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Abstract

Text-based games (TBGs) have emerged as an
important collection of NLP tasks, requiring
reinforcement learning (RL) agents to com-
bine natural language understanding with rea-
soning. A key challenge for agents attempt-
ing to solve such tasks is to generalize across
multiple games and demonstrate good perfor-
mance on both seen and unseen objects. Purely
deep-RL-based approaches may perform well
on seen objects; however, they fail to show-
case the same performance on unseen objects.
Commonsense-infused deep-RL agents may
work better on unseen data; unfortunately, their
policies are often not interpretable or easily
transferable. To tackle these issues, in this
paper, we present EXPLORER1 which is an
exploration-guided reasoning agent for textual
reinforcement learning. EXPLORER is neuro-
symbolic in nature, as it relies on a neural mod-
ule for exploration and a symbolic module for
exploitation. It can also learn generalized sym-
bolic policies and perform well over unseen
data. Our experiments show that EXPLORER
outperforms the baseline agents on Text-World
cooking (TW-Cooking) and Text-World Com-
monsense (TWC) games.

1 Introduction

Natural language plays a crucial role in human
intelligence and cognition. To study and evalu-
ate the process of language-informed sequential
decision-making in AI agents, text-based games
(TBGs) have emerged as important simulation en-
vironments, where the states and actions are usu-
ally described in natural language. To solve game
instances, an agent needs to master both natural lan-
guage processing (NLP) and reinforcement learn-
ing (RL). At a high level, existing RL agents for
TBGs can be classified into two classes: (a) rule-
based agents, and (b) neural agents. Rule-based
agents such as NAIL (Hausknecht et al., 2019)

1Code available at: https://github.com/kinjalbasu/explorer
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Figure 1: An overview of the EXPLORER agent’s
dataflow on a TWC game. In EXPLORER, the neu-
ral module is responsible for exploration and collects
<action, state, reward> pairs, whereas the symbolic
module learns the rules and does the exploitation using
commonsense knowledge from WordNet.

rely heavily on prior predefined knowledge. This
makes them less flexible and adaptable. To over-
come the challenges of rule-based agents, in re-
cent years, with the advent of new deep learning
techniques, significant progress has been made on
neural agents (Narasimhan et al., 2015; Adhikari
et al., 2020b). However, these frameworks also
suffer from a number of shortcomings. First, from
deep learning, they inherit the need for very large
training sets, which entails that they learn slowly.
Second, they are brittle in the sense that a trained
network may show good performance with the en-
tities that are seen in the training instances, yet it
performs very poorly in a very similar environment
with unseen entities. Additionally, the policies
learned by these neural RL agents are not inter-
pretable (human-readable).
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In this paper, we introduce EXPLORER for
TBGs that utilizes the positive aspects of both neu-
ral and symbolic agents. The EXPLORER is based
on two modules - neural and symbolic, where the
neural module is mainly responsible for exploration
and the symbolic module does the exploitation. An
overview of the EXPLORER agent can be found
in Figure 1. A key advantage of EXPLORER is
that it has a scalable design that can integrate any
neural module and can build the symbolic module
upon it. For the symbolic module, instead of using
predefined prior knowledge, EXPLORER learns its
symbolic policies by leveraging reward and action
pairs while playing the game. These policies are
represented using a declarative logic programming
paradigm — Answer Set Programming (ASP) (Lif-
schitz, 2019), which allows the policies to be inter-
pretable and explainable. Due to its non-monotonic
nature and efficient knowledge representation abil-
ity, ASP has proven its efficiency in NLP research
(Basu et al., 2020, 2021; Pendharkar et al., 2022;
Zeng et al., 2024); Commonsense reasoning re-
search (Gupta et al., 2023; Kothawade et al., 2021);
and NLP + RL research (Lyu et al., 2019; Basu
et al., 2022b; Sridharan et al., 2017; Mitra and
Baral, 2015; Yang et al., 2018). We believe non-
monotonic reasoning (NMR) (Gelfond and Lifs-
chitz, 1988; Reiter, 1988) is a crucial capability in
partially observable worlds, as the agent’s beliefs
can change in the presence of new information
and examples. Importantly, with the help of an
exception learner (illustrated in Section 3.2), EX-
PLORER learns the symbolic policies as default
theories so that the agent can perform NMR, and
the policies remain consistent with the agent’s find-
ings.

After learning the symbolic policies, EX-
PLORER can lift or variablize the rules using
WordNet (Miller, 1995) to generalize them. By
generalizing the symbolic policies, we find that
EXPLORER overcomes the challenge of getting
poor performance over unseen entities or out-of-
distribution (OOD) test sets, as the unseen objects
are similar in nature to the training objects and
occur under the same class in WordNet.

Figure 2 illustrates the components of our neuro-
symbolic architecture and shows an overview of
the agent’s decision-making process.

We have used TW-cooking to verify our ap-
proach and then performed a comprehensive eval-
uation of EXPLORER on TWC games. To show-
case the scalability aspects of EXPLORER, we
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Figure 2: Overview of EXPLORER’s decision-making
at any given time step. The Hybrid Neuro-Symbolic
architecture mainly consists of 5 modules - (a) Context
Encoder encodes the observation to dynamic context,
(b) Action Encoder encodes the admissible actions, (c)
Neural Action Selector combines (a) and (b) with

⊕

operator, (d) Symbolic Action Selector returns a set of
candidate actions, and (e) Symbolic Rule Learner uses
ILP and WordNet-based rule generalization to generate
symbolic rules.

have done comparative studies with other SOTA
neural and neuro-symbolic models, and the empiri-
cal results demonstrate that EXPLORER outplays
others by achieving better generalization over un-
seen entities. Due to the neuro-symbolic nature
of EXPLORER, we are also able to perform de-
tailed qualitative studies of the policies (illustrated
in section - 5.3).

The main contributions of this paper are: (1) we
present EXPLORER for TBGs that outperforms
existing models in terms of steps and scores; (2) we
discuss the importance of non-monotonic reasoning
in partially observable worlds; (3) we demonstrate
how default theories can be learned with exceptions
in an online manner for TBGs; and (4) we provide
a novel information-gain based rule generalization
algorithm that leverages WordNet.

2 Background

Text-based Reinforcement Learning: TBGs pro-
vide a challenging environment where an agent can
observe the current state of the game and act in the
world using only the modality of text. The agent
perceives the state of the game only through nat-
ural language observations. Hence, TBGs can be
modeled as a Partially Observable Markov Deci-
sion Process (POMDP) (S,A,O, T , E , r), where
S is the set of states of the game, A is the natural
language action space, O is the set of textual ob-
servations describing the current state, T are the
conditional transition probabilities from one state
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to another, E are the conditional observation proba-
bilities, r : S ×A → R is a scalar reward function,
which maps a state-action pair to the reward re-
ceived by the agent.
Inductive Logic Programming (ILP): ILP is
a machine learning technique where the learned
model is in the form of logic programming rules
(Horn Clauses) that are comprehensible to humans.
It allows the background knowledge to be incre-
mentally extended without requiring the entire
model to be re-learned. Additionally, the compre-
hensibility of symbolic rules makes it easier for
users to understand and verify induced models and
even edit them. Details can be found in the work
of Muggleton and De Raedt (1994).
Answer Set Programming (ASP): An answer set
program is a collection of rules of the form:

l0 ← l1, ... , lm, not lm+1, ... , not ln.

Classical logic denotes each li is a literal (Gelfond
and Kahl, 2014). ASP supports negation as failure
(Gelfond and Kahl, 2014), allowing it to elegantly
model common sense reasoning, default rules with
exceptions, etc.
s(CASP) Engine: For this work, we have used
s(CASP) ASP solver to predict an action. s(CASP)
(Arias et al., 2018) is a query-driven, goal-directed
implementation of ASP that includes constraint
solving over reals. Goal-directed execution of
s(CASP) is indispensable for automating common-
sense reasoning, as traditional grounding and SAT-
solver based implementations of ASP may not be
scalable. There are three major advantages of using
the s(CASP) system: (i) s(CASP) does not ground
the program, which makes our framework scalable,
(ii) it only explores the parts of the knowledge base
that are needed to answer a query, and (iii) it pro-
vides natural language justification (proof tree) for
an answer (Arias et al., 2020).

3 Symbolic Policy Learner

Deep reinforcement learning (DRL) has experi-
enced great success by learning directly from high-
dimensional sensory inputs, yet it suffers from
a lack of interpretability. Interpretability of an
agent’s action is of utmost importance in sequen-
tial decision-making problems, as it increases the
transparency of black-box-style agents; it also
helps RL researchers understand the high-level
behavior of the system better. To make a sys-
tem interpretable, one of the most widely used

approaches is learning the agent’s policies sym-
bolically. In our work, EXPLORER learns these
symbolic policies in the form of logical rules rep-
resented in the ASP. An example of such a rule is
- insert(X, fridge) :- apple(X) which can
be translated as “X is insertable into a fridge if X
is an apple” 2. These learned ASP rules not only
provide a better understanding of the system’s func-
tionality but can also be used to predict the agent’s
next action using an ASP solver. EXPLORER
learns the rules iteratively (in an online manner)
and applies the rules to predict an action in collab-
oration with the neural module. Our results show
that this approach is very effective in terms of per-
formance and interpretability.
Partial Observability and Non-Monotonic Rea-
soning: EXPLORER works in a partially observ-
able environment, where it needs to predict an ac-
tion based on its prior knowledge. If EXPLORER
fails, then it learns something new that will be ap-
plied in the next episode. The reasoning approach
of EXPLORER is non-monotonic in nature: that is,
what it believes currently may become false in the
future with new evidence. We can model this us-
ing a non-monotonic logic programming paradigm
that supports default rules and exception to defaults
(Gelfond and Kahl, 2014). In this work, the belief
of EXPLORER has been represented as an An-
swer Set Program in the form of default rules with
exceptions. With the help of Inductive Logic Pro-
gramming (ILP) (see Section 3.1) and Exception
learner (see Section 3.2), these rules are learned by
EXPLORER after each episode and then applied
in the following episode. The agent uses an ASP
solver to predict actions by utilizing the observation
and the rules. Based on the outcome after applying
the rules, the learned policies are updated with the
exception (if needed), and new rules are learned as
needed.

3.1 Learning Symbolic Policy using ILP
Data Collection: To apply an ILP algorithm, first,
EXPLORER needs to collect the State, Action, and
Reward pairs while exploring the text-based envi-
ronment. In a TBG, the two main components of
the state are the state description and the inventory
information of the agent. The entities present in
the environment are extracted by parsing the state
description using the spaCy library, and only stor-
ing the noun phrases (e.g., fridge, apple, banana,

2For ease of use, we retain action names as the predicate
names; however, they are interpreted normally as adjectives.
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insert {o} into {c}
put {o} on {s}

insert dirty whisk into dishwasher
put black hat on hat-rack

insert(dirty_whisk, dishwasher) 
 put(black_hat, hat_rack)

o(dirty_whisk)  c(dishwasher)  s(hat_rack)

collected by neural explorationtemplates

Figure 3: Entity extraction using Action Template

etc.) in predicate form. We also extract the inven-
tory information in a similar way. At each step
of the game, the game environment generates a
set of admissible actions, one among them being
the best; as well as action templates (e.g., “insert
O into S”, where O and S are entity types) which
are predefined for the agent before the game starts.
By processing these templates over the admissible
actions, EXPLORER can easily extract the type
of each entity present in the environment and then
convert them to predicates. Figure 3 illustrates an
instance of a predicate generation process. Along
with this State description, EXPLORER also stores
the taken Action and the Reward information at
each step.
Data Preparation: To learn the rules, an ILP algo-
rithm requires three things - the goal, the predicate
list, and the examples. The goal is the concept that
the ILP algorithm is going to learn by exploring the
examples. The predicates give the explanation to a
concept. In the learned theory formulated as logical
rules, goal is the head and the predicate list gives
the domain space for the body clauses. The exam-
ples are the set of positive and negative scenarios
that are collected by the agent while playing.
Execution and Policy Learning: In our work,
we have mainly focused on learning the hypoth-
esis for the rewarded actions; however, we also
apply reward shaping to learn important preceding
actions (e.g., open fridge might not have any re-
ward, although it is important to take an item from
fridge and that has a reward). In both the TW-
Cooking domain and TextWorld Commonsense
(TWC), the action predicates mostly have one or
two arguments (e.g., open fridge, insert cheese
in fridge, etc.). In the one-argument setting, the
action becomes the ILP goal and the examples
are collected based on the argument. In the two-
argument setting, we fix the second argument with
the action and collect examples based on the first
argument. The goal will hence be in the form of
<action_(second_argument) >. We split the exam-
ples (i.e., state, entity types, inventory information

Goal

Examples

Predicates

insert_washing_machine

POSITIVE: [(shirt(shirt1), dirty(shirt1), …), (singlet(singlet1),  
         dirty(singlet1), …), (…), … ]
NEGATIVE: [(shirt(shirt2), clean(shirt2), …), (…), …]  

shirt, singlet, dirty, clean, etc.

Goal Predicates Examples

{  insert(X, washing_machine) :- dirty(X).  }

ILP

Figure 4: ILP Rule Learning Example

in predicate form) based on the stored rewards (pos-
itive and zero/negative). We use entity identifiers
to identify each entity separately; this is important
when there are two or more instances of the same
entity in the environment with different features
(e.g., red apple and rotten apple). Additionally,
EXPLORER creates the predicate list by extract-
ing the predicate names from the examples. After
obtaining the goal, predicate list, and the example,
the agent runs the ILP algorithm to learn the hy-
pothesis, followed by simple string post-processing
to obtain a hypothesis in the below form:
action( X , entity) <- feature(X).
action( X ) <- feature(X).

Figure 4 elaborates the ILP data preparation proce-
dure along with an example of a learned rule.

3.2 Exception Learning

As EXPLORER does online learning, the qual-
ity of the initial rules is quite low; this gradually
improves with more training. The key improve-
ment achieved by EXPLORER is through excep-
tion learning, where an exception clause is added
to the rule’s body using Negation as Failure (NAF).
This makes the rules more flexible and able to han-
dle scenarios where information is missing. The
agent learns these exceptions by trying the rules
and not receiving rewards. For example, in TWC,
the agent may learn the rule that - apple goes to the
fridge, but fail when it tries to apply the rule to a
rotten apple. It then learns that the feature rotten
is an exception to the previously learned rule. This
can be represented as:

insert(X , fridge) <- apple(X), not ab(X).

ab(X) <- rotten(X).

It is important to keep in mind that the number
of examples covered by the exception is always
fewer than the number of examples covered by
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insert(X, wardrobe) <- �e(X).
insert(X, wardrobe) <- jacket(X), not ab(X).
ab(X) <- dirty(X).

insert(X, wardrobe) <- wearable(X), not ab(X). 
ab(X) <- dirty(X).

Jacket

Wearable

Tie

WordNet

Figure 5: Example of Rule Generalization

the defaults. This constraint has been included in
EXPLORER’s exception learning module.

4 Rule Generalization

Importance of Rule Generalization: An ideal
RL agent should not only perform well on enti-
ties it has seen but also on unseen entities or out-
of-distribution (OOD) data. To accomplish this,
policy generalization is a crucial feature that an
ideal RL agent should have. To verify this, we
used EXPLORER without generalization on the
TW-Cooking domain, where it performs well, how-
ever, it struggles on the TWC games. TWC games
are designed to test agents on OOD entities that
were not seen during training but are similar to the
training data. As a result, the policies learned as
logic rules will not work on unseen objects.

For example, the rule for apple (e.g.,
insert(X, fridge) <- apple(X). ) can-

not work on another fruit such as orange. To tackle
this, we lift the learned policies using WordNet’s
(Miller, 1995) hypernym-hyponym relations to
get the generalized rules (illustration in Figure 5).
Motivation comes from the way humans perform
tasks. For example, if we know a dirty shirt goes
to the washing machine and we have seen a dirty
pant, we would put the dirty pant into the washing
machine as both are of type clothes and dirty.
Excessive Generalization is Bad: On one hand,
generalization results in better policies to work with
unseen entities; however, too much generalization
leads to a drastic increment in false-positive results.
To keep the balance, EXPLORER should know
how much generalization is good. For an example,
“apple is a fruit”, “fruits are part of a plant”, and
“plants are living thing”. Now, if we apply the same
rule that explains a property of an apple to all living
things, the generalization will have gone too far. So,
to solve this, we have proposed a novel approach
described in Section - 4.1.

4.1 Dynamic Rule Generalization
In this paper, we introduce a novel algorithm to
dynamically generate the generalized rules explor-

ing the hypernym relations from WordNet (WN).
The algorithm is based on information gain calcu-
lated using the entropy of the positive and negative
set of examples (collected by EXPLORER). The
illustration of the process is given in the Algorithm
1. The algorithm takes the collected set of exam-
ples and returns the generalized rules set. First,
similar to the ILP data preparation procedure, the
goals are extracted from the examples. For each
goal, examples are split into two sets - E+ and
E−. Next, the hypernyms are extracted using the
hypernym-hyponym relations of the WordNet on-
tology. The combined set of hypernyms from (E+,
E−) gives the body predicates for the generalized
rules. Similar to the ILP (discussed above) the goal
will be the head of a generalized rule. Next, the
best-generalized rules are generated by calculating
the max information gain between the hypernyms.
Information gain for a given clause is calculated
using the below formula (Mitchell, 1997) —

IG(R, h) = total∗(log2
p1

p1 + n1
−log2

p0
p0 + n0

)

where h is the candidate hypernym predicate to
add to the rule R, p0 is the number of positive
examples implied by the rule R, n0 is the number
of negative examples implied by the rule R, p1 is
the number of positive examples implied by the
rule R+ h, n1 is the number of negative examples
implied by the rule R+ h, total is the number of
positive examples implied by R also covered by
R+ h. Finally, it collects all the generalized rules
set and returns. It is important to mention that this
algorithm only learns the generalized rules which

Algorithm 1 Generalized Rule Learner
Input: E: Examples (States, Actions, and Rewards)
Output: RG: Generalized Rules Set

1: procedure GETGENERALIZEDRULES(E)
2: RG ← {} ▷ initialization
3: Goals ← getGoals(E) ▷ get the list of goals

similar to the ILP data preparation (described above)
4: for each g ∈ Goals do
5: Eg ← getExamples(E, g)
6: (E+

g , E−
g ) ← splitByRewards(Eg)

7: (Hyp+g , Hyp−g ) ← extractHypernyms(E+
g , E−

g )

▷ get the hypernyms from WordNet
8: rg ← getBestGen(E+

g , E−
g , Hyp+g , Hyp−g )

▷ uses entropy based information gain formula
9: RG ← RG ∪ rg

10: end for
11: return RG

12: end procedure
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Easy Medium Hard
#steps N. Score #steps N. Score #steps N. Score

IN

Text Only 15.12 ± 1.95 0.91 ± 0.03 33.17 ± 2.76 0.83 ± 0.04 47.68 ± 2.43 0.6 ± 0.05
EXPLORER-w/o-GEN 17.39 ± 3.01 0.93 ± 0.04 46.7 ± 2.14 0.42 ± 0.12 37.66 ± 0.93 0.88 ± 0.01

EXPLORER
Exhaustive 12.86 ± 3.04 0.91 ± 0.04 29.9 ± 3.16 0.65 ± 0.06 30.44 ± 0.87 0.95 ± 0.03

IG (Hyp. Lvl. 2) 10.59 ± 1.3 0.95 ± 0.02 22.57 ± 1.04 0.77 ± 0.07 30.46 ± 0.74 0.87 ± 0.01
IG (Hyp. Lvl. 3) 9.55 ± 2.34 0.96 ± 0.02 25.34 ± 2.86 0.76 ± 0.03 33.54 ± 1.47 0.91 ± 0.03

OUT

Text Only 16.66 ± 1.74 0.92 ± 0.03 37.3 ± 3.45 0.73 ± 0.06 50.00 ± 0.0 0.3 ± 0.04
EXPLORER-w/o-GEN 21.19 ± 0.87 0.84 ± 0.06 46.36 ± 1.52 0.42 ± 0.08 44.25 ± 0.42 0.63 ± 0.01

EXPLORER
Exhaustive 14.65 ± 2.18 0.91 ± 0.05 37.07 ± 2.09 0.63 ± 0.06 41.52 ± 1.12 0.83 ± 0.02

IG (Hyp. Lvl. 2) 15.08 ± 1.2 0.91 ± 0.02 40.63 ± 3.03 0.57 ± 0.06 42.18 ± 0.66 0.79 ± 0.01
IG (Hyp. Lvl. 3) 12.72 ± 1.22 0.92 ± 0.02 37.38 ± 3.09 0.64 ± 0.09 43.16 ± 2.83 0.78 ± 0.03

Table 1: TWC performance comparison results for within distribution (IN) and out-of-distribution (OUT) games

are used in addition to the rules learned by ILP and
exception learning (discussed in section 3).

5 Experiments and Results

5.1 Dataset

In our work, we want to show that if an RL agent
uses symbolic and neural reasoning in tandem,
where the neural module is mainly responsible for
exploration and the symbolic component for ex-
ploitation, then the performance of that agent in-
creases drastically in text-based games. At first,
we verify our approach with TW-Cooking domain
(Adhikari et al., 2020a), where we have used levels
1-4 from the GATA dataset3 for testing. As the
name suggests, this game suit is about collecting
various cooking ingredients and preparing a meal
following an in-game recipe.

To showcase the importance of generalization,
we have tested our EXPLORER agent on TWC
games with OOD data. Here, the goal is to tidy up
the house by putting objects in their commonsense
locations. With the help of TWC framework (Mu-
rugesan et al., 2021a), we have generated a set of
games with 3 different difficulty levels - (i) easy
level: that contains 1 room with 1 to 3 objects; (ii)
medium level: that contains 1 or 2 rooms with 4 or
5 objects; and (iii) hard level: a mix of games with
a high number of objects (6 or 7 objects in 1 or 2
rooms) or a high number of rooms (3 or 4 rooms
containing 4 or 5 objects).

We chose TW-Cooking and TWC games as our
test-bed because these are benchmark datasets for
evaluating neuro-symbolic agents in text-based
games (Chaudhury et al., 2021, 2023; Wang et al.,
2022; Kimura et al., 2021; Basu et al., 2022a). Also,
these environments require the agents to exhibit
skills such as exploration, planning, reasoning, and
OOD generalization, which makes them ideal envi-
ronments to evaluate EXPLORER.

3https://github.com/xingdi-eric-yuan/GATA-public

5.2 Experiments

To explain EXPLORER works better than a neural-
only agent, we have selected two neural baseline
models for each of our datasets (TWC and TW-
Cooking) and compared them with EXPLORER.
In our evaluation, for both the datasets, we have
used LSTM-A2C (Narasimhan et al., 2015) as the
Text-Only agent, which uses the encoded history
of observation to select the best action. For TW-
Cooking, we have compared EXPLORER with the
SOTA model on the TW-Cooking domain - Graph
Aided Transformer Agent (GATA) (Adhikari et al.,
2020a). Also, we have done a comparative study of
neuro-symbolic models on TWC (section 5.3) with
SOTA neuro-symbolic model CBR (Atzeni et al.,
2022), where we have used SOTA neural model
BiKE (Murugesan et al., 2021b) as the neural mod-
ule in both EXPLORER and CBR.

We have tested with four neuro-symbolic set-
tings of EXPLORER, where one without gener-
alization - EXPLORER-w/o-GEN and the other
three uses EXPLORER with different settings of
generalization. Below are the details of different
generalization settings in EXPLORER:
Exhaustive Rule Generalization: This setting
lifts the rules exhaustively with all the hypernyms
up to WordNet level 3 from an object or in other
words select those hypernyms of an object whose
path-distance with the object is ≤ 3.
IG-based generalization (hypernym Level 2/3):
Here, EXPLORER uses the rule generalization al-
gorithm (algorithm 1). It takes WordNet hyper-
nyms up to level 2 or 3 from an object.

For both datasets in all the settings, agents are
trained using 100 episodes with 50 steps maximum.
On TW-Cooking domain, it is worth mentioning
that while we have done the pre-training tasks (such
as graph encoder, graph updater, action scorer, etc)
for GATA as in (Adhikari et al., 2020a), both text-
only agent and EXPLORER do not have any pre-
training advantage to boost the performance.
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Text-Only
(Neural)

GATA
(Neural)

EXPLORER-w/o-GEN
(Neuro-Symbolic)

#Steps N. Score #Steps N. Score #Steps N. Score
Level-1 11.50 ± 1.26 0.93 ± 0.01 12.01 ± 0.84 0.72 ± 0.3 9.17 ± 3.28 0.96 ± 0.04
Level-2 45.79 ± 1.56 0.35 ± 0.07 28.65 ± 1.28 0.23 ± 0.06 15.60 ± 3.74 0.58 ± 0.04
Level-3 46.91 ± 1.51 0.25 ± 0.01 37.6 ± 1.17 0.18 ± 0.07 26.92 ± 2.74 0.34 ± 0.01
Level-4 22.03 ± 0.19 0.76 ± 0.01 35.53 ± 2.5 0.34 ± 0.06 19.85 ± 2.12 0.85 ± 0.07

Table 2: TW-Cooking domain — Comparison Results (with Mean and SD)

5.3 Results

In our experiments, we evaluated the models based
on the number of steps taken by the agent - #steps
(lower is better) and the normalized scores - n.
score (higher is better). For TWC, Table 1 shows
the comparison results of all 4 settings along with
the baseline model (Text-Only agent). We com-
pared our agents in two different test sets - (i) IN
distribution: that has the same entities (i.e., objects
and locations) as the training dataset, and (ii) OUT
distribution: that has new entities, which have not
been included in the training set. Table 2 illus-
trates the results on TW-Cooking. The purpose of
TW-Cooking is only to verify our approach and for
that, we have used EXPLORER-w/o-GEN as the
neuro-symbolic setting.

For each result (shown in Tables 1 and 2), the
#steps and n. score should be seen together to
decide which agent is doing better than the others.
On one hand, if we focus more on the #steps, the
agents can be given very low max steps to complete
a game, where the agents will perform well in terms
of #steps (lower is better), however the n. score
will be very low (higher is better) as most of the
games are not completed. On the other hand, if we
focus more on n. score, the agent can be given
very high max steps to complete a game, where
the agent will score very high n. score. As both
the cases are wrong interpretations of results, we
should consider taking into account both #step
and n. score to judge an agent’s performance.
Qualitative Studies: In our verification dataset -
TW-cooking domain games, we found that the EX-
PLORER does really well and beats the Text-Only
and GATA agents in terms of #step and normal-
ized scores on all the levels. In level-1 which is
focused on only collecting the ingredients, EX-
PLORER does slightly better than the Text-Only
agents as the neural models are already good in
easier games (with less sequence of actions) so the
scope of improvement is less for the EXPLORER.
However, as the level increases in level-2 and 3,
where it requires collecting ingredients, processing

them and cooking to prepare the meal, and finally
eating them to complete the game, the importance
of neural-based exploration and symbolic-based
exploitation comes into play. In Level-4, which
includes navigation, the neural module helps the
EXPLORER to navigate to the kitchen (i.e., explo-
ration) from one part of the house, and then the
symbolic module applies its rules to choose the
best action (i.e., exploitation).

In TWC, EXPLORER with IG based general-
ization (hypernym Level 3) performs better than
the others in the easy and medium level games,
whereas exhaustive generalization works well in
the hard games. This shows that on one side, the ex-
haustive generalization works slightly better in an
environment where the entities and rooms are more,
and that needs more exploration. On another side,
IG-based generalization works efficiently when the
agent’s main task is to select appropriate locations
of different objects. In the easy and medium games,
the EXPLORER-wo-GEN performs poorly in com-
parison with the baseline model. This indicates -
only learning rules without generalization for sim-
ple environments leads to bad action selection es-
pecially when the entities are unseen. The out-
distribution results for the medium games are not
up to the mark. Further studies on this show that
this happens when the OOD games have different
but similar locations (clothes-line vs. clothes-drier)
along with different objects in the environment.
Generalization on the location gives very noisy re-
sults (increases false-positive cases) as they already
belong to a higher level in the WordNet ontology.
One of the solutions to this problem is to use a
better neural model for exploration which helps to
learn better rules (shown in the Comparative Study
sub-section in Section - 5.3). Another solution for
this issue requires a different way of incorporating
commonsense to the agent and we have addressed
more on this in the future work section.

In the process of learning rules, we found that the
symbolic agent is having difficulties choosing be-
tween multiple recommended (by the ASP solver)
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2.0000  put(X, shelf) :-  flour(X).    (1)
2.0000  put(X, shelf) :-  peanut_oil(X).   (2)
1.9626  insert(X, trash_can) :-  used(X).   (3)
1.8000  put(X, hat_rack) :-  headgear(X).  (4)
1.5432  insert(X, fridge) :-  dairy_product(X).  (5)
0.9519  put(X, shelf) :-  seasoner(X).   (6)
0.6000  insert(X, fridge) :-  structure(X).   (7)

Figure 6: Example of Rule’s Confidence Scores
(medium level games)

symbolic actions. So, it becomes an utmost impor-
tance to have a confidence score for each rule and
we have generated that by calculating the accuracy.
The accuracy of a rule can be calculated by the
number of times the rule gives a positive reward di-
vided by the total number of times the rule has been
used. For generalized rules we have added another
component for confidence calculation - that is how
close the words are in WordNet, that is the score
is reversely proportional to the distance between
two nodes (entity and the hypernym). So for the
non-generalized rules, the max score is 1, whereas
for the generalized rules, the max score is 2 (due
to the additional component). Figure 6 shows a
snippet of a learned set of generalized rules with
different confidence scores.

Example: Figure 7 illustrates an example show-
ing how the EXPLORER plays the TWC games.
On the right-hand side of the diagram, a snippet
of the symbolic rules is given that the agent learns
using ILP and ILP + WordNet-based rule gener-
alization for TWC. To generate action using the
symbolic module, the agent first extracts the infor-
mation about the entities from the observation and
the inventory information. Then, this information
is represented as ASP facts along with the hyper-
nyms of the objects. Next, it runs the ASP solver -
the s(CASP) engine to get a set of possible actions
and select an action based on the confidence scores.
The top-left section of the figure 7 shows how a
symbolic action has been selected by matching the
object (i.e., ‘clean checked shirt’) with the rule set
(highlighted on the right). Here, the solver finds the
location of the ‘shirt’ in ‘wardrobe’ as ‘clothing’
and ‘wearable’ are the hypernyms of the word -

‘shirt’. In EXPLORER, when the symbolic agent
fails to provide a good action, the neural agent
serves as a fallback. In other words, EXPLORER
accords priority to the symbolic actions based on
the confidence scores. EXPLORER fallbacks to the
neural actions when either of the one following sit-

put(X, clothesline) :-  wet(X). 
insert(X, wardrobe) :-  clothing(X).
insert(X, wardrobe) :-  wearable(X).
insert(X, dishwasher) :-  utensil(X).
insert(X, dishwasher) :-  dirty(X).
insert(X, chest_of_drawers) :-  tie(X). 
insert(X, fridge) :-  vegetable(X).
insert(X, fridge) :-  veggie(X).
put(X, hat_rack) :-  cap(X).
put(X, hat_rack) :-  headdress(X).
put(X, hat_rack) :-  headgear(X).
put(X, coffee_table) :-  
    kitchen_utensil(X).
put(X, coffee_table) :-  pot(X).
put(X, coffee_table) :-  teapot(X).
put(X, coffee_table) :-  vessel(X).
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ACTION

-= Pantry =- 
... The wall opens up to reveal a shelf.
But the thing is empty ... 
INVENTORY: 
You are carrying some sugar. 

-= Bedroom =-
...You can see a wardrobe. The wardrobe
is empty! ...
INVENTORY: 
You are carrying a clean checked shirt.

insert clean checkered shirt  
into wardrobe 

 
Neural Action: put sugar on shelf  

 

<NO SYMBOLIC ACTION SELECTED>

LEARNED GENERALIZED 
 RULES 

Figure 7: Examples from TWC game, showing the
learned rules (right-hand side) along with the observa-
tions and action selection (Symbolic vs. Neural)

uations happens: (i) no policies for the given state
because of early exploration stage or non-rewarded
actions, or (ii) non-admissible symbolic action has
been generated due to rule generalization. The
bottom-left of the figure 7 shows that the location
of ‘sugar’ is not covered by any rules, so the neural
agent selects an action. EXPLORER learns rules
in an online manner after each episode, so after
the current episode, EXPLORER will add the rule
for sugar and in the next episode it will become a
symbolic action. In this way, both the neural and
symbolic modules work in tandem, where the neu-
ral module facilitates improved exploration and the
symbolic module helps to do better exploitation in
EXPLORER.

Comparative Studies: One of the key contri-
butions of EXPLORER is that it is scalable and
we can use any neural model as its base. To
demonstrate that we have taken BiKE (Muruge-
san et al., 2021b) a neural model designed for tex-
tual reinforcement learning. Then, we train EX-
PLORER (with Rule Generalization (hypernym
level 3)) using BiKE as its neural module (instead
of LSTM-A2C) and build EXPLORER w. BiKE
agent. In this comparison study, we have also
taken the neuro-symbolic SOTA baseline on TWC -
Case-Based Reasoning (CBR) (Atzeni et al., 2022)
model and trained it with BiKE as its neural module
as well and crafted CBR w. BiKE agent. Now we
tested these 3 models over TWC games including
easy, medium, and hard levels. The performance
evaluations are showcased with bar-plots in figure
8. It clearly shows EXPLORER w. BiKE is doing
much better at all levels in terms of #Steps (lower
is better) and normalized scores (higher is better).
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Figure 8: Performance on TWC: BiKE, CBR w. BiKE, and EXPLORER w. BiKE. Plot (a) and (b) show #steps
comparison of in and out distribution data (lower is better); and plot (c) and (d) show the normalized scores
comparison numbers of in and out distribution data (higher is better)

Also, EXPLORER w. BiKE is outperforming oth-
ers with a large margin in out-distribution cases.
This clearly depicts the importance of the policy
generalization, which is helping the EXPLORER w.
BiKE agent to use commonsense knowledge to rea-
son over unknown entities. In the easy-level games,
the performance differences are not that huge, as
the environment deals with only one to three ob-
jects in a single room, which becomes much eas-
ier for the neural agent. However, as the level in-
creases, we can start clearly seeing the importance
of the EXPLORER agent.

6 Related Work

Text-based Reinforcement Learning: TBGs have
recently emerged as promising environments for
studying grounded language understanding and
have drawn significant research interest. Zahavy
et al. (2018) introduced the Action-Elimination
Deep Q-Network (AE-DQN), which learns to pre-
dict invalid actions in the text-adventure game Zork.
Côté et al. (2018) designed TextWorld, a sandbox
learning environment for training and evaluating
RL agents on text-based games. Building on this,
Murugesan et al. (2021a) introduced TWC, a set of
games requiring agents with commonsense knowl-
edge. The LeDeepChef system (Adolphs and Hof-
mann, 2019) achieved good results on the First
TextWorld Problems (Trischler et al., 2019) by su-
pervising the model with entities from FreeBase,
allowing the agent to generalize to unseen objects.
A recent line of work learns symbolic (typically
graph-structured) representations of the agent’s be-
lief. Notably, Ammanabrolu and Riedl (2019) pro-
posed KG-DQN and Adhikari et al. (2020b) pro-
posed GATA. The following instruction for TBGs
paper (Tuli et al., 2022), which was also focused
on the TW-Cooking domain, assumes a lot about
the game environment and provides many manual

instructions to the agent. In our work, EXPLORER
automatically learns the rules in an online manner.

Symbolic Rule Learning Approaches: Learning
symbolic rules using inductive logic programming
has a long history of research. After the success of
ASP, many works have emerged that are capable
of learning non-monotonic logic programs, such as
FOLD (Shakerin et al., 2017), ILASP (Law et al.,
2014), XHAIL (Ray, 2009), ASPAL (Corapi et al.,
2011), etc. However, there are not many efforts that
have been taken to lift the rules to their generalized
version and then learn exceptions. Also, they do
not perform well on noisy data. To tackle this issue,
there are efforts to combine ILP with differentiable
programming (Evans and Grefenstette, 2018; Rock-
täschel and Riedel, 2017). However, it requires lots
of data to be trained on. In our work, we use a
simple information gain based inductive learning
approach, as the EXPLORER learns the rules after
each episode with a very small amount of examples
(sometimes with zero negative examples).

7 Future Work and Conclusion

In this paper, we propose a neuro-symbolic agent
EXPLORER that demonstrates how symbolic and
neural modules can collaborate in a text-based RL
environment. Also, we present a novel information
gain-based rule generalization algorithm. Our ap-
proach not only achieves promising results in the
TW-Cooking and TWC games but also generates
interpretable and transferable policies. Our current
research has shown that excessive reliance on the
symbolic module and heavy generalization may
not always be beneficial, so our next objective is
to develop an optimal strategy for switching be-
tween the neural and symbolic modules to enhance
performance.
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Limitations

One limitation of EXPLORER model is its com-
putation time, which is longer than that of a neu-
ral agent. EXPLORER takes more time because
it uses an ASP solver and symbolic rules, which
involve multiple file processing tasks. However,
the neuro-symbolic agent converges faster during
training, which reduces the total number of steps
needed, thereby decreasing the computation time
difference between the neural and neuro-symbolic
agents.

Ethics Statement

In this paper, we propose a neuro-symbolic ap-
proach for text-based games that generates inter-
pretable symbolic policies, allowing for transparent
analysis of the model’s outputs. Unlike deep neu-
ral models, which can exhibit language biases and
generate harmful content such as hate speech or
racial biases, neuro-symbolic approaches like ours
are more effective at identifying and mitigating
unethical outputs. The outputs of our model are
limited to a list of permissible actions based on a
peer-reviewed and publicly available dataset, and
we use WordNet, a widely recognized and officially
maintained knowledge base for NLP, as our exter-
nal knowledge source. As a result, the ethical risks
associated with our approach are low.
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