multi-lingual
domain specific XLM-RoBERTa-base model con-
tinued to be pre-trained with contrastive learning.
We use AdamW to finetune the backbone and all
other modules with a learning rate of 5e-6 and 1e-3,
respectively. In LARA, the LLM used is vicuna-
13b-v1.5 on Hugging Face with 13B parameters.
All test are run on a single Nvidia V100 GPU card
with a 32GB of GPU memory. The number of
demonstrations K retrieved for each intent is set
at 10 in this experiment. We also experimented
with numbers below 10, the lower the number, the
lower the performance. 10 is the highest number
we can fit due to GPU memory constraint. Due to
this constraint as well, the total number of tokens
the in-context learning demonstrations can make
up to are limited to 2300 tokens. If exceeded, the
number of demonstrations in each candidate intent
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Market Lang. Intents Train(ST) Test(MT)

BR pt 316 66k 372
ID id 481 161k 1145

MY en,ms 473 74k 1417
PH en,fil 237 33k 189
SG en 360 76k 737
TH th 359 60k 502
TW zh-tw 373 31k 353
VN vi 389 178k 525

Table 4: The major languages, number of intents, and
the number of samples in each market for Single Turn
(ST) and Multi-Turn (MT).

are pruned equally starting with the ones with the
lowest cosine similarity scores to qall. During in-
ference time, if the generated intent does not match
any of the provided options, the intent ofMc on
qn will be considered as the final result.

B.1 Dataset Details

Table 4 shows the number of samples in each
dataset. We have the single-turn training data avail-
able in abundance over the course of business oper-
ations after years. These single-turn samples will
serve as the demonstration pool for in-context learn-
ing. To evaluate the effectiveness of our methods,
we also have the CS teams to manually annotate
some real multi-turn online sessions to serve as the
test set. Each session queries Q will only have the
last query qn labelled.

C Prompt Demonstration

C.1 Prompt for ICL (P)

To fit the width of this paper, we use SQ to represent
Similar Question.

Prompt for ICL (P)

# Task Description
A chat between a curious user and

an artificial intelligence
assistant. The assistant gives
helpful , detailed , and polite
answers to the user 's

questions. USER: Determine the
intent for the targetted

message from the examples , you
must use the context in the

history messages to arrive at
the best answer.

# Examples

[Content] SQ_1 [Intent]
Intent_name_1

[Content] SQ_2 [Intent]
Intent_name_2

[Content] SQ_3 [Intent]
Intent_name_3

# Note
DO NOT create new intent on your

own , you must strictly use the
intents in the examples.

DO NOT provide any explanation.
Output ONLY ONE intent for the

targgetted message.
Consider the context from

previous messages if the
targetted message is unclear.

# Context
message 1: User 's query
message 2: User 's query with

Entity
[Content] Last user 's query

# Output
ASSISTANT: [Intent] <Model

generated Intent_name>

C.2 Prompt for ICL (Psymbolic)

In Psymbolic the original label name l of each intent
in Esymbolic are replaced with single-token sym-
bols, e.g. ‘A’, ‘B’, ..., which bear no meaning to
the intents they represented. Explanation will be
made in the instruction prompt Tsymbolic to link the
symbols back to their original intent label yj , and
the model is instructed to generated the symbols
instead of full label names.

Prompt for ICL (Psymbolic)

# Task Description
Content is Same as P

# Examples
[Content] SQ_1 [Intent] A
[Content] SQ_1 [Intent] B
<omitted>
[Content] SQ_1 [Intent] B

# Intent options
A is Intent_name_1
B is Intent_name_2
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# Note
Content is Same as P

# Context
Format is same as P

# Output
ASSISTANT: [Intent]

C.3 Pprepend
In Pprepend, representative symbols for each in-
tent will be prepend to the original label name l,
such that they are separated by an extra character
as boundary, e.g. label “logistics>how long will
it take to receive order?" will be represented as
“A>logistics>how long will it take to receive or-
der?". Note that the instruction prompt T remains
the same, the trick is to limit the model generation
token count to 1 on API level.

Prompt for ICL (Pprepend)

# Task Description
Content is Same as P

# Examples
[Content] SQ_1 [Intent] A>

Intent_name_1
[Content] SQ_2 [Intent] B>

Intent_name_2
<omitted>
[Content] SQ_3 [Intent] B>

Intent_name_2

# Note
Content is Same as P

# Context
Format is same as P

# Output
ASSISTANT: [Intent] B

C.4 Pformatted

Prompt for ICL (Pformatted)

# Task Description
Content is Same as P

# Examples
Format is same as Pprepend

# Note
Content is Same as Pprepend

# Context
[History msg 1] Query
[History msg 2] Query with Entity
[Content] that is the order id

# Output
ASSISTANT: [Intent]

D More Light-weight Deployment
Method

The multi-component architecture can be compli-
cated to implement for real-time systems. Alterna-
tively, this method can be used offline as a multi-
turn data pseudo-labeling tool to train a classifica-
tion model. The training method will be the same
as theMc classifier in the paper, just with pseudo-
labeled multi-turn data added to the original data
with only single-turn samples. We also did exper-
iment to ensure the quality of the model trained
pseudo-labelled data.

The prompt used for the experiment is
Pformatted. Since this is not a real-time task, and
we don’t need to care about the pipeline response
time, we also did self-consistency checking on the
LLM outputs to ensure the quality of pseudo-labels.
For this checking, the in-context learning part is
run three times per sample, with the in-context ex-
amples sorted in three fashions according to their
scores: ascending, descending, and random. 70k of
online chat logs are sampled for pseudo-labelling,
and only those having consistent labels after 3 runs
will be kept for training. Around 12% of the data
will yield inconsistent results and be discarded. We
validated that doing self-consistency this way can
improve the average accuracy by 4.48% (from
64.64% to 69.12%), and thus the quality of the
pseudo-label.

Moreover, the classifier trained with the high-
quality multi-turn data generated by our pipeline
can achieve better overall performance than the best
original proposed method by 1.89% (64.64% vs
66.53%). This is all while cutting the deployment
cost to just one classical classification model, but
with the trade off of offline training time.
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