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Abstract

We explore how weak supervision on abundant
unlabeled data can be leveraged to improve few-
shot performance in aspect-based sentiment
analysis (ABSA) tasks. We propose a pipeline
approach to construct a noisy ABSA dataset,
and we use it to adapt a pre-trained sequence-
to-sequence model to the ABSA tasks. We test
the resulting model on three widely used ABSA
datasets, before and after fine-tuning. Our pro-
posed method preserves the full fine-tuning per-
formance while showing significant improve-
ments (15.84% absolute F1) in the few-shot
learning scenario for the harder tasks. In zero-
shot (i.e., without fine-tuning), our method out-
performs the previous state of the art on the as-
pect extraction sentiment classification (AESC)
task and is, additionally, capable of performing
the harder aspect sentiment triplet extraction
(ASTE) task.

1 Introduction

Aspect Based Sentiment Analysis (ABSA) is a fine-
grained variant of sentiment analysis (Hu and Liu,
2004; Pontiki et al., 2014, 2015, 2016; Zhang et al.,
2021a; Shu et al., 2022; Zhang et al., 2022), where
the task is to predict the sentiment expressed to-
wards an entity or a certain aspect of an entity,
instead of just the sentence-level sentiment (e.g.,
traditional sentiment analysis tasks (Socher et al.,
2013; dos Santos and de C. Gatti, 2014)).

For illustration, for a review The pizza was great,
but the service was terrible, a sentence-level senti-
ment analysis model might identify the sentiment
as neutral. The need for ABSA stems from such
complex interactions between the target and the
polarity of the sentiment (Pontiki et al., 2014). An
ABSA model has to identify the sentiment towards
pizza as positive, and service as negative, for a
holistic understanding of the text. Furthermore,
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ABSA tasks can include the identification of the
opinion terms (i.e. great, terrible), and the as-
pect categories (i.e. FOOD, SERVICE) (Zhang et al.,
2021a).

Although traditionally considered as a struc-
tured prediction task in the ABSA literature, recent
works have shown how sequence-to-sequence (seq-
to-seq) models can be effective in these tasks with a
generative approach (Yan et al., 2021; Zhang et al.,
2021a). Such approaches leverage the knowledge
gained from one task to seamlessly perform well
in another. As such, we build upon the Instruc-
tion Tuning with Multi-Task Learning approach
(Varia et al., 2023) and address the following five
ABSA tasks: (i) Aspect-term Extraction (AE), (ii)
Aspect-term Extraction and Sentiment Classifica-
tion (AESC), (iii) Target Aspect Sentiment Detec-
tion (TASD), (iv) Aspect Sentiment Triplet Extrac-
tion (ASTE), and (v) Aspect Sentiment Quadruple
Prediction (ASQP).

Sentence-level sentiment annotations are com-
paratively cheaper and are available at scale
through automated proxies (e.g., ☀ or☀☀ be-
come negative, ☀☀☀☀ or☀☀☀☀☀ be-
come positive, in the review corpora (Zhang et al.,
2015b)). On the contrary, ABSA requires under-
standing at sub-sentence level with multiple words
or phrases being related to each other, making it
prohibitively costly to annotate at scale.1 However,
the abundance of generic review data presents a
promising opportunity to improve the performance
of a pre-trained language model (PLM) beyond
simply fine-tuning it on the small annotated ABSA
corpora.

Towards this end, we first construct a noisily
annotated ABSA corpus out of generic customer
review data without any direct supervision. We
utilize this noisy corpus to pre-train a seq-to-seq

1This is evident from the corpus size of 2.1k vs 700k for
REST16 and Restaurant Reviews (Zhang et al., 2015b), re-
spectively.
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model on multiple ABSA tasks. We show that such
models are capable of learning in zero/few-shot in
final downstream ABSA tasks. Our contributions
are the following: (i) We propose a weakly super-
vised method to obtain annotations for three out
of the five ABSA tasks explored in the literature;
(ii) We introduce a pre-training step to improve the
few-shot performance on the downstream task of
PLMs; (iii) We comprehensively evaluate our pro-
posed method in three scenarios (full fine-tuning,
few-shot, and zero-shot learning), yielding as much
as 15.84% F1 improvement over the SOTA base-
lines. We release all the sources to reproduce the
datasets and results presented2.

2 Related Work

Aspect-Based Sentiment Analysis has received
tremendous attention in the past years (Tulkens and
van Cranenburgh, 2020; Zhang et al., 2021a; Shu
et al., 2022; Zhang et al., 2022), either handling sin-
gle tasks, such as aspect term extraction (He et al.,
2017; Liu et al., 2015; Tulkens and van Cranen-
burgh, 2020), aspect category detection (Tulkens
and van Cranenburgh, 2020), aspect sentiment clas-
sification (Vo and Zhang, 2015; Xu et al., 2019;
Li et al., 2021; Wang et al., 2021), or handling
compound tasks (Zhang et al., 2015a; Yu et al.,
2021; Xu et al., 2020; Zhang et al., 2021a). For the
latter group, it typically includes either a pipeline
approach (Peng et al., 2020; Yan et al., 2021) or an
end-to-end (E2E) approach (Xu et al., 2020; Zhang
et al., 2021a,b). In the pipeline approach the fi-
nal prediction is constructed using the output of
multiple components. The disadvantage of such
models is that the error is propagated throughout
the system (Zhang et al., 2022).

In the E2E approach, the model learns the in-
teractions jointly between the multiple prediction
tasks, which is believed to improve the final perfor-
mance (Xu et al., 2020; Zhang et al., 2022). Our
proposed approach falls in this category. Typical
E2E approaches include: (i) treating it as a token
classification task (Xu et al., 2019; Shu et al., 2019;
Xu et al., 2020), (ii) framing it as a machine reading
comprehension task (Chen et al., 2021; Liu et al.,
2022), natural language inference task (Shu et al.,
2022), or as a language generation task (Zhang
et al., 2021b; Yan et al., 2021; Zhang et al., 2021a;
Varia et al., 2023).

2https://github.com/amazon-science/
instruction-tuning-for-absa

Our proposed approach treats the ABSA tasks as
a generation task, similar to (Zhang et al., 2021a;
Varia et al., 2023). We build upon the paradigm
called Instruction Tuning with in Multi-Task Learn-
ing (IT-MTL), introduced in (Varia et al., 2023), re-
sulting in a single model capable of handling differ-
ent ABSA tasks. However, none of these methods
takes advantage of the vast amount of review data
available, other than just pre-training on them with
some generic language modeling objectives. De-
spite impressive generalization capabilities shown
by LLM based systems e.g., ChatGPT, GPT-4 they
reportedly struggle to perform well on these tasks
(Xu et al., 2023; Wang et al., 2023).

3 Method

We introduce an additional step in the classical
pretrain → finetune approach (Howard and
Ruder, 2018; Devlin et al., 2019; Raffel et al.,
2020), transforming it into pretrain → Noisy
ABSA Pre-Training (NAPT) → finetune for
ABSA. We propose an approach for building
a weakly annotated dataset for the intermediate
NAPT step. We use this noisy dataset to enhance
the knowledge of a pretrained model with the in-
tuition that exposing the model to tasks which are
well aligned with the final downstream task, im-
proves the performance. We then consider this as
the backbone base model, and finetune it on the
downstream task as usual. Our proposed approach
is applicable to any generic seq-to-seq model.

3.1 Dataset Construction

The first step in our proposed method is to weakly
annotated a dataset without any direct supervision.3

Our proposed approach annotates a dataset with tu-
ples of the form aspect-terms, opinion-terms, and
sentiment polarity. We follow a pipeline approach
as shown in Table 1(Xu et al., 2013; Zhang et al.,
2022), but without using any direct ABSA supervi-
sion. We describe each step in greater detail next.

3.1.1 Aspect-term Extraction
The first step in our proposed dataset creation pro-
cedure is aspect-term extraction. We use spacy to-
kenizer to obtain POS tags and then consider 20%
of the most frequent nouns in the text. These nouns
serve as candidate aspect terms. We note that this
method implicitly assumes that dataset D consists

3We use models which were trained on different tasks, but
no model has seen any aspect-based sentiment analysis data.
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Sentence: The pizza was great, but the service was terrible.

Step Heuristic or Method Resulting Annotations

#1 Extract corpus-wide frequent nouns as Aspect-terms pizza, service
#2 Identify opinion-related words using an opinion lexicon to extract

Opinion-terms
great, terrible

#3 Link opinion-terms with aspect-terms by predicting entailment
of the form “{aspect} is {opinion}” for every aspect, opinion
combinations using a pre-trained NLI model

<pizza, great>, <service, terri-
ble>

#4 Classify (artificial) sentences of the form “{aspect} is {opinion}”
with a pre-trained sentiment analysis model

<pizza, great, positive>, <service,
terrible, negative>

Table 1: A step-by-step illustration of our noisy dataset construction pipeline. It follows a pipeline approach, and
yields <aspect, opinion, sentiment> triplets in the end for each sentence in a generic review corpus.

Multi-word Patterns

NN*-NN* JJ*-NN*
VBG-NN* VBN-NN*
NN*-NN*-NN* NN*-IN-NN*
JJ*-NN*-NN* JJ*-JJ*-NN*
VBN-JJ*-NN* NN*-NN*-NN*-NN*
NN*-CC-NN*-NN*

Table 2: Multi-word Patterns used to filter 2-grams,
3-grams and 4-grams. ‘*’ denotes any variant of the
corresponding POS tags. For example, NN* captures
NN, NNS, NNP, NNPS.

of a single domain. Nevertheless, this is a small
assumption as the reviews are typically directed
towards a product of a known category (He and
McAuley, 2016; Zhang et al., 2015b). We extend
this method to multi-word aspect terms by consider-
ing collocations of length ≤ 4 filtered by their POS
tags. For example, we allow bigrams of the form
NN-NN like chicken breast (cf Table 2 lists all the
patterns that were used to filter 2-grams, 3-grams
and 4-grams). Finally, we filter out the sentences
from which no aspect term was extracted.

3.1.2 Opinion-term Extraction
The second step in our proposed algorithm is opin-
ion term extraction. We take a lexicon-based ap-
proach to opinion extraction (Ding et al., 2008;
Kanayama and Nasukawa, 2006; Hu and Liu,
2004). In particular, we use the opinion lexicon
from (Hu and Liu, 2004) and perform word match-
ing on the target text. While this lexicon does
provide positive words (e.g., great) and negative
words (e.g., terrible), we only use it to detect opin-
ion words and defer the sentiment detection to a

later stage.4 If negations e.g., no or not appear be-
fore the opinion word, we include it in the final
extraction as well. We filter out the sentences from
which no opinion term was extracted.

3.1.3 Linking Opinion-terms with
Aspect-terms

So far the resulting dataset consists of noisy aspect,
and opinion terms, but without the association be-
tween them. For example, for a sentence such as
The pizza was great , but the service was terri-
ble., the proposed algorithm would extract pizza
and service as the aspect terms and great and terri-
ble as the opinion terms, respectively. But at this
point we do not know that great refers to pizza
and terrible refers to service. We reformulate this
problem as a natural language inference problem
(Dagan et al., 2005; Shu et al., 2022). We use an
MPNet5 model (Song et al., 2020) and construct ar-
tificial sentences to determine which opinion-term
refers to which aspect-term. More precisely, we
construct sentences such as <aspect-term> is
<opinion-term>, for each aspect- and opinion-
term.6 Then, we use the original sentence (e.g.
The pizza was great , but the service was terrible.)
as the premise and our artificially constructed sen-
tence as the hypothesis (e.g. pizza is great). We
interpret a high entailment score (≥ 0.75) as evi-
dence that the opinion term refers to that particular
aspect term. We discard aspect- and opinion-term
pairs where the entailment score was below the
threshold.

4Other potentially usable lexicons include SentiWordNet
(Baccianella et al., 2010)

5huggingface.co/symanto/mpnet-base-snli-mnli
6We relax strict grammatical correctness e.g., the formu-

lation might result in burgers is great instead of burgers are
great).
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Alternative Approach: We consider an alter-
nate approach where the linking is based on
constituency-parse rules which turns out disad-
vantageous. Constituency parsing is considerably
slower and the rules are non-trivial to formulate.

3.1.4 Sentiment Extraction
The last step in our proposed dataset creation
method is to add the sentiment (Hu and Liu, 2004)
to each <aspect-term, opinion-term> tuple.
We use a sentence-level classifier on top of arti-
ficially constructed sentences (Sanh et al., 2019).
For example, for a tuple such as <pizza, great>, we
feed the sentence pizza is great through a sentence-
level sentiment classifier.7 Then, we label the <as-
pect term, opinion term> tuple with the sentiment
prediction if the model’s confidence is above a
certain threshold (≥ 0.75), otherwise we discard
the tuple. At the end of this step, for the sen-
tence The pizza was great , but the service was
terrible. we have the following <aspect-term,
opinion-term, sentiment> noisy annotations:
<pizza, great, positive>, <service, terrible, nega-
tive>. We consider an alternative for this step using
the sentiments associated in the opinion lexicon,
but a classifier allows for confidence filtering.

Throughout our proposed dataset creation pro-
cess we use external resources, such an opinion
lexicon, an NLI model and a sentence-level senti-
ment classifier. However, these resources do not
consume any annotated ABSA data by any means.
Threshold Selection: To prioritize precision, we
opt for a higher threshold (0.75) than the commonly
used value (0.5). Despite the higher threshold, we
are able to generate a weakly annotated dataset
(200k) that is approximately 100 times larger than
than typical (humanly annotated) ABSA datasets
(∼ 2k). As a result, recall of the weak supervision
heuristics doest not affect the corpus creation in
terms of size.

3.2 Noisy ABSA Pre-training (NAPT)
The phase consists of exposing the model to tasks
that are more aligned with the final downstream
task, i.e., ABSA in our case. We factorize the
triplets from the noisy dataset into five separate
but overlapping tasks: (i) aspect-term extraction,
(ii) opinion-term extraction, (iii) aspect-term and
opinion-term extraction, (iv) aspect-term extrac-
tion and sentiment prediction, and (v) aspect-term

7huggingface.co/distilbert-base-uncased-finetuned-sst-2-
english

extraction, opinion-term extraction and sentiment
prediction. Note that there exists a correspondence
between our NAPT tasks and classical ABSA tasks:
tasks (i), (iv) and (v) correspond to Aspect Extrac-
tion (AE), Aspect Extraction Sentiment Classifica-
tion (AESC), and Aspect Sentiment Triplet Extrac-
tion (ASTE), respectively. We use the noisy ABSA
dataset to pre-train the base model. We train the
model parameters in a multi-task learning frame-
work (cf Figure 1) using instruction tuning with a
diverse set of instructions (Sanh et al., 2022). At
the end of NAPT, the resulting model is imbued
with the capability of performing multiple ABSA
tasks. This can serve as a drop-in replacement to
the off-the-shelf pre-trained checkpoints that are
widely used in the generative ABSA literature.

3.2.1 Addressing Overfitting
The primary goal of our proposed NAPT phase is
to enhance the pre-trained model while retaining
existing knowledge from pre-training objectives, in
other words, avoiding catastrophic forgetting and
overfitting. We achieve this in a few different ways.
First, instead of just randomly splitting the data
into train/validation, we split the extracted aspect-
and opinion-terms into two disjoint sets, favoring
novel aspect- and opinion term constructions in the
validation partition. We observe this split defini-
tion to be necessary to prevent overfitting of the
base model. Additionally, we invoke three types of
regularization:

• Standard weight decay: we add a standard ℓ2

regularization term to the loss function.

• Tuple Dropout: we apply dropout over the tu-
ples that the model is trained to extract to prevent
it from overfitting to the noisy annotations. We
randomly dropped 50% of the tuples from pre-
diction targets of the seq-to-seq model.

• Biased weight decay: we use a biased variant
of weight decay to prevent the parameters from
diverging considerably from the initialization
point, akin to (Kirkpatrick et al., 2017). Towards
this, we use the ℓ2 norm over the difference be-
tween the current (θ) and the initial weights of
the model (θinit), and add it to the loss.
Our final loss function (L) is:

L = CEloss + α ⋅ ℓ2(θ − θinit) + β ⋅ ℓ2(θ). (1)

where α and β are hyperparameters, and CEloss

denotes the standard cross-entropy loss.
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Figure 1: Overview of our proposed Noisy ABSA Pre-Training (NAPT). We start from a pretrained language model
and extend its capabilities by instruction tuning it in a multi-task learning fashion. We use 5 different yet related
tasks for the proposed NAPT step. The tasks we use are: (i) aspect-term extraction, (ii) opinion-term extraction, (iii)
aspect-term extraction and opinion-term extraction, (iv) aspect term extraction and sentiment classification, and (v)
aspect-term extraction, opinion-term extraction, and sentiment classification. This step results in a model capable of
performing multiple ABSA tasks.

4 Experiments

We compare against state-of-the-art methods on
three widely used ABSA datasets. We evaluate
in three scenarios: (i) k-shot learning: where the
model has access to at least k examples of each
class, (ii) zero-shot evaluation: where the model
has not seen any example at all from the gold-
annotated ABSA data, and (iii) full-training: where
the model has access to the complete gold-standard
training data.

4.1 Experimental Setup

In all our experiments, we use T5 (Raffel et al.,
2020), particularly t5-base as the pre-trained seq-
to-sed model, which has ∼ 220M parameters. We
experiment with t5-large as well to explore the
impact of model size on the downstream perfor-
mance (cf Appendix B). We use the standard eval-
uation metrics as previous work, which is F1 score
over the exact match of the tuples. For zero-shot,
we use the same evaluation procedure as (Shu et al.,
2022), which is token-level F1 score.

We use a random subset of Amazon Electron-
ics (He and McAuley, 2016), and Restaurant re-
views (Zhang et al., 2015b) to create our noisy-
annotated dataset.8 We split the reviews with ≥ 3
sentences using a sentence tokenizer. We split the
noisy dataset into train/validation split. We enforce

8100K reviews from Amazon, and Restaurant each are
used.

that there is no overlap in terms of aspect-terms
between the train/validation splits. This results
in approximately 190k examples for training and
12.5k examples for validation.

We repeat each experiment with 5 different ran-
dom seeds. Additionally, we repeat the noisy
ABSA pre-training step with 3 different random
seeds. As a result, the numbers corresponding to
our proposed method (i.e. the ones with -NAPT)
represent an average of 5 × 3 = 15 runs, and all the
other numbers represent an average of 5 runs. We
report the mean and (sample) standard deviation.

We present the results on the Aspect Sentiment
Triplet Extraction (ASTE) and Aspect-term Extrac-
tion and Sentiment Classification (AESC) tasks
available in all the datasets we use for evaluation.9

4.2 Datasets

We use three popular datasets for aspect-based sen-
timent analysis: REST15, REST16 and LAP14
(Pontiki et al., 2014, 2015, 2016), which cover two
domains: restaurant and laptop, respectively. In
particular, we use the version released by Zhang
et al.. For k-shot, we use the same splits as (Varia
et al., 2023) to ensure a fair comparison. Specifi-
cally, the k-shot datasets were created by sampling
k examples for each attribute. The attributes are
aspect category, and sentiment for restaurant, and
laptop respectively.

9Results for all tasks are in Tables 12,13,14, and 9,10,11
for k-shot and full training respectively.
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(a) LAP14 on ASTE Task (b) REST15 on ASTE Task (c) REST16 on ASTE Task

(d) LAP14 on AESC Task (e) REST15 on AESC Task (f) REST16 on AESC Task

Figure 2: Performance Comparison between our proposed method (IT-MTL-NAPT) and two baselines over 3 datasets
on on the Aspect Sentiment Triplet Extraction (ASTE), Aspect-term Extraction and Sentiment Classification (AESC)
tasks in top, and bottom rows respectively. We note that our proposed method helps in all the k splits. (larger is better)

4.3 Baselines

Since we introduce the NAPT step and build upon
the existing Instruction Tuning with Multi-Task
Learning (IT-MTL) paradigm, we refer to our pro-
posed method as IT-MTL-NAPT. We compare this
with standard fine-tuning based approaches that
generally show strong performance in ABSA tasks
i.e.,(i) text-only (Text), where we give the model
the text review and train it to predict the gold text
(Zhang et al., 2021a), (ii) instruction tuning (IT)
and (iii) instruction tuning + multi-task learning, as
per (Varia et al., 2023) (IT-MTL).

To succinctly show the effectiveness of proposed
NAPT, we keep another baseline where a seq-to-
seq model is further pre-trained with in-domain
data using the same objective as that of T5 i.e.,
span prediction. We call it IT-MTL-ID.10 The in-
domain data is essentially the same as that of the
NAPT corpus, but without the noisy annotations.

4.4 K-Shot Learning

Next, we compare between the two approaches in
k-shot learning scenarios. We summarize our re-
sults in Figure 2. IT, and IT-MTL-ID perform simi-
larly with the other baselines, so we skip them for
clarity. We include all our results in Appendix B.2.
First we observe that, our proposed method outper-
forms the baselines across all datasets in all k-shot
scenarios, yielding as much as 15.84% F1 points

10As in, In-Domain (ID) pre-training occurs along with
IT-MTL.

(i.e. from 13.04%F1 to 28.88%F1) of improve-
ment. Second, the performance improvement in-
creases as the number of examples decrease, with
the biggest improvement being in the k=5 case.
This is expected because with the growing num-
ber of examples, all models are able to learn the
task better. When using the full dataset, as we
see in both the proposed model and the baseline
performances converge (see Appendix, Table 8).
Additionally, we observe that our proposed method
brings the larger improvements on the harder tasks,
as it gets difficult for the baselines to learn from
only a few of examples.

Lastly, we note that leveraging our resulting
dataset improves the final performance in > 89%
cases over all the datasets, K shot values, and set-
tings investigated (full results in Appendix, Ta-
bles 12, 13, 14).11

4.5 Zero-Shot Evaluation

Our proposed NAPT step enables the model to per-
form the following ABSA tasks in zero-shot i.e.,
without any gold-standard supervision: (i) Aspect-
term Extraction (AE), (ii) Aspect-term Extraction
and Sentiment Classification (AESC), and (iii) As-
pect Sentiment Triplet Extraction (ASTE). We per-
form two experiments in the zero-shot setting. First,
we investigate how much data does a baseline need
to reach the performance obtained by our proposed
model in the zero-shot setting. Second, we com-

11279/312
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(a) LAP14 (b) REST15

Figure 3: Data size equivalence comparison between
t5 models that are finetuned on downstream corpus
vs our proposed NAPT for ASTE task in (a) LAP14,
(b) REST15 respectively. The finetuned models need∼ 15 − 25 completely annotated data points to equalize
our proposed method.

pare against previous work in the ASTE task (Shu
et al., 2022).

4.5.1 Dataset Size Equivalence

We compare our proposed method in zero-shot
setting against a baseline model trained on gold-
annotated data, where we vary the number of train-
ing data points. This experiment shows how many
annotated data points, on average, is the noisy
ABSA pre-training phase equivalent of. We ob-
served that the improvement depends on the dif-
ficulty of the task and of the dataset, respectively.
For example, Figure 3 shows that for the ASTE
task, one would need ∼ 15,25 annotated data points
to obtain a comparable performance with our pro-
posed method for REST15 and LAP14 respectively.
We remark that the number of data points vary ac-
cording to the difficulty of the task and with the
difficulty of the dataset, ranging between ∼ 6 − 25
data points for AE, and ASTE task for LAP14 re-
spectively.

4.5.2 Performance Comparison with Baselines

We compare the zero-shot performance of our pro-
posed method with previous work on ABSA (Shu
et al., 2022), summarized in Table 3. Our proposed
model outperforms the previous state-of-the-art re-
sults for AESC by as much as 6.94%F1 points in
the restaurant domain. The improvement for the
laptop domain is smaller, we attribute this to the
NAPT dataset being biased towards the restaurant
domain in terms of size. It is interesting to note that
our model’s backbone i.e., t5-base outperforms
CORN despite having half the number of parame-
ters as that of its counterpart i.e., bart-large.

Model REST LAP
CORN 37.20 ±0.50 40.30 ±0.60
IT-MTL-NAPT 44.14 ±0.30 40.51 ±0.43

Table 3: Comparison of our proposed method with pre-
vious work on zero-shot Aspect Extraction Sentiment
Classification (AESC). Our proposed method outper-
forms the previous work on both datasets. Metric is
token-level F1 score.

5 Discussion

In this section, we discuss a few important aspects
of our approach apart from the main experiments.

5.1 Ablation

To better understand how different components of
our NAPT strategy influence the final downstream
performance, we conduct the following ablation
studies.
Regarding NAPT Tasks: We analyze the impor-
tance of NAPT with multiple tasks and their im-
pact on the downstream performance. Our anal-
ysis shows that there exists a positive correlation
between the NAPT complexity and downstream
performance. We average the downstream perfor-
mance across every task and every k-shot split and
train on the downstream task in a multi-task learn-
ing fashion. We summarize our results in Table 6.
Our experiments show that it helps in general to
align the NAPT and finetuning objectives. If the
NAPT phase is done in a multi-task learning fash-
ion, it is beneficial for the model if the same is done
for finetuning on the downstream task as well. We
also observe that harder NAPT tasks are beneficial
for the downstream task regardless of the way the
training on the downstream task is performed, as
the F1 scores reflect the relative order in difficulty
of the tasks (i.e., ASTE > AESC > AE).
Regarding NAPT Regularization: We analyze
the importance on the downstream performance
of each regularization technique used during the
NAPT phase. We report the performance in Table 5.
We analyze the influence of: (i) Tuple Dropout, (ii)
Biased weight decay, and (iii) Weight decay. We
observe that our proposed approach is robust to
hyperparameters, obtaining similar performance
with various combinations of the 3 regularization
techniques. We attribute this to the way the NAPT
dataset is split into train and validation: enforcing
disjoint sets of aspect-terms. This allows us to
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Task: Input Gold w/o NAPT w/ NAPT

ASTE: Given the text: “Finally, the biggest problem has
been tech support.”, what are the aspect terms and their
sentiments?

<tech support, neg-
ative> <support, negative> <tech support, neg-

ative>
ASTE: What are the aspect terms and their sentiments in
the text: “Of course, for a student, weight is always an
issue.?”

<weight, neutral> <weight, neutral> <weight, negative>

AESC: Given the text: “the mouse buttons are hard to
push.”, what are the aspect term, opinion term, and senti-
ment triplets?

<mouse buttons,
hard, negative> < , , > <mouse buttons,

hard, negative>
AESC: Given the text: “The resolution is even higher then
any other laptop on the market.”, what are the aspect term,
opinion term and sentiment triplets?

<resolution, higher,
positive> <resolution, higher,

positive> <laptop, higher,
positive>

Table 4: Predictions made by an instruction tuned model with and without NAPT in low-shot scenarios.

Ablation Config. Dataset
Tuple

Dropout
Weight
Decay

Biased
Weight

LAP14 REST15 REST16

✓ ✓ ✓ 47.45 47.32 51.65✓ ✓ × 47.57 47.10 51.39✓ × ✓ 47.62 47.26 51.65✓ × × 47.39 47.17 51.37× ✓ ✓ 47.55 47.65 51.80× ✓ × 46.43 47.44 51.49× × ✓ 46.78 47.12 51.11× × × 46.90 47.27 51.49

Table 5: Ablation study over different regularization
techniques in terms of macro F1 scores averaged across
all tasks and 4 k-shot settings.

NAPT
Task

Dataset
LAP14 REST15 REST16

AE 43.47 46.72 50.76
AESC 44.94 46.99 50.75
ASTE 46.30 47.14 51.17
MTL 47.45 47.32 51.65

Table 6: Ablation study over NAPT tasks in terms of
macro F1 scores averaged across all the tasks and 4 k-
shot settings. It shows that having all the tasks during
NAPT achieves the best scores.

detect when the model starts to overfit.12

5.2 Sentiment Prediction: Error Analysis
Quantitative: We first compare the percentage
of correct predictions over each sentiment class,
namely positive, negative, and neutral. We com-
pare instruction tuning with and without our pro-
posed NAPT step. We highlight the results in Fig-
ure 4. We observe that our proposed method per-
forms better for every sentiment class. Moreover,

12Preliminary experiments showed that regularization was
needed, but the training and testing splits contained overlap-
ping aspect terms and opinion terms.

Figure 4: Comparison on the percentage of correct pre-
dictions over each sentiment class for an instruction
tuned model with vs without the proposed NAPT on
the LAP14 dataset and k = 10. With NAPT, it performs
better on each sentiment class, even though neutral class
does not appear in the noisy dataset (larger is better).

we note that our proposed method outperforms the
baseline even for the neutral sentiment class, a
class which has not been seen during the NAPT
phase. This suggests that NAPT can help the model
learn faster even unseen tasks.

Qualitative: We present examples of the predic-
tions made by an instruction tuned model with and
without NAPT in Table 4. We show 4 predictions, 2
for ASTE (first two rows) and 2 for AESC (bottom
two) on LAP14, in low-shot scenarios. We observe
that the baseline struggles extracting the full as-
pect term (first row), while our proposed method
extracts the complete triple. The metric used does
not reward partial matching. In the second row,
the baseline correctly generates the gold output,
while our proposed method predicts a negative sen-
timent. In this case, the input is ambiguous, as no
explicit sentiment is expressed in it. Also, for more
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k LAP14 (ASTE) REST15 (ASQP) REST16 (ASQP)
BL CD BL CD BL CD

5 15.96±2.11 24.53±2.25 15.28 ±1.64 21.75±1.25 25.86 ±1.63 29.26±1.74
10 28.00±2.59 35.38±1.80 26.48±1.01 29.80±2.15 31.27 ±1.37 34.14±1.18
20 34.55±1.85 41.67±1.97 33.27±0.76 35.18±1.55 38.71±0.76 38.32±1.02
50 45.10±2.69 46.49±1.97 37.69±1.04 40.49±1.37 46.75±1.39 45.29±1.25
Full 60.17±1.19 60.93±1.12 47.17±1.03 51.38±0.90 57.72±0.76 58.02±0.97

Table 7: Cross-Domain performance of IT-MTL-NAPT on LAP14, REST15 and REST16 datasets. For LAP14, the
NAPT was done only on Restaurant reviews corpus. For REST15 and REST16, the NAPT was done only on Amazon
Reviews corpus. BL refers to Baseline (IT-MTL) and CD refers to our proposed method (IT-MTL-NAPT), where
NAPT was performed in a cross-domain way. We present the results for the hardest task available for each dataset,
Aspect Sentiment Triplet Extraction (ASTE) for Lap14 and Aspect Sentiment Quad Prediction (ASQP) for Rest15
and Rest16.

complex tasks, such as aspect sentiment triplet ex-
traction (AESC), the baseline struggles to generate
a valid prediction, while our proposed method is
able to generate the correct prediction (third row).
Lastly, we observe that although with NAPT we
predict incorrectly (last row), it rather falls back to
a term relevant to the domain (i.e., laptop).

5.3 Cross Domain Experiments

We experiment with NAPT on a different domain
than the domain of the downstream task. Con-
cretely, we perform two experiments: (i) we per-
form NAPT on restaurant domain, then finetune
on the laptop domain, and (ii) we perform NAPT
on the laptop domain, then finetune on the restau-
rant domain. We include the results for these ex-
periments in Table 7. We observed that our pro-
posed model is still able to transfer the knowledge
learned during the NAPT phase. Our proposed
model still outperforms the baseline, brining as
much as 11.49% F1 points for the ASTE task in the
laptop domain. In some cases, we notice a slight
increase in the final performance compared to the
model trained with NAPT on the full in-domain
dataset. This suggests that the model trained on the
full dataset overfits to the noisy data. For detailed
cross domain results, please refer to Tables 15, 16
and 17 in the appendix.

6 Conclusion

In this paper, we proposed to add an intermediate
step in the pretrain→finetune paradigm, called
Noisy ABSA Pre-Training. We motivate this newly
introduced step with the hypothesis that exposing
the model to tasks more aligned with the down-

stream task will improve its performance, espe-
cially in low-data regimes such as in few-shot
or complete zero-shot. We constructed a noisy
dataset with a heuristic based pipeline approach
consisting of four steps that utilize well-studied
NLP resources and models. This resulting dataset
serves as the training dataset for the noisy pre-
training phase. We then evaluated with customer
reviews from three datasets covering two domains,
laptop (Lap14) and restaurant (Rest15, Rest16),
and obtained large improvements in the zero/few-
shot cases while achieving similar performance
under finetuning on full dataset. We also discussed
caveats around introducing catastrophic forgetting
of general purpose pre-trained language models
through such noisy pre-training, and introduced a
few regularization techniques to help alleviate it.

Limitations

We believe our proposed noisy pre-training step
should apply to other structured prediction tasks,
however, we have not evaluated the approach on
anything other than ABSA-related tasks. Addition-
ally, the noisy corpus construction process is de-
pendent on English based resources and pre-trained
models. It might be non-trivial to extend the ap-
proach to other languages. Finally, we presented
some extrinsic evaluation regarding the quality of
the noisy corpus we create e.g., equivalence in
terms of gold-annotated data size (Section 4.5.1).
We leave intrinsic evaluation of it by means of hu-
man supervision or otherwise for future work.
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A Implementation details

We use HuggingFace’s implementation of trans-
formers (Wolf et al., 2020; Lhoest et al., 2021).
We use similar parameters as (Varia et al., 2023).
We run our experiments on NVIDIA Tesla V100
GPUs.

B All Experiments

For completeness, we include here all the models
investigated over the 3 datasets, LAP14, REST15,
and REST16, respectively.

B.1 Full-Training

We compare the performance of our proposed
method (i.e. pretrain→ NAPT→ finetune) with
the standard method of pretrain→ finetune and
report the result in Table 8, for all the datasets.
Overall in the full-training scenario, our proposed
method performs comparably with or better than
the baseline. We observe during our preliminary
experiments that the training dynamics change dras-
tically between the pretrain→ NAPT→ finetune
and pretrain→ finetune. Additionally, we com-
pare against another SOTA on ACOS datasets (Cai
et al., 2021). We outperform (Wang et al., 2022),
on average (across tasks, datasets, seeds) by 0.63
F1 points.

For comprehensiveness, we report the results
(test) on Full Training in Tables 9, 10, 11.

B.2 K-Shot Learning

We report the results (test) on K-Shot Learning in
Tables 12, 13, 14.

B.3 Cross Domain

Detailed cross domain results are in Tables 15, 16
and 17 respectively.

Model
Dataset

LAP14 REST15 REST16
Text 59.50 ± 1.35 51.74 ± 0.84 62.95 ± 0.61
IT 60.47 ± 1.36 52.78 ± 0.81 63.77 ± 0.82
IT-MTL 60.17 ± 1.19 53.17 ± 0.67 62.69 ± 0.69
IT-MTL-ID 58.24 ± 1.03 53.42 ± 1.27 62.38 ± 0.69
IT-MTL-NAPT 59.97 ± 1.28 53.57 ± 1.42 61.67 ± 0.65

Table 8: F1 scores of our proposed method
(IT-MTL-NAPT) and 4 competitive baselines on the As-
pect Sentiment Triplet Extraction task over 3 datasets
under training on full dataset. We observe similar levels
of performance.

B.4 Threshold Analysis
We examine the impact of the classification thresh-
old in our dataset creation procedure. Specifically,
linking opinion-terms with aspect-terms (Step 3)
and sentiment extraction (Step 4) require a classi-
fication threshold. We varied this threshold from
0.5 to 0.9 and applied it to a labeled dataset (e.g.,
Lap14), subsequently computing the F1 score rela-
tive to the ground truth. Figure 5 illustrates the F1
scores at different threshold values across the three
datasets: Lap14, Rest15, and Rest16.
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Model NAPT
Task (F1 ↑)

Average
AE AESC ASTE

Text
(t5-base)

No 76.13±1.06 66.57±1.01 59.50±1.35 67.40±7.13

IT
(t5-base)

No 77.09±0.68 66.25±0.45 60.47±1.36 67.94±7.18
Yes 76.96±1.17 66.08±0.80 60.03±1.23 67.69±7.16

IT-MTL
(t5-base)

No 77.64±0.75 66.54±1.09 60.17±1.19 68.11±7.53
Yes 77.67±1.04 66.66±0.69 59.97±1.28 68.10±7.45

IT
(t5-large)

No 77.18±1.64 67.20±1.23 60.24±0.61 68.21±7.28
Yes 76.79±1.05 66.66±1.16 60.98±1.78 68.14±6.78

IT-MTL
(t5-large)

No 77.89±0.53 66.44±1.06 59.83±2.32 68.05±7.85
Yes 77.95±1.00 65.62±1.23 59.34±1.42 67.64±7.95

IT No 75.77±0.71 65.99±0.98 59.28±0.64 67.01±7.05
(continued pre-training)

(t5-base)
Yes 76.19±1.33 66.28±1.36 59.38±1.25 67.28±7.09

IT-MTL No 76.37±0.82 65.85±1.03 58.24±1.03 66.82±7.74
(continued pre-training)

(t5-base)
Yes 76.68±0.88 65.95±1.06 58.44±1.26 67.03±7.64

Table 9: Comparison of full dataset training performances on all 3 ABSA tasks for LAP14.

Model NAPT
Task (F1 ↑)

Average
AE AESC TASD ASTE ASQP

Text
(t5-base)

No 72.76±0.96 66.43±1.45 60.05±0.67 51.74±0.84 46.66±0.67 59.53±9.72

IT
(t5-base)

No 73.54±1.20 67.09±0.53 59.78±0.91 52.78±0.81 46.79±0.59 59.99±9.82
Yes 72.89±1.31 65.98±1.29 59.30±0.77 52.62±1.13 46.49±0.71 59.45±9.48

IT-MTL
(t5-base)

No 73.85±1.14 67.46±0.80 59.88±1.02 53.17±0.67 47.17±1.03 60.30±9.81
Yes 74.55±1.26 67.53±1.37 59.29±1.67 53.57±1.42 47.30±1.21 60.45±9.86

IT
(t5-large)

No 74.24±0.74 69.83±1.10 62.82±0.69 55.96±0.41 49.61±0.55 62.49±9.16
Yes 74.68±0.72 69.94±1.18 62.82±0.94 54.72±1.53 49.48±1.04 62.33±9.47

IT-MTL
(t5-large)

No 75.79±0.69 70.18±1.31 62.84±1.37 54.16±0.95 48.86±1.13 62.37±10.17
Yes 74.80±0.94 68.26±0.96 61.11±1.10 53.69±1.40 48.41±1.26 61.25±9.70

IT No 73.05±1.05 67.17±1.16 59.09±0.91 51.89±1.09 46.51±0.36 59.54±9.92
(continued pre-training)

(t5-base)
Yes 72.82±1.11 67.44±0.99 60.42±0.95 53.07±0.88 47.56±1.50 60.26±9.31

IT-MTL No 74.14±0.47 68.06±0.49 60.97±0.59 53.42±1.27 47.49±0.90 60.82±9.84
(continued pre-training)

(t5-base)
Yes 74.66±1.06 68.59±0.78 61.14±0.88 53.42±0.75 48.41±0.55 61.24±9.69

Table 10: Comparison of full dataset training performances on all 5 ABSA tasks for REST15.
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Model NAPT
Task (F1 ↑)

Average
AE AESC TASD ASTE ASQP

Text
(t5-base)

No 78.40±1.14 73.64±1.30 67.05±0.96 62.95±0.61 57.77±1.13 67.96±7.58

IT
(t5-base)

No 79.74±0.98 74.24±0.54 68.04±0.86 63.77±0.82 58.41±0.73 68.84±7.72
Yes 78.69±1.30 72.90±0.98 67.40±1.20 61.96±0.94 57.57±1.25 67.70±7.66

IT-MTL
(t5-base)

No 79.90±0.62 74.51±0.91 67.59±0.75 62.69±0.69 57.72±0.76 68.48±8.15
Yes 78.53±0.75 73.31±0.87 66.72±0.98 61.67±0.65 56.78±0.65 67.40±7.90

IT
(t5-large)

No 79.66±0.98 76.90±0.93 70.24±1.13 65.15±0.20 60.13±1.06 70.42±7.42
Yes 78.87±1.11 75.25±0.80 70.40±0.81 64.61±1.11 59.76±0.86 69.78±7.06

IT-MTL
(t5-large)

No 79.67±0.50 75.01±0.95 69.12±1.04 62.84±0.98 58.79±0.99 69.09±7.85
Yes 79.33±0.78 74.66±0.72 67.11±1.66 62.43±0.99 57.17±1.17 68.14±8.18

IT No 79.22±0.59 74.05±0.70 67.58±1.61 62.69±1.58 57.73±0.82 68.25±7.92
(continued pre-training)

(t5-base)
Yes 79.06±0.92 74.38±1.30 68.40±1.21 62.33±1.25 58.24±0.83 68.48±7.74

IT-MTL No 79.25±0.58 74.13±0.56 67.72±0.80 62.38±0.69 58.04±0.87 68.30±7.86
(continued pre-training)

(t5-base)
Yes 78.72±0.73 73.88±0.95 67.16±1.00 62.00±1.15 56.61±1.01 67.68±8.05

Table 11: Comparison of full dataset training performances on all 5 ABSA tasks for REST16.
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K Model NAPT
Task (F1 ↑)

Average
AE AESC ASTE

5

Text
(t5-base)

No 37.45±2.94 22.91±1.65 12.06±1.83 24.14±10.96

IT
(t5-base)

No 44.59±1.15 26.81±2.35 13.04±0.91 28.14±13.45
Yes 47.46±2.76 38.85±2.11 28.88±1.58 38.40±7.98

IT-MTL
(t5-base)

No 36.63±3.03 25.31±2.78 15.96±2.11 25.97±9.09
Yes 47.02±2.60 36.49±1.97 27.53±1.97 37.02±8.34

IT
(t5-large)

No 43.01±2.09 26.73±2.86 16.14±2.19 28.63±11.66
Yes 46.92±2.71 37.52±2.44 25.81±2.62 36.75±9.13

IT-MTL
(t5-large)

No 40.88±3.65 27.47±2.72 17.37±2.51 28.57±10.35
Yes 45.30±3.29 32.47±5.05 23.54±5.34 33.77±10.13

IT No 36.59±0.91 22.82±1.20 12.38±0.88 23.93±10.31
(continued pre-training)

(t5-base)
Yes 45.83±1.80 38.85±1.31 28.15±1.84 37.61±7.53

IT-MTL No 26.25±2.32 22.40±1.26 13.62±1.98 20.76±5.75
(continued pre-training)

(t5-base)
Yes 45.28±1.27 36.61±1.46 27.33±2.02 36.41±7.58

10

Text
(t5-base)

No 46.85±2.12 33.67±1.71 18.95±2.91 33.16±11.99

IT
(t5-base)

No 52.12±2.42 37.49±1.91 25.22±0.83 38.28±11.51
Yes 55.98±2.16 45.02±1.64 36.62±2.61 45.87±8.29

IT-MTL
(t5-base)

No 48.71±1.89 39.13±2.29 28.00±2.59 38.61±9.01
Yes 55.81±2.14 44.49±1.50 35.15±1.71 45.15±8.72

IT
(t5-large)

No 49.44±9.70 36.64±3.64 25.10±1.46 37.06±11.71
Yes 53.13±4.59 43.35±2.91 34.94±1.49 43.81±8.19

IT-MTL
(t5-large)

No 49.23±4.91 36.13±2.07 27.16±3.74 37.51±10.01
Yes 51.99±3.47 41.45±2.28 31.05±4.58 41.50±9.35

IT No 41.61±6.49 33.89±1.69 21.36±2.57 32.29±9.45
(continued pre-training)

(t5-base)
Yes 55.69±2.27 45.77±1.55 34.51±1.20 45.32±8.91

IT-MTL No 41.65±1.78 34.44±2.71 24.55±1.50 33.55±7.50
(continued pre-training)

(t5-base)
Yes 56.16±2.60 46.17±1.79 35.25±1.06 45.86±8.84

20

Text
(t5-base)

No 56.56±1.15 42.64±0.99 29.18±2.23 42.79±11.66

IT
(t5-base)

No 59.08±1.97 44.82±1.24 33.24±1.53 45.71±11.04
Yes 61.67±1.81 48.88±1.10 41.20±2.01 50.58±8.70

IT-MTL
(t5-base)

No 57.98±3.72 47.14±2.42 34.55±1.85 46.56±10.24
Yes 61.05±1.62 48.94±1.68 38.17±1.96 49.38±9.60

IT
(t5-large)

No 59.30±2.38 46.88±2.92 34.44±2.61 46.88±10.79
Yes 61.43±1.44 49.00±3.37 38.52±1.84 49.65±9.79

IT-MTL
(t5-large)

No 61.02±2.89 46.78±4.32 36.00±1.17 47.93±10.99
Yes 61.16±1.97 49.68±2.13 38.10±2.41 49.65±9.80

IT No 53.92±1.64 43.56±1.02 28.45±1.62 41.98±10.91
(continued pre-training)

(t5-base)
Yes 60.06±2.47 49.73±1.48 40.19±1.64 49.99±8.42

IT-MTL No 55.64±2.04 45.44±1.97 32.12±1.28 44.40±10.11
(continued pre-training)

(t5-base)
Yes 60.93±1.36 49.85±1.65 37.96±1.78 49.58±9.61

50

Text
(t5-base)

No 65.31±1.86 54.35±1.15 40.84±2.53 53.50±10.51

IT
(t5-base)

No 68.95±1.22 54.92±1.07 44.67±2.12 56.18±10.40
Yes 68.14±1.12 54.67±1.82 46.56±1.38 56.46±9.11

IT-MTL
(t5-base)

No 67.54±1.62 55.86±1.90 45.10±2.69 56.16±9.69
Yes 68.23±1.34 54.79±1.68 45.85±1.11 56.29±9.40

IT
(t5-large)

No 68.27±3.17 56.37±1.48 45.26±1.55 56.64±9.94
Yes 68.36±1.15 57.99±2.05 47.23±2.36 57.86±8.97

IT-MTL
(t5-large)

No 69.92±1.23 56.33±1.24 44.87±2.10 57.04±10.70
Yes 70.07±1.30 55.99±0.95 45.99±2.25 57.35±10.16

IT No 63.36±1.05 48.97±0.84 37.31±1.78 49.88±11.09
(continued pre-training)

(t5-base)
Yes 68.78±1.42 55.20±1.08 45.50±1.44 56.49±9.74

IT-MTL No 63.72±0.64 53.02±1.08 40.83±1.10 52.53±9.72
(continued pre-training)

(t5-base)
Yes 69.19±1.31 55.73±1.11 45.44±1.56 56.79±9.92

Table 12: Comparison of k-Shot performances on all 3 ABSA tasks for LAP14.
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K Model NAPT
Task (F1 ↑)

Average
ATE AESC TASD ASTE ASQP

5

Text
(t5-base)

No 44.55±2.55 39.44±2.64 24.62±1.56 20.11±1.05 12.88±0.91 28.32±12.26

IT
(t5-base)

No 49.33±0.66 42.48±1.84 24.75±0.65 24.44±1.09 15.52±1.47 31.31±12.87
Yes 50.05±2.91 43.95±1.79 30.46±1.87 31.59±1.35 21.72±0.90 35.56±10.37

IT-MTL
(t5-base)

No 48.14±2.79 41.42±3.28 24.79±2.33 24.49±1.85 15.28±1.64 30.82±12.53
Yes 51.11±1.81 43.51±1.55 27.12±1.97 30.35±1.48 18.98±1.39 34.21±11.76

IT
(t5-large)

No 46.40±1.56 41.24±0.86 24.73±1.99 22.72±1.95 16.04±3.00 30.23±11.96
Yes 47.87±4.76 43.01±2.77 28.42±7.70 30.49±1.43 20.85±1.79 34.13±10.84

IT-MTL
(t5-large)

No 44.54±2.84 36.25±1.78 19.08±3.03 18.92±3.92 10.57±2.01 25.87±13.05
Yes 48.47±1.98 40.38±2.76 23.79±3.88 26.97±3.56 16.25±3.37 31.17±12.16

IT No 46.06±2.36 39.34±3.07 24.67±1.17 22.70±0.85 14.47±1.62 29.45±11.92
(continued pre-training)
(t5-base)

Yes 50.40±1.76 44.06±1.59 29.32±2.16 31.31±2.31 22.20±2.32 35.46±10.53

IT-MTL No 47.78±2.49 39.59±1.24 24.33±1.43 22.93±0.56 14.55±1.32 29.84±12.40
(continued pre-training)
(t5-base)

Yes 50.87±2.76 44.15±2.18 29.30±2.79 31.60±2.05 20.98±2.28 35.38±11.06

10

Text
(t5-base)

No 54.71±0.91 49.28±0.46 36.26±1.62 31.99±0.80 24.42±0.68 39.33±11.41

IT
(t5-base)

No 56.62±1.59 51.03±1.93 37.64±1.50 33.25±1.54 25.76±1.08 40.86±11.71
Yes 57.91±1.29 50.78±1.42 37.37±1.81 37.63±1.26 28.78±1.11 42.49±10.59

IT-MTL
(t5-base)

No 58.10±0.72 48.27±0.98 37.26±0.29 33.75±0.74 26.48±1.01 40.77±11.41
Yes 58.72±1.23 49.95±1.30 36.77±1.68 37.82±1.70 28.03±1.21 42.26±10.95

IT
(t5-large)

No 54.58±1.99 48.32±1.27 35.31±1.90 34.55±0.86 25.43±1.79 39.64±10.76
Yes 55.69±1.94 49.52±1.42 38.11±1.76 36.54±1.71 28.10±1.53 41.59±10.04

IT-MTL
(t5-large)

No 54.14±1.11 45.38±1.09 33.90±2.76 30.95±1.68 23.10±1.47 37.49±11.31
Yes 55.00±3.53 46.91±3.01 35.09±2.65 32.82±2.97 24.79±2.71 38.92±11.19

IT No 56.55±2.35 51.28±0.82 39.02±2.58 33.70±1.41 25.10±0.66 41.13±11.81
(continued pre-training)
(t5-base)

Yes 57.96±1.36 51.42±1.41 39.33±1.29 37.81±1.68 29.57±1.32 43.22±10.31

IT-MTL No 58.31±0.92 49.57±2.13 39.00±2.28 33.01±1.21 25.58±0.75 41.09±11.98
(continued pre-training)
(t5-base)

Yes 57.88±1.58 50.34±1.87 38.56±1.47 37.83±1.22 28.73±1.32 42.67±10.42

20

Text
(t5-base)

No 58.91±1.69 53.77±0.90 42.37±1.55 37.27±1.85 30.45±0.83 44.55±10.76

IT
(t5-base)

No 62.08±1.85 53.91±2.18 42.89±0.86 38.35±0.83 30.77±1.19 45.60±11.45
Yes 61.84±1.18 53.80±1.19 44.13±1.19 41.93±1.13 34.23±1.30 47.19±9.76

IT-MTL
(t5-base)

No 63.77±1.86 53.47±2.10 43.27±1.33 40.66±2.07 33.27±0.76 46.89±10.97
Yes 63.77±1.15 55.48±1.55 44.24±1.18 42.77±1.16 34.71±0.91 48.19±10.36

IT
(t5-large)

No 59.97±1.49 55.11±1.86 45.59±1.00 40.27±1.10 34.40±1.80 47.07±9.67
Yes 62.13±1.32 55.85±1.68 46.35±2.68 41.79±0.71 35.69±1.19 48.36±9.75

IT-MTL
(t5-large)

No 62.26±1.55 54.59±2.62 45.04±1.44 40.39±2.01 34.23±1.12 47.30±10.35
Yes 63.19±1.70 55.67±2.23 44.23±1.40 41.77±1.48 34.43±1.25 47.86±10.49

IT No 62.30±1.44 55.82±1.49 45.16±1.25 38.23±1.54 31.58±0.96 46.62±11.52
(continued pre-training)
(t5-base)

Yes 62.85±1.38 56.12±0.90 45.51±1.57 42.07±1.53 34.48±1.13 48.21±10.25

IT-MTL No 63.42±0.89 55.09±0.49 46.43±1.13 40.40±1.45 32.85±0.67 47.64±11.00
(continued pre-training)
(t5-base)

Yes 63.91±1.21 56.14±1.47 46.40±1.18 42.80±1.34 36.15±0.92 49.08±9.97

50

Text
(t5-base)

No 62.55±1.74 57.12±1.31 48.50±0.97 43.09±0.91 35.51±0.82 49.35±9.91

IT
(t5-base)

No 64.74±1.15 59.35±0.91 50.40±0.65 43.79±1.12 37.51±0.72 51.16±10.17
Yes 65.17±0.76 58.96±0.92 49.72±1.24 44.74±1.34 39.10±1.16 51.54±9.56

IT-MTL
(t5-base)

No 67.51±0.89 58.98±1.52 50.45±1.49 45.27±0.76 37.69±1.04 51.98±10.68
Yes 67.55±1.18 60.19±1.23 50.51±1.09 46.76±0.93 39.94±0.86 52.99±9.91

IT
(t5-large)

No 64.75±0.94 59.33±0.47 52.19±0.93 45.59±0.75 40.66±1.12 52.50±8.99
Yes 66.82±1.16 61.21±1.40 52.53±1.76 47.19±1.30 42.27±1.41 54.00±9.16

IT-MTL
(t5-large)

No 67.84±1.16 60.77±1.23 51.70±0.97 46.76±1.45 39.92±1.00 53.40±10.18
Yes 68.15±0.86 61.67±0.94 52.02±1.47 47.33±1.30 41.24±1.18 54.08±9.86

IT No 64.49±0.95 60.23±0.51 51.51±0.81 44.10±1.74 37.56±1.30 51.58±10.20
(continued pre-training)
(t5-base)

Yes 65.37±1.20 59.64±1.12 51.08±0.65 45.49±1.14 39.37±0.90 52.19±9.49

IT-MTL No 67.46±1.03 61.93±0.70 52.73±1.10 46.06±0.61 39.71±1.70 53.58±10.38
(continued pre-training)
(t5-base)

Yes 67.37±0.96 60.54±1.29 51.57±1.25 46.96±1.12 40.39±1.03 53.37±9.72

Table 13: Comparison of k-Shot performances on all 5 ABSA tasks for REST15.
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K Model NAPT
Task (F1 ↑)

Average
AE AESC TASD ASTE ASQP

5

Text
(t5-base)

No 52.67±0.69 47.87±1.34 31.57±1.74 29.58±1.96 19.76±1.44 36.29±12.52

IT
(t5-base)

No 55.59±2.74 51.62±1.46 36.26±1.15 34.10±1.17 23.89±2.11 40.29±12.07
Yes 61.54±1.35 55.32±2.05 39.13±2.11 40.18±1.60 28.64±1.82 44.96±12.09

IT-MTL
(t5-base)

No 59.78±1.32 52.35±0.82 36.88±1.77 36.27±0.90 25.86±1.63 42.23±12.50
Yes 64.25±1.60 55.22±1.35 38.97±2.19 40.95±1.36 29.58±1.76 45.79±12.54

IT
(t5-large)

No 55.88±1.63 52.90±2.02 38.37±2.79 36.70±0.83 27.70±1.85 42.31±10.91
Yes 62.01±1.48 55.91±2.68 37.09±7.90 41.14±1.78 32.13±2.04 45.66±12.13

IT-MTL
(t5-large)

No 56.81±2.44 48.65±1.32 32.64±2.56 32.47±1.80 23.36±1.16 38.79±12.52
Yes 60.50±1.91 51.89±2.50 34.94±3.71 37.71±2.08 27.04±2.22 42.42±12.46

IT No 55.87±2.42 50.92±3.05 36.57±1.38 31.41±1.94 20.39±2.38 39.03±13.37
(continued pre-training)
(t5-base)

Yes 62.22±1.99 56.70±1.43 37.00±2.16 39.19±1.67 27.18±1.64 44.46±13.22

IT-MTL No 55.93±1.71 48.95±2.26 34.71±2.20 32.02±0.88 22.79±1.46 38.88±12.31
(continued pre-training)
(t5-base)

Yes 62.74±1.21 55.43±0.86 37.13±2.36 39.84±1.37 27.80±1.88 44.59±12.89

10

Text
(t5-base)

No 59.45±0.89 54.33±1.03 38.85±1.95 36.82±0.91 29.31±1.17 43.75±11.59

IT
(t5-base)

No 62.14±1.14 57.02±2.17 40.34±2.22 40.37±0.74 29.90±0.94 45.95±12.20
Yes 65.33±1.18 58.84±1.48 42.69±2.83 44.24±1.07 32.30±1.39 48.68±12.07

IT-MTL
(t5-base)

No 64.03±1.81 56.51±0.97 41.53±1.12 39.66±1.50 31.27±1.37 46.60±12.24
Yes 65.85±1.08 57.96±1.14 41.66±2.32 44.42±1.00 32.77±2.38 48.53±12.04

IT
(t5-large)

No 59.01±1.07 51.11±3.59 42.76±1.89 39.66±1.81 31.75±2.54 44.86±9.84
Yes 61.41±2.08 57.90±1.18 43.13±2.28 43.26±1.74 35.40±2.29 48.22±10.10

IT-MTL
(t5-large)

No 59.76±1.11 53.26±2.04 39.01±2.52 37.45±1.46 29.06±1.24 43.71±11.52
Yes 61.85±1.89 54.15±2.23 39.64±2.10 39.74±2.18 31.13±2.01 45.30±11.39

IT No 59.25±2.32 56.57±2.06 39.28±2.12 37.84±1.59 26.17±1.79 43.82±12.78
(continued pre-training)
(t5-base)

Yes 63.34±2.30 59.95±1.25 42.75±2.43 44.85±2.03 32.25±1.23 48.63±11.73

IT-MTL No 60.50±1.25 55.34±0.67 41.57±2.03 38.22±0.89 30.40±1.30 45.20±11.41
(continued pre-training)
(t5-base)

Yes 65.10±1.28 57.91±1.32 43.31±1.75 43.55±1.59 34.27±1.53 48.83±11.28

20

Text
(t5-base)

No 63.34±1.24 57.56±1.21 44.90±1.99 42.11±1.82 35.20±0.58 48.62±10.62

IT
(t5-base)

No 65.89±1.90 60.52±1.44 47.27±2.49 44.27±0.99 36.39±0.75 50.87±11.14
Yes 66.73±1.49 60.78±1.11 50.49±1.21 47.75±1.07 40.14±1.28 53.18±9.61

IT-MTL
(t5-base)

No 65.82±0.96 59.66±1.06 49.30±0.99 44.71±0.72 38.71±0.76 51.64±10.10
Yes 67.97±0.97 60.81±1.05 49.82±1.09 47.94±1.11 40.25±1.24 53.36±9.95

IT
(t5-large)

No 64.63±0.41 61.07±0.94 49.74±2.34 46.02±1.34 40.53±1.04 52.40±9.36
Yes 65.24±1.28 60.14±2.72 51.82±1.85 48.44±0.97 41.14±1.09 53.35±8.76

IT-MTL
(t5-large)

No 66.26±2.38 59.48±2.01 48.37±2.96 44.70±3.16 37.42±3.04 51.25±10.85
Yes 67.08±1.94 60.17±1.09 49.08±1.99 47.13±1.56 39.76±1.43 52.64±9.96

IT No 63.43±1.03 58.89±1.36 46.15±2.18 44.17±1.96 35.39±0.76 49.61±10.51
(continued pre-training)
(t5-base)

Yes 65.85±0.78 60.97±0.69 49.82±1.10 47.38±1.23 39.20±1.17 52.64±9.71

IT-MTL No 66.16±1.22 60.56±0.99 49.84±1.06 44.86±2.36 38.42±0.86 51.97±10.43
(continued pre-training)
(t5-base)

Yes 68.00±1.07 61.54±1.14 50.66±1.09 48.11±1.08 40.35±1.30 53.73±9.97

50

Text
(t5-base)

No 69.06±0.70 63.97±0.59 55.42±0.70 50.50±0.99 45.91±1.56 56.97±8.73

IT
(t5-base)

No 70.11±0.84 65.75±1.08 55.06±0.94 51.58±1.23 47.56±1.36 58.01±8.78
Yes 70.14±0.97 65.13±0.82 55.86±0.95 52.63±0.94 47.53±1.02 58.26±8.36

IT-MTL
(t5-base)

No 72.11±1.36 65.68±1.05 56.92±0.84 52.80±1.07 46.75±1.39 58.85±9.29
Yes 71.92±0.88 65.88±0.70 56.56±0.99 53.83±1.08 47.88±1.37 59.21±8.72

IT
(t5-large)

No 70.57±0.96 67.34±1.68 58.99±1.29 53.13±0.93 48.87±0.94 59.78±8.46
Yes 71.77±0.77 66.66±1.11 59.59±1.44 55.06±1.45 50.36±0.89 60.69±7.88

IT-MTL
(t5-large)

No 71.73±0.55 66.65±1.05 57.89±0.76 53.17±2.33 47.69±1.62 59.42±9.02
Yes 72.38±0.83 66.70±0.77 58.48±1.27 53.89±1.56 48.45±1.53 59.98±8.78

IT No 69.80±1.11 65.11±0.51 55.94±1.51 50.75±1.06 45.25±1.11 57.37±9.27
(continued pre-training)
(t5-base)

Yes 70.06±1.29 64.81±1.12 55.68±0.95 52.12±0.98 46.69±1.49 57.87±8.62

IT-MTL No 72.08±0.79 66.74±0.99 58.02±0.95 52.48±1.77 46.66±1.35 59.19±9.49
(continued pre-training)
(t5-base)

Yes 71.20±0.87 65.79±1.19 56.68±0.96 53.31±0.87 47.10±0.85 58.82±8.76

Table 14: Comparison of k-Shot performances on all 5 ABSA tasks for REST16.
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k AE AESC ASTE Average
5 47.55±2.06 36.55±2.35 24.53±2.25 33.06
10 55.93±2.80 45.55±2.39 35.38±1.80 43.33
20 64.55±1.47 52.18±1.07 41.67±1.97 52.51
50 69.52±0.71 56.25±1.44 46.49±1.97 57.30

Full Dataset 77.32±1.18 68.20±0.72 60.93±1.12 68.56

Table 15: Cross-Domain performance of IT-MTL-NAPT on LAP14. The NAPT was done only on Restaurant reviews corpus.

k AE AESC TASD ASTE ASQP Average
5 53.17±2.79 44.54±1.97 29.26±1.96 32.89±1.58 21.75±1.25 35.80
10 63.07±1.43 53.79±2.13 38.05±1.82 42.22±1.76 29.80±2.15 45.41
20 68.99±1.34 60.20±1.21 44.84±1.23 46.01±1.22 35.18±1.55 52.02
50 74.20±0.89 64.50±0.85 50.67±1.08 50.18±1.65 40.49±1.37 57.54

Full Dataset 79.39±1.07 72.37±1.02 62.92±1.11 58.95±1.11 51.38±0.90 65.32

Table 16: Cross-Domain performance of IT-MTL-NAPT on REST15. The NAPT was done only on Amazon Reviews corpus.

k AE AESC TASD ASTE ASQP Average
5 59.17±1.63 54.07±1.35 38.05±2.04 41.03±1.68 29.26±1.74 43.46
10 62.80±1.54 57.27±1.71 42.65±2.11 43.66±1.44 34.14±1.18 47.74
20 66.06±1.21 60.46±1.58 47.96±1.34 47.10±1.30 38.32±1.02 52.31
50 69.67±1.12 64.61±0.76 54.17±1.40 51.91±1.08 45.29±1.25 57.80

Full Dataset 80.72±0.81 75.72±0.89 68.95±0.97 64.04±0.84 58.02±0.97 68.84

Table 17: Cross-Domain performance of IT-MTL-NAPT on REST16. The NAPT was done only on Amazon Reviews corpus.
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(a) LAP14 on ASTE Task

(b) REST15 on ASTE Task

(c) REST16 on ASTE Task

Figure 5: F1 scores of our unsupervised dataset creation procedure over the three datasets: Lap14, Rest15, Rest16
when varying the threshold from 0.5 to 0.9 for NLI linking (Step 3) and sentiment classification (Step 4)
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