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Abstract

Cross-lingual transfer has recently been tack-
led through modular, parameter-efficient fine-
tuning methods which allow arbitrary combina-
tions of language and task modules for transfer
of any task to any language. Concurrently, task
arithmetic has emerged as a powerful and mod-
ular tool for editing pretrained models using
multiple full fine-tunings. In this work, we con-
nect the paradigms of task arithmetic and cross-
lingual transfer, demonstrating that modularity
for cross-lingual transfer can be achieved even
with full model fine-tuning. Our approach dis-
plays strong performance on a range of multi-
lingual benchmarks encompassing both high-
resource and low-resource languages.

1 Introduction

Massively multilingual Transformer-based models
(MMTs) (Devlin et al., 2019; Conneau et al., 2020;
Xue et al., 2021, 2022; He et al., 2023) have shown
impressive performance in cross-lingual transfer
due to their ability to learn representations which
have a degree of cross-lingual alignment, despite
being trained using purely unsupervised objectives
(e.g., masked language modeling). This allows an
MMT to perform a task in a target language having
seen labeled data only in a source language: the
so-called zero-shot cross-lingual transfer (ZS-XLT).

The adaptation of MMTs to low-resource lan-
guages has been an attractive research area lately,
stemming from a need to extend such models to
under-represented and unseen languages (Wang
et al., 2020; Muller et al., 2021; Ebrahimi and
Kann, 2021). A particularly popular approach is
based on modular and parameter-efficient (PEFT)
adaptation of MMTs to particular languages and
tasks, generally leading to improved ZS-XLT (Pfeif-
fer et al., 2020; Üstün et al., 2020; Parović et al.,
2022; Ansell et al., 2022; Parovic et al., 2023).

While the PEFT methods are typically de-
signed to facilitate modularity and module

(re)combination, full fine-tuning appears to exhibit
less flexibility in this regard. This has led to the
development of techniques for merging multiple
fine-tuned models (Wortsman et al., 2022; Matena
and Raffel, 2022; Schmidt et al., 2023). One promi-
nent approach to model merging is based on the
so-called task arithmetic: Ilharco et al. (2023)
have proposed editing monolingual and vision mod-
els using task vectors derived by subtracting the
weights of the pretrained model from those of the
fully fine-tuned model. Several such vectors can
then be applied to the model through arithmetic
operations such as addition and subtraction to steer
its behaviour in a controlled manner (Daheim et al.,
2023a,b).

In this work, we shed new light on the ability
to maintain modularity even for fully fine-tuned
MMTs in the context of ZS-XLT: we delve into
the potential of full fine-tuning and task arithmetic
for ZS-XLT. More precisely, starting from a pre-
trained MMT, we independently acquire language
and task vectors, by fine-tuning the MMT on the
language and task data, respectively. These vectors
are subsequently combined with MMT through ad-
dition or subtraction to obtain the resulting, adapted
model tailored for a specific language-task pair in
a fully modular fashion. We extensively evalu-
ate several promising variants of combining task
and language vectors across a spectrum of mul-
tilingual benchmarks, encompassing both high-
resource and low-resource languages. Our findings
underscore the potency of task arithmetic for cross-
lingual transfer and language adaptation, yielding
notable performance gains over fully fine-tuned
MMTs without task arithmetic and other strong
ZS-XLT baselines, particularly prominent on bench-
marks featuring low-resource languages. Our code
is available at https://github.com/parovicm/
task-arithmetic.
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2 Methodology

Background and Motivation. Prior work demon-
strated that models which share a portion of the
optimization path, typically through a common ini-
tialization, can be merged into a single model using
weight interpolation while maintaining task accu-
racy (Ilharco et al., 2022; Wortsman et al., 2022;
Choshen et al., 2022). Gueta et al. (2023) find that
models trained on the same data or on different
datasets of the same task tend to cluster together
in the weight space. Daheim et al. (2023a) lever-
age the task arithmetic to address the challenges
of hallucination within dialogue systems. They ad-
ditionally employ Fisher information to weigh the
importance of the parameters (Sung et al., 2021;
Matena and Raffel, 2022) participating in the arith-
metic. Inspired by the previous work on model
merging in general and task arithmetic in particular,
here we investigate its potential and benefits for
modular ZS-XLT.

Task Arithmetic: Preliminaries. Given a pre-
trained model with the parameters θ0 ∈ Rd and
the designated task T , the task-specific parameters
θT ∈ Rd can be derived by fine-tuning the pre-
trained model on T ’s task data. The task vector
of T , denoted by τT ∈ Rd, is defined as the dif-
ference in parameters before and after fine-tuning:
τT = θT − θ0. This vector characterizes the direc-
tion in the model’s weight space, such that adjust-
ing the parameters in this direction enhances task
performance.

The acquired task vector can be integrated into
the model by a simple addition and an optional scal-
ing factor λ ∈ R governing its influence, yielding
a new model with the following parameters:

θ′ = θ0 + λ · τT . (1)

Note that when λ = 1, then θ′ = θT . Adding a task
vector (λ > 0) has the effect of promoting a certain
‘model behaviour’, while subtracting it (λ < 0)
‘suppresses’ it. In a more general scenario, given n
task vectors τT1 , ..., τTn ∈ Rd along with their cor-
responding scaling coefficients λT1 , ..., λTn ∈ R,
their application to the model yields the following:

θ′ = θ0 +
n∑

i=1

λTi · τTi . (2)

2.1 Task Arithmetic for ZS-XLT

Given a source language Ls and a target language
Lt, the ‘task’ vectors associated with these lan-
guages (i.e., language vectors), τLs and τLt , can

be obtained by fine-tuning a pretrained MMT on
the respective unlabeled data. Furthermore, when
presented with a specific task T and its correspond-
ing dataset in the source language Ls, we can derive
the task vector τT by fine-tuning the model for task
T . Then, the core idea is that the model designed
to address the task T in the target language Lt can
be formed through the arithmetic of the task vector
τT and the language vectors τLs and τLt . There
are multiple possible configurations based on ad-
dition and subtraction of the vectors; we motivate
and describe those configurations in what follows.

First, inspired by the task analogy (Ilharco et al.,
2023) which is applicable to tasks linked by the
relation of the form "A is to B as C is to D", we can
define the model for the task T in language Lt as:

θ′ = θ0 + λT · τT + λLt · τLt − λLs · τLs . (3)

We denote this variant as –SRC+TGT.
Further, target language adaptation (without any

intervention on the source language) is known to ex-
hibit strong performance in cross-lingual transfer,
particularly for low-resource languages (Pfeiffer
et al., 2020; Ansell et al., 2022; Ebrahimi et al.,
2022; Ansell et al., 2023). Inspired by this, we in-
troduce +TGT variant, where alongside the task
vector we only add the target language vector
τLt . Similarly, +SRC variant is obtained by adding
the source language vector τLs only. This vari-
ant could be an insufficient adaptation method for
low-resource languages, which necessitate target
language-informed modelling.

Finally, we propose a variant which adds both
τLs and τLt (+SRC+TGT). This variant hinges
on the observation that knowledge of the source
language is beneficial for a specific source-target
transfer direction (Ansell et al., 2022), and subtrac-
tion of the source language vector done by the task
analogy variant (-SRC+TGT) might suppress this
valuable knowledge.

3 Experiments and Results

Tasks and Languages. We extensively evaluate
our method on two classification tasks and four dif-
ferent datasets: 1) natural language inference (NLI)
with (a) XNLI (Conneau et al., 2018) covering
14 high-resource and mid-resource languages, and
(b) AmericasNLI (Ebrahimi et al., 2022) spanning
10 low-resource languages from the Americas; 2)
sentiment classification (SA) with MARC (Keung
et al., 2020) containing 5 high-resource languages
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MultiNLI MARC NusaX

Batch Size 32 32 16
Epochs 5 5 10
Learning Rate 2 · 10−5 2 · 10−5 2 · 10−5

Eval Freq. (steps) 625 625 250
Eval Metric Acc Acc F1

Table 1: Hyperparameters with XLM-RBASE.

and NusaX (Winata et al., 2023) consisting of 10
low-resource Indonesian languages. This totals
34 typologically diverse languages with different
degrees of available resources.1

Pretrained MMT Models. Our primary MMT is
XLM-RBASE (Conneau et al., 2020), and we also
run a subset of experiments with XLM-RLARGE.

Language Vectors are trained on unlabelled data
of each language, primarily following the hyperpa-
rameters outlined in Pfeiffer et al. (2020). Details
regarding the used monolingual corpora are pro-
vided in Appendix A. We train for 50, 000 steps
(20,000 steps with XLM-RLARGE), a batch size is
64, a learning rate is 5 · 10−5 and a maximum
sequence length is set to 256. We select the check-
point that yields the lowest validation perplexity as
the final language vector.

Task Vectors are trained on the corresponding
task dataset in the source language (English for
XNLI, AmericasNLI, and MARC; Indonesian for
NusaX). The dataset used for obtaining the task vec-
tor for both XNLI and AmericasNLI is MultiNLI
(Williams et al., 2018). Further details about the
datasets and tasks are given in Appendix B. The
hyperparameters are in Table 1 and Appendix G.2

Task-Arithmetic Variants. Our starting point, de-
noted as MODEL, is the pretrained model fully fine-
tuned on the data of a particular task T . MODEL is
subsequently applied to make predictions on data
in different target languages, as in standard ZS-XLT.
Further, it is then augmented with different task
arithmetic variants discussed in §2.1. For exam-
ple, +TGT variant outputs language-task special-
ized models in a modular fashion, by adding the
corresponding target language vectors. For all the
variants, we evaluate the configurations with differ-

1We exclude NIJ from our NusaX results since it does
not have any unlabelled data available, and thus no language
vector was trained for it.

2The hyperparameters for NusaX are different due to a
significantly smaller training set (MultiNLI has 393k training
examples, MARC has 160k, and the training set for NusaX
(SMSA) has only 11k examples; see Table 6).

ent scaling factors for source and target language
vectors (λLs , λLt). Task scaling factor λT is al-
ways set to 1. In the -SRC+TGT and +SRC+TGT

variants, we use λLs = λLt . Following Ilharco
et al. (2023), we consider scaling factors from the
set {0.1, 0.2, ..., 1.0} and choose the one with the
highest average performance on the correspond-
ing validation data. The scaling coefficients reach-
ing the best performance are summarized in Ap-
pendix E.

Baselines. Beyond comparing to the fully fine-
tuned MODEL in all tasks, we compare our mod-
els against two strong ZS-XLT methods: 1) sparse
fine-tuning (SFT) for cross-lingual transfer (Ansell
et al., 2022) on AmericasNLI and NusaX, and
2) target language-ready (TLR) adapters (Parovic
et al., 2023) on AmericasNLI, which both showed
superiority over other established ZS-XLT variants
with language adaptation such as MAD-X (Pfeif-
fer et al., 2020) in those tasks.3 Note that these
methods were created with the specific goal of en-
hancing ZS-XLT performance. Our primary goal,
however, is to gain insight into the interaction be-
tween the task arithmetic and cross-lingual transfer.
The scores of these baselines are inherited from
prior work (Parovic et al., 2023; Ansell et al., 2023).
We refrained from conducting experiments with
these baselines on the XNLI and MARC datasets
mainly for the following reasons: 1) these methods
are tailored to low-resource languages, and exhibit
the highest performance in such contexts, while
XNLI and MARC feature high-resource languages;
2) the contributions of this paper do not hinge on
direct comparisons with them. Instead, we position
the task fine-tuned model as our principal baseline,
and our goal lies in highlighting the effectiveness
of language and task vector compositions relative
to a simple task fine-tuning; 3) it is computation-
ally expensive to train language modules for many
languages which is necessary in these baselines.

3.1 Results and Discussion
Main Results. The main results for all tasks, lan-
guages, and configurations with XLM-RBASE are
presented in Table 2. We find that task arithmetic
can be very effective in improving ZS-XLT per-
formance. For instance, our methods yield per-

3We adhere to their suggested hyperparameters and adopt
the strongest, ALL-MULTI variant of the TLR adapters, which
is constructed by cycling over the language adapters of 36 lan-
guages during task adapter training; see Parovic et al. (2023)
for further details.
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Method AR BG DE EL ES FR HI RU SW TH TR UR VI ZH avg

MODEL 72.22 77.52 76.55 75.15 78.38 78.08 69.88 75.19 64.45 71.84 72.38 64.91 74.15 73.13 73.13
MODEL + SRC 72.04 78.42 77.31 75.63 79.38 78.80 70.60 76.81 62.81 72.87 72.71 66.45 75.75 74.85 73.89
MODEL + TGT 72.55 78.22 77.41 76.47 79.86 78.76 72.87 76.25 69.74 72.42 74.11 67.88 76.05 74.51 74.79
MODEL + SRC + TGT 73.71 78.90 77.66 76.81 80.02 78.76 72.48 76.61 69.28 73.25 74.03 68.56 76.61 75.57 75.16
MODEL – SRC + TGT 72.24 77.17 76.71 75.11 78.24 78.02 69.90 74.87 66.83 71.78 72.00 65.03 73.99 72.75 73.19

(a) XNLI: accuracy

Method AYM BZD CNI GN HCH NAH OTO QUY SHP TAR avg
TLR ADAPTERS 53.47 42.27 47.73 57.47 41.47 49.73 40.91 58.80 50.27 40.93 48.31
SFT 58.40 44.67 47.60 62.27 44.40 50.81 46.39 60.40 49.47 43.07 50.75
MODEL 36.93 39.47 37.60 39.60 36.80 41.73 38.24 37.87 41.47 35.47 38.52
MODEL + SRC 36.67 39.07 38.80 37.87 35.33 41.06 37.03 37.73 40.13 38.27 38.20
MODEL + TGT 54.67 43.33 48.27 59.87 41.87 50.41 43.58 64.93 48.27 45.33 50.05
MODEL + SRC + TGT 46.40 43.33 46.27 56.27 38.67 49.05 40.37 62.53 50.53 44.53 47.80
MODEL – SRC + TGT 55.60 41.87 46.67 60.53 42.27 50.41 42.51 62.67 47.87 44.93 49.53

(b) AmericasNLI: accuracy

Method ACE BAN BBC BJN BUG JAV MAD MIN SUN avg
SFT 79.96 81.26 65.80 82.00 63.84 84.27 73.49 86.60 84.36 77.95
MODEL 70.84 72.16 47.76 76.88 42.83 81.01 70.34 81.54 78.12 69.05
MODEL + SRC 71.22 74.13 52.68 77.40 51.57 81.31 73.57 81.59 77.50 71.22
MODEL + TGT 81.18 82.77 74.22 85.21 69.26 87.10 75.46 85.66 83.00 80.43
MODEL + SRC + TGT 82.68 80.98 77.51 83.24 65.23 84.64 74.42 84.72 79.89 79.26
MODEL – SRC + TGT 76.24 81.13 73.48 80.30 70.20 86.66 76.67 86.38 82.63 79.30

(c) NusaX: F1

Table 2: Results of different methods on XNLI, AmericasNLI, and NusaX datasets with XLM-RBASE. The last
column is the average score over all languages. Bold: the best performing approach.

SF XNLI AmericasNLI MARC NusaX
0.1 73.88 39.66 78.93 74.11
0.2 74.51 40.02 79.00 74.86
0.3 74.89 40.47 78.95 76.31
0.4 74.85 42.51 78.85 78.80
0.5 74.91 44.57 78.55 79.85
0.6 74.66 46.57 78.15 80.04
0.7 74.07 48.08 77.74 81.10
0.8 72.88 49.21 77.28 79.91
0.9 70.96 48.58 76.64 79.92
1.0 68.50 47.78 76.10 79.13

Table 3: Effect of different scaling factors on the XLM-
RBASE performance with the +SRC+TGT variant. All
scores are obtained on the validation sets; SF=Scaling
Factor.

Method AmericasNLI NusaX

MODEL 40.25 74.17
MODEL + SRC 40.38 75.36
MODEL + TGT 52.46 83.43
MODEL + SRC + TGT 51.36 80.30
MODEL - SRC + TGT 51.91 81.06

Table 4: Results with XLM-RLARGE, averaged over lan-
guages. Full results are given in Appendix D.

formance gains ranging from 2 points on XNLI,
with some gains observed even for high-resource
languages such as Spanish and German, up to a
substantial increase of 12 points on AmericasNLI

and NusaX over MODEL.4

Low-Resource Languages in particular greatly
benefit from language adaptation, as established
in prior work (Pfeiffer et al., 2020; Ansell et al.,
2021; Parovic et al., 2023; Ansell et al., 2023). Our
results substantiate these trends. For instance, two
of the low-resource languages in XNLI, SW and
UR, meet gains of up to 4-5% while the remain-
ing languages experience more moderate increases
of ∼1-2%. This effect is more notably present
on the two low-resource benchmarks, Americas-
NLI and NusaX. There, the addition of the target
language vectors results in an average gain of 12
points with +TGT variant, which outperforms other
variants. Conversely, augmenting the model with
the source language vectors leads to a performance
improvement of 2 points on NusaX, while its im-
pact on AmericasNLI is negligible. Similar trends
are also observed with XLM-RLARGE as the under-
lying model; cf., Table 4. This reaffirms that source
language adaptation is insufficient in the context of
low-resource languages.

Task Analogies. Our results reveal that the –
SRC+TGT variant, which draws inspiration from

4The gains on the MARC dataset are relatively modest,
which could be attributed to the nature of the task itself cou-
pled with the high-resource nature of its target languages. We
thus present the results on MARC in Appendix C.
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Figure 1: Averaged scores with different sparsity levels
with the +SRC+TGT variant.

task analogies, lags slightly behind the best-
performing variant on all tasks. While the exact
reason behind this is unclear, we suspect it might
be due to a different nature of language adaptation
as opposed to other task or domain fine-tunings.
Additionally, and as pointed out in §2.1, the knowl-
edge of the source language is valuable for ZS-XLT

(Ansell et al., 2022), while subtraction of the source
language vector may suppress it.

Task Arithmetic vs Baselines. Interestingly, the
proposed task arithmetic-based approach to ZS-XLT

displays very competitive and even improved per-
formance when compared against two state-of-the-
art ZS-XLT methods: e.g., our most effective variant
on AmericasNLI, MODEL + TGT, achieves 0.7%
lower performance than SFTs and 1.7% higher than
TLR adapters. Moreover, it outperforms SFTs by
around 2.5% on the NusaX dataset. While the
two techniques have been trained with different
hyperparameter configurations, these results hold
promise and warrant further in-depth exploration
of task arithmetic in this particular context.

Effect of Scaling Factors. Our results reveal that
scaling factors associated with language vectors
have a significant impact on performance. Table
3 shows the scores on the validation sets of all
datasets with different scaling factors attained with
the +SRC+TGT variant. The observed variance in
these scores could pose challenges in the wider
application of task arithmetic for ZS-XLT, necessi-

tating further investigation.

Analysis of Sparsity. In prior work, Ansell et al.
(2022) elucidate that the right level of sparsity
serves as a pivotal factor enabling both perfor-
mance gains and modularity of SFTs. This is at-
tributed to sparsity minimizing the parameter over-
lap between different fine-tunings; their analysis
reveals a strong performance drop when the den-
sity level exceeds 30%, possibly due to interference
during composition. Yadav et al. (2023) propose
strategies to improve task arithmetic in the multi-
task learning context, aiming to mitigate interfer-
ence between different task vectors. They find that
retaining only the top 20% of parameters with the
highest magnitudes within a task vector does not
result in performance degradation. Drawing inspi-
ration from these works, we assess the effect of
sparsity on the language vectors. Focusing on the
+TGT and +SRC+TGT variants, we vary the propor-
tion of kept parameters k from 5% to 90%, where
we keep the parameters with largest magnitudes
within the task vectors (top-k). As an ablation, we
also present the scores obtained by keeping the k%
parameters with the lowest magnitudes (bottom-k).

The plots on XNLI and AmericasNLI with
+SRC+TGT are provided in Figure 1, with more
results for other tasks and variants available in
Appendix F. A general trend suggests that impos-
ing higher degrees of sparsity is somewhat more
detrimental for AmericasNLI. Retaining even 90%
of parameters incurs a substantial drop of around
∼ 6% on this dataset, as evident in both top-k and
bottom-k variants. Notably, the top-k plots for both
tasks suggest that the intermediate sparsity levels
yield inferior performance, with some degree of
recovery observed towards the higher sparsity end.
This observation prompts further investigation on
the interaction of sparsity levels and modularity of
task arithmetic in cross-lingual transfer scenarios.

4 Conclusion

We proposed the adoption of task arithmetic in the
context of zero-shot cross-lingual transfer, investi-
gating its potential for these transfer scenarios. Our
approach involves independently creating and com-
bining language and task vectors to attain models
customized for specific language-task pairings. We
empirically demonstrated the effectiveness of this
technique across various multilingual benchmarks.
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Limitations

As a short paper, this work is organically con-
strained by its content page constraints, which sub-
stantially impacts the extent and depth of the exper-
iments and analysis. Keeping that in mind, we list
some limitations of this work and outline several
promising directions which could be explored as
part of future work, but are out of scope of this
particular project.

Due to a large number of languages and meth-
ods, we report all our results based on a single run.
However, the large number of target languages and
tasks we average over and the replication of the
core findings with two MMTs enhances the confi-
dence in the their correctness.

While in this work we consider encoder-only lan-
guage models, our methodology can be readily ap-
plied for cross-lingual transfer with different model
types, e.g., encoder-decoder models fine-tuned in
a text-to-text fashion or through instruction tuning
(Xue et al., 2021, 2022; Chung et al., 2022). More-
over, the proposed approach could also be applied
to and evaluated in few-shot cross-lingual trans-
fer scenarios (Lauscher et al., 2020; Ansell et al.,
2023), which assume access to a small amount of
supervised data in the target language. Ruder et al.
(2023) introduce a benchmark XTREME-UP for
few-shot learning and experiment with multilingual
fine-tuning and in-language in-context learning to
showcase the potency of large language models in
understanding under-represented languages. Ad-
ditionally, Asai et al. (2023) introduce BUFFET,
another benchmark for few-shot learning in the
cross-lingual transfer with all tasks cast into a text-
to-text format. Future work could use our approach
in synergy with these methods and benchmarks.
Our core findings should hold regardless of the
chosen model and cross-lingual transfer protocol.

We currently apply equal weighting to all param-
eters within the task and language vectors. How-
ever, the importance of individual parameters could
vary depending on a task or language. Developing
methods for more nuanced, per-parameter weight-
ing is a potential avenue for future work. Prior
work has proposed the Fisher information matrix
to select (Sung et al., 2021) or weigh (Matena and
Raffel, 2022; Daheim et al., 2023a) parameters ef-
fectively. Our preliminary results did not show
significant gains with Fisher weighting, but this
aspect could benefit from further exploration.

Finally, off-the-shelf application of sparsity on

the language vectors has not been particularly ef-
fective. In order for it to outperform full language
vectors, a more refined approach might be neces-
sary. This could involve some form of re-training
which would result in an approach akin to sparse
fine-tuning (SFTs) (Ansell et al., 2022, 2024), or
implementing a more sophisticated parameter selec-
tion mechanism beyond magnitude-based methods.
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A Languages

The complete overview of languages, their codes
and families, together with the monolingual data
sizes and resources is provided in Table 5.

B Tasks and Datasets

The details of tasks, languages and datasets are
given in Table 6.

Following prior work (Keung et al., 2020; Asai
et al., 2023), we consider a binarized version of the
MARC dataset, which is obtained by discarding
the neutral class (the reviews with a score of 3)
and assigning reviews with scores of 4 and 5 to the
positive class and reviews with scores of 1 and 2 to
the negative class. We use the review body and title
as input features since that yielded the best source
language performance.

In addition, NusaX dataset is created through
human translation of a subset of the SMSA dataset.
We thus carefully remove every example from
SMSA which appears in its original or modified
form in the NusaX test set to avoid data leakage.

C Results on MARC Dataset

The results with XLM-RBASE on MARC are pro-
vided in Table 7.

D Per-Language Results with
XLM-RLARGE

The full per-language results with XLM-RLARGE
on AmericasNLI and NusaX are provided in Ta-
ble 8.

E Scaling Factors

The best-performing scaling factors used for all
the reported results with XLM-RBASE and XLM-
RLARGE are given in Table 9.

F Additional Sparsity Results

The sparsity results not covered in the main paper,
with variants +SRC+TGT and +TGT are presented
in Figures 2 and 3. We evaluate the top-k and
bottom-k selections for all tasks, with k ranging
between 5% and 90%.

G Hyperparameters Details

All experiments were executed on a single RTX
3090 or RTX 600 Ada GPU. Training language

0.05 0.2 0.4 0.6 0.8 1.0
Keep ratio k

78.6

78.7

78.8

78.9

79.0

79.1

79.2

A
cc

ur
ac

y

Average with different sparsity levels

top-k
bottom-k
Model
Model + SRC + TGT

(a) MARC

0.05 0.2 0.4 0.6 0.8 1.0
Keep ratio k

68

70

72

74

76

78

F1

Average with different sparsity levels

top-k
bottom-k
Model
Model + SRC + TGT

(b) NusaX

Figure 2: The average scores with different sparsity
levels ranging from 5% to 90% with the MODEL + SRC
+ TGT variant.

vectors with both XLM-R models takes approxi-
mately 24 hours, while training of the task vectors
takes several hours, depending on the task. As out-
lined in the limitations, all reported results are from
a single run.

In addition to the hyperparameters summarized
in Table 1 of the main paper, when training XLM-
RLARGE model on the MultiNLI we introduce lin-
ear warmup for 6,000 steps to stabilize the training
(this is approximately 10% of total training itera-
tions). For training the XLM-RLARGE on the SMSA
(source dataset of NusaX), we use a batch size of
32, and a learning rate of 10−5. We train for 10
epochs and perform evaluation every 250 steps.
We also introduce the linear warmup for 300 steps
(roughly 10% of training) and an early stopping
with a patience of 3 (i.e., we stop training when the
F1 score does not increase for the three consecutive
evaluation cycles).
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Task Language Code Family Corpus size (MB) Corpus source(s)

Source English en Indo-European, Germanic 13,860 WikipediaIndonesian id Austronesian, Malayo-Sumbawan 600

NLI

Aymara aym Aymaran 2.3 Tiedemann (2012); Wikipedia

Asháninka cni Arawakan 1.4 Ortega et al. (2020); Cushimariano Romano and Sebastián Q. (2008);
Mihas (2011); Bustamante et al. (2020)

Bribri bzd Chibchan, Talamanca 0.3 Feldman and Coto-Solano (2020)
Guarani gn Tupian, Tupi-Guarani 6.9 Chiruzzo et al. (2020); Wikipedia
Náhuatl nah Uto-Aztecan, Aztecan 8.1 Gutierrez-Vasques et al. (2016); Wikipedia
Otomí oto Oto-Manguean, Otomian 0.4 Hñähñu Online Corpus
Quechua quy Quechuan 17 Agić and Vulić (2019); Wikipedia
Rarámuri tar Uto-Aztecan, Tarahumaran 0.6 Brambila (1976)
Shipibo-Konibo shp Panoan 2.1 Galarreta et al. (2017); Bustamante et al. (2020)
Wixarika hch Uto-Aztecan, Corachol 0.5 Mager et al. (2018)

SA

Acehnese ace Austronesian, Malayo-Sumbawan 90 KoPI-NLLB (Cahyawijaya et al., 2022); LibriVox-Indonesia (Wirawan,
2022); NLLB-Seed (NLLB Team et al., 2022); Wikipedia

Balinese ban Austronesian, Malayo-Sumbawan 42
INDspeech_NEWS_EthnicSR (Sakti and Nakamura, 2013), KoPI-NLLB
(Cahyawijaya et al., 2022); LibriVox-Indonesia (Wirawan, 2022); NLLB-
Seed (NLLB Team et al., 2022); Wikipedia

Banjarese bjn Austronesian, Malayo-Sumbawan 28 KoPI-NLLB (Cahyawijaya et al., 2022); Korpus Nusantara (Sujaini, 2020);
NLLB-Seed (NLLB Team et al., 2022); Wikipedia

Buginese bug Austronesian, South Sulawesi 4.3 Korpus Nusantara (Sujaini, 2020); LibriVox-Indonesia (Wirawan, 2022);
NLLB-Seed (NLLB Team et al., 2022); Wikipedia

Javanese jav Austronesian, Javanese 49 Wikipedia
Madurese mad Austronesian, Malayo-Sumbawan 0.8 Korpus Nusantara (Sujaini, 2020); Wikipedia

Minangkabau min Austronesian, Malayo-Sumbawan 93

Indo Wiki Parallel Corpora (Trisedya and Inastra, 2014); KoPI-NLLB
(Cahyawijaya et al., 2022); Korpus Nusantara (Sujaini, 2020); LibriVox-
Indonesia (Wirawan, 2022); MinangNLP MT (Koto and Koto, 2020);
Wikipedia

Ngaju nij Austronesian, Barito - -
Sundanese sun Austronesian, Malayo-Sumbawan 33 Wikipedia

Toba Batak bbc Austronesian, Northwest Sumatra-
Barrier Islands 0.4 Korpus Nusantara (Sujaini, 2020)

Table 5: Details of the languages and monolingual data used for training and evaluation of language vectors. The
corpora of Bustamante et al. (2020) are available at https://github.com/iapucp/multilingual-data-peru;
all other NLI corpora mentioned are available at https://github.com/AmericasNLP/americasnlp2021; all the
SA corpora (Cahyawijaya et al., 2022) are available through https://indonlp.github.io/nusa-catalogue/.
The remaining languages (those from XNLI and MARC datasets) utilize only the Wikipedia corpora.

Task Source Dataset Target Dataset Target Languages

Natural Language
Inference (NLI)

MultiNLI (tr:
393k / dev: 10k)
(Williams et al.,
2018)

AmericasNLI (test:
750) (Ebrahimi
et al., 2022)

Aymara (AYM), Bribri (BZD), Asháninka (CNI), Guarani (GN),
Wixarika (HCH), Náhuatl (NAH), Otomí (OTO), Quechua (QUY),
Shipibo-Konibo (SHP), Rarámuri (TAR)

MultiNLI (tr:
393k / dev: 10k)
(Williams et al.,
2018)

XNLI (test: 5k)
(Conneau et al.,
2018)

Arabic (AR)†, Bulgarian (BG)†, German (DE)†, Greek (EL)†,
Spanish (ES)†, French (FR)†, Hindi (HI)†, Russian (RU)†, Swahili
(SW)†, Thai (TH)†, Turkish (TR)†, Urdu (UR)†, Vietnamese (VI)†,
Chinese (ZH)†

Sentiment Analy-
sis (SA)

MARC (tr: 160k
/ dev: 4k) (Keung
et al., 2020)

MARC (test: 4k)
(Keung et al.,
2020)

German (DE)†, Spanish (ES)†, French (FR)†, Japanese (JA)†,
Chinese (ZH)†

SMSA (tr: 11k
/ dev: 1.3k)
(Purwarianti and
Crisdayanti, 2019;
Wilie et al., 2020)

NusaX-senti (test:
400) (Winata et al.,
2023)

Acehnese (ACE), Balinese (BAN), Toba Batak (BBC), Banjarese
(BJN), Buginese (BUG), Javanese (JAV)†, Madurese (MAD), Mi-
nangkabau (MIN), Sundanese (SUN)†

Table 6: Details of the tasks, datasets, and languages involved in our cross-lingual transfer experiments. †denotes
languages seen during MMT pretraining; The source language is English for XNLI, AmericasNLI, and MARC, and
Indonesian for the NusaX dataset.

Method DE ES FR JA ZH avg

MODEL 82.83 79.17 79.77 77.00 75.22 78.80
MODEL + SRC 82.75 79.50 79.73 77.60 75.30 78.98
MODEL + TGT 82.53 79.20 79.40 77.32 75.55 78.80
MODEL + SRC + TGT 82.73 79.40 79.25 77.55 75.62 78.91
MODEL – SRC + TGT 82.85 79.57 78.75 78.55 75.38 79.02

Table 7: Results on MARC dataset in accuracy with XLM-RBASE.
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Method AYM BZD CNI GN HCH NAH OTO QUY SHP TAR avg

MODEL 38.00 39.60 41.20 40.80 36.40 42.28 40.51 40.67 44.67 38.40 40.25
MODEL + SRC 38.27 39.60 40.80 41.07 36.53 44.04 39.97 40.00 45.20 38.27 40.38
MODEL + TGT 63.47 43.33 47.60 64.93 44.00 52.57 45.19 66.53 51.07 45.87 52.46
MODEL + SRC + TGT 59.20 42.27 46.00 64.80 43.60 51.22 46.39 64.53 50.40 45.20 51.36
MODEL – SRC + TGT 60.80 43.47 48.80 63.07 43.73 54.61 44.92 65.33 50.53 43.87 51.91

(a) AmericasNLI: accuracy

Method ACE BAN BBC BJN BUG JAV MAD MIN SUN avg

MODEL 69.89 77.67 55.78 84.56 55.46 86.54 71.83 79.60 86.16 74.17
MODEL + SRC 71.67 78.30 56.84 85.10 54.55 88.48 74.25 81.83 87.18 75.36
MODEL + TGT 86.13 83.40 75.27 86.48 71.03 89.75 81.58 87.66 89.56 83.43
MODEL + SRC + TGT 77.87 81.61 69.67 85.62 62.63 90.15 80.89 86.04 88.22 80.30
MODEL – SRC + TGT 80.08 80.35 74.38 82.57 70.01 89.05 81.10 84.06 87.97 81.06

(b) NusaX: F1

Table 8: Full per-language results with XLM-RLARGE on AmericasNLI and NusaX.

Method/Task XNLI AmericasNLI MARC NusaX

MODEL + SRC 0.5 0.7 0.2 0.3
MODEL + TGT 0.8 0.9 0.4 0.9
MODEL + SRC + TGT 0.5 0.8 0.2 0.7
MODEL – SRC + TGT 0.2 0.7 0.3 0.6

(a) XLM-RBASE

Method/Task AmericasNLI NusaX

MODEL + SRC 0.1 0.2
MODEL + TGT 0.8 0.6
MODEL + SRC + TGT 0.9 0.3
MODEL – SRC + TGT 0.8 0.5

(b) XLM-RLARGE

Table 9: Best scaling factors associated with the language vectors for different tasks with XLM-RBASE and XLM-
RLARGE. They were chosen from the set {0.1, 0.2, ..., 1.0} based on the best average performance on the validation
sets.
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Figure 3: The average scores with different sparsity
levels ranging from 5% to 90% with the MODEL +
TGT variant.
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