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Abstract

This study examines neural machine trans-
lation (NMT) and its performance on texts
that diverege from typical standards, fo-
cusing on how information is organized
within sentences.

We analyze surprisal distributions in
source texts, human translations, and ma-
chine translations across several datasets
to determine if NMT systems naturally
promote a uniform density of surprisal in
their translations, even when the original
texts do not adhere to this principle. The
findings reveal that NMT tends to align
more closely with source texts in terms of
surprisal uniformity compared to human
translations. We analyzed absolute val-
ues of the surprisal uniformity measures
as well, expecting that human translations
will be less uniform. In contradiction to
our initial hypothesis, we did not find com-
prehensive evidence for this claim, with
some results suggesting this might be the
case for very diverse texts, like poetry.

1 Introduction

Natural language processing tools based on ma-
chine learning, such as machine translation, au-
tocorrect, predictive typing, search, and text gen-
eration, have become integral to our daily lives.
With the advancement of Large Language Models
(LLMs), it’s anticipated that interacting with these
technologies will become a critical aspect of our
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work and societal engagement. However, numer-
ous questions about these technologies persist. In
this work, we take a look specifically at neural ma-
chine translation (NMT) and at one such question:
How well do these tools work on an input that is
different from a typical text, not in terminology or
domain, but in a way the information content is
organized within an utterance? Are there any bi-
ases within the algorithms themselves that can be
beneficial for ordinary types of texts, but harmful
for specific cases that deviate from the usual rules
found in mundane text content?

We propose that Neural Machine Translation
(NMT) will be more effective with texts adher-
ing to the Uniform Information Density (UID;
(Levy and Jaeger, 2006)) hypothesis, meaning that
the level of surprisal is consistently spread out
throughout the sequence. One of the culprits could
be the beam search decoding, which has been
shown to adhere to the UID principle (Meister et
al., 2020), i.e. even if the input has a diverse dis-
tribution of surprisal, the distribution in the trans-
lation will be more uniform. The UID-enforcing
property of beam search has been shown as the key
to its ability to produce high-quality, human-like
texts (compared to exact search under the same
model), even being dubbed the beam search bless-
ing by (Meister et al., 2020).

We hypothesize that while in general, this prop-
erty is positive, there are use-cases where too much
emphasis on the uniformity of suprisals hurts the
final translation quality. In this work, we look
for such examples by comparing distributions of
suprisals over source texts, machine translation
and human translation across multiple test sets.
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2 Related work

In this section, we will list the work exploring the
presence of the UID principle in human-produced
language as well as its presence and links to MT
algorithms.

There is an extensive body of psycholinguis-
tic work concerning the relationship between text
predictability or surprisal and reading comprehen-
sion. The results on whether the effects of surprisal
on reading comprehension is linear or super-linear
(which would be consistent with the UID hypothe-
sis) are mixed: For example, (Meister et al., 2021;
Hoover et al., 2023) found support for super-linear
relationship.

One of the most recent and largest studies (Shain
et al., 2024) uses a wide array of open-source
datasets, new Large Language Models for the sur-
prisal estimation (GPT-3) and novel evaluation
methods (deep learning based non-linear regres-
sion for analyzing continuous-time systems (Shain
and Schuler, 2023). Their findings support a lin-
ear relationship between word surprisal and sen-
tence reading times, suggesting that any pressure
for UID seen in natural language is not motivated
by an easier comprehension.

(Meister et al., 2020) ask why, empirically,
beam search produces higher quality outputs than
exacted search under the same model. To find
the inductive bias embedded in beam search that
allows this, they reverse engineer the objective
that beam search is a solution for. They found
that beam search can be reformulated as an ex-
act search with a uniformity regularizer which en-
forces UID and that this property is the key to its
effectivity. (Wei et al., 2021) employ a similar reg-
ularizer in the training of the model, which led to
improved translation quality.

3 Methods

This section introduces the measures we use to
operationalize the surprisal distribution uniformity
concept, closely following the definition by (Meis-
ter et al., 2021).

3.1 Uniform information density
Surprisal theory, as outlined by (Hale, 2001), es-
tablishes a direct relationship between cognitive
effort and the surprisal value of words; in other
words, the effort required to comprehend a word
is directly proportional to its level of predictability
within a given context. To elaborate, for any given

utterance, denoted as u and consisting of elements
(e.g. words) un, the surprisal of each element can
be calculated as s(un) = − log p(un|u<n), i.e.
negative log-probability of the word given the pre-
vious context. Therefore, the total cognitive effort
needed can be represented as

Effort(un) ∝ s(un)

Suppose we apply the same approach to a longer
sequence of words, such as a sentence. In that case,
we arrive to a counter-intuitive conclusion: If the
surprisal of the sentence is a sum of surprisals of
particular words and this sentence-level surprisal is
predictive of processing effort (e.g. reading time),
then any way of distributing the information across
the utterance is the same in terms of the effort
needed for comprehension.

To address this counter-intuitive consequence,
the Uniform Information Density theory (UID)
suggests a super-linear relationship between the
surprisal levels of units and the total effort in-
volved, incorporating the length of the utterance,
denoted as N , into its framework (Aylett and Turk,
2004; Fenk and Fenk-Oczlon, 1980; Levy and
Jaeger, 2006; Bell et al., 2003; Genzel and Char-
niak, 2002):

Effort(u) ∝
N∑

n=1

s (un)
k + c ·N, k > 1

This definition suggests that utterances with a
more uniform distribution of surprisal are simpler
for human comprehension, indicating a preference
for evenly spreading surprisal to effectively com-
municate a message.

We will demonstrate the intuitive concept of sur-
prisal uniformity on the following two sentences:

• A) More uniform: ”When she got home after
a long day at work, she decided to relax by
reading her favorite novel and having a cup
of tea.”

• B) Less uniform: ”London’s annual festival
was filled with activities, food stands, wind-
surfing, and drinks, but the sudden unveiling
of a Yetti statue caught everyone’s attention.”

Most people would consider the second sen-
tence as more surprising, some of the words feel
unexpected. We show the surprisal profiles of both
sentences in Figure 1. Indeed, we can see that the
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Figure 1: Surprisal behavior for the two examples sentences,
measured by GPT-2 model.

surprisal behavior of the second sentence (orange)
looks less uniform.

To express the uniformity as a measurable
quantity, we experiment with multiple formulas,
like Local Variance (LV), Coefficient of Variation
(CV ), Global Variance (GV), Gini coefficient, and
Super-linear Relationship (SL), and super-linear
syntactic log-odds ratio (SLOR, (Kann et al., 2018;
Pauls and Klein, 2012)):

• LV(u) = 1
N−1

∑N
n=2 (s (un)− s (un−1))

2

• CV(u) = σ(u)
µ(u)

• GV(u) = 1
N

∑N
n=1 (s (un)− µ(corpus))2

• SL(u) = 1
N

∑N
n=1 s (un)

k (k > 1)

• SLOR(u) = 1
N

∑N
n=1 s (un)

k −
su (un)

k (k > 1)

Function s denotes surprisal in of a word in con-
text, sn is a unigram, context-free surprisal.

3.2 Surprisal distribution and translation
We hypothesize that the uniform distribution of
surprisal is implicitly enforced by algorithms used
for training and decoding in NMT, most promi-
nently by the beam search (see (Meister et al.,
2020) for the rationalization). In practical terms,
we suggest that source texts characterized by
highly uneven surprisal distributions would main-
tain such distribution upon translation by a human,
but translation by MT engine would result in a
more uniform distribution. We conducted mea-
surements across multiple datasets, employing the
uniformity measures described in the previous sec-
tion.

4 Results

This section describes the settings and presents the
results of measuring difference in surprisal unifor-
mity in human and machine translations.

4.1 Models and Datasets

The first part of our investigation into the unifor-
mity of surprisal across source texts, human trans-
lations, and machine translations focuses on the
English-French language pair. We utilize a diverse
set of corpora: the Books corpus (Zhu et al., 2015)
(books), Global Voices (Nguyen and Daumé III,
2019) (global), Newstest2014 (Bojar et al., 2014)
(wmt), and a French translation of a poem by Os-
car Wilde translated by Jean Guiloineau (wilde).
For the next set of experiments, involving multiple
reference translations in English-Czech direction,
we draw upon the dataset provided by (Zouhar and
Bojar, 2024; Zouhar et al., 2023), which we refer
to as ORT.

For comparing surprisals in English to French
translations, we turn to BLOOM-1B7 (BigScience
Workshop, 2022) for our estimates. For the anal-
ysis involving Czech translations with multiple
references, surprisal estimates are obtained from
MU-NLPC/CzeGPT-2 (Hájek and Horák, 2024)
and BUT-FIT/Czech-GPT-2-XL-133k
(Fajčı́k et al., 2024).

Machine translation (MT) systems are also
used in our experiments: In the case of English to
French translations, Google Translate (mt1) and
facebook/nllb-200-distilled-600M
(Team et al., 2022) as (mt2) serve as our MT
systems. For English to Czech tasks, translations
are provided by Google Translate (mt1) and one
of the top-performing systems from WMT22 (Jon
et al., 2022) as mt2. We are aware that using an
external MT engine harms the replicability of the
experiments. On the other hand, we wanted to
analyze if our hypothesis applied to real-world,
non-NLP community scenarios, where similar
engines are often used.

4.2 Results

We studied how some of the uniformity measures
change during the translation process, both for hu-
man (HT) and machine translation (MT). Surprisal
estimates, obtained using models detailed in Sec-
tion 4.1, are measured on a word level without tok-
enization, i.e. they consider punctuation as part of
adjacent words. Additional results, with including
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tokenization and excluding punctuation surprisals,
are available in Appendix A.1. The initial word’s
surprisal is excluded due to unreliable first token
estimates from GPT-style models, though similar
results were observed when included.

dataset measure HT MT1 MT2

books
LV 2 0.39 0.58 0.42
CV 0.42 0.51 0.50

GV 2 0.46 0.69 0.54

wmt
LV 2 0.43 0.54 0.58
CV 0.49 0.55 0.57

GV 2 0.46 0.57 0.64

global
LV 2 0.69 0.73 0.78
CV 0.65 0.70 0.63

GV 2 0.72 0.74 0.80

global doc
LV 2 0.72 0.79 0.83
CV 0.68 0.81 0.82

GV 2 0.76 0.83 0.86

wilde
LV 2 0.16 0.40 0.53
CV 0.07 0.39 0.54

GV 2 0.16 0.40 0.53

Table 1: Pearsons’ r for sentence-level surprisal uniformity
of measurements between source and either HT, MT1 or
MT2.

For conciseness, we present the results on three
measures: local variance squared (LV 2), sentence-
level coefficient of variation (CV ), and global vari-
ance squared (GV 2), with global variance calcu-
lated as the mean across all surprisals in the text or
translation. Detailed findings for other measures
are presented in Appendix A.1.

Table 1 presents Pearson’s r, comparing
sentence-level surprisal uniformity between the
source and HT or MT, showcasing that MT aligns
more closely with source text surprisal distribution
than HT across all datasets and measures. In Ap-
pendix A.1, we also show the scatter plots of val-
ues of the measures for source sentence and either
HT, MT1 or MT2 across datasets.

This result suggests that the source’s distribution
of surprisal is followed more closely by an MT sys-
tem than a human translator, at least on a sentence
level. We hypothesized that the human translators
do not translate the sentences one by one in isola-
tion and might distribute the surprisal variance in
larger text units. This is the reason why we also
measured the uniformity on a document level in
global doc, treating each document as a single se-
quence of tokens for the purposes of surprisal es-
timation. The results do not support our hypothe-
sis – surprisal distribution uniformity of MT is still
better correlated with the source than in HT.

Absolute values of the uniformity measures (Ta-
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Figure 2: Comparison on HT, MT1, and MT2 LV 2 scores
per dataset (whole datasets, without MT quality filtering).

ble 2a) indicate MT is generally (with some excep-
tions, depending on the measure and the dataset)
as uniform or less uniform than HT. Historgrams
of the values support the same conclusion and
are shown in the Appendix. This contradicts our
initial hypothesis that MT will be more uniform
in surprisal. We explored whether translation er-
rors could cause an increase in surprisal diver-
sity in MT – if the MT system translates the in-
put with some obvious mistakes, then these mis-
takes might be very surprising given the rest of
the sentence. We used reference-free COMET
(wmt22-cometkiwi-da, (Rei et al., 2022))
scores to assess translation quality. We note that
this approach is not without issues – COMET
scores have been shown as unreliable on segment-
level (Moghe et al., 2022).

Figure 3 shows the behavior of the value of LV 2

measure for examples where the MT COMET
score is above the threshold (the threshold is on
the x-axis). We see that the uniformity behavior
is consistent between the HT (green) and the MT
(blue and orange), except for the wilde dataset,
where the unevenness of HT is higher when we
only consider the better-scoring sentences. This re-
sult might suggest that for very creative texts (such
as poetry), MT is more uniform than a human if
we disregard wrongly translated utterances.

The plots show another interesting property –
the COMET scores are the highest for the most
uniform sentences. Since we select the examples
based on the COMET scores for the MT in these
plots, it can be interpreted as a property of the MT
system: it translates the most uniform sentences
the best. However, this behavior in the plots is very
similar even when the COMET scores are com-
puted for the HT (see Appendix A.1), suggesting a
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dataset m µ(s) ρ(s) µ(ht) ρ(ht) µ(mt1) ρ(mt1) µ(mt2) ρ(mt2)

books
LV 2 31.9 29.6 30.2 30.6 28.0 29.0 29.3 23.4
CV 0.72 0.17 0.71 0.18 0.73 0.18 0.73 0.16

GV 2 20.2 25.1 21.3 31.0 21.1 30.0 20.8 20.4

wmt
LV 2 28.1 16.6 22.5 13.2 22.5 13.3 23.5 13.8
CV 0.76 0.16 0.80 0.16 0.81 0.17 0.80 0.16

GV 2 18.1 13.0 15.4 9.2 15.8 9.9 15.8 9.5

global
LV 2 33.0 32.5 29.3 32.1 30.2 34.9 29.8 30.2
CV 0.73 0.21 0.75 0.21 0.79 0.22 0.78 0.21

GV 2 22.5 24.6 21.7 27.2 21.8 27.8 20.9 22.8

global doc
LV 2 26.6 5.9 22.1 5.4 23.4 5.5 24.3 17.1
CV 0.94 0.07 0.98 0.08 1.00 0.09 1.17 0.49

GV 2 15.2 3.3 13.1 3.2 13.9 3.2 16.5 9.7

wilde
LV 2 29.7 12.1 26.0 10.0 26.7 11.5 25.3 10.5
CV 0.67 0.08 0.63 0.09 0.69 0.10 0.72 0.11

GV 2 16.0 5.7 15.1 5.2 14.6 5.5 13.4 5.4

(a) Uniformity measures for source, MT and HT across
datasets for whole datasets, including examples of poor
MT quality.

dataset m µ(s) ρ(s) µ(ht) ρ(ht) µ(mt1) ρ(mt1) µ(mt2) ρ(mt2)

books
LV 2 30.4 27.7 30.1 32.6 27.1 26.0 28.9 24.0
CV 0.72 0.17 0.71 0.18 0.73 0.18 0.73 0.16

GV 2 19.6 24.4 21.8 34.3 21.1 29.6 21.0 21.3

wmt
LV 2 25.6 14.4 20.7 12.3 20.3 11.1 21.1 12.1
CV 0.78 0.16 0.82 0.17 0.84 0.16 0.82 0.16

GV 2 16.8 10.5 14.7 8.5 14.8 8.8 14.8 8.6

global
LV 2 32.9 32.6 29.2 32.2 29.9 34.8 29.6 30.2
CV 0.73 0.20 0.76 0.21 0.79 0.21 0.78 0.20

GV 2 22.2 24.3 21.5 27.1 21.5 27.4 20.8 22.4

global doc
LV 2 26.4 7.1 21.8 6.3 23.2 6.7 26.5 18.6
CV 0.96 0.08 1.00 0.09 1.03 0.11 1.10 0.27

GV 2 15.3 3.8 13.3 3.8 14.0 3.9 17.4 12.3

wilde
LV 2 25.4 10.7 24.5 8.9 21.7 9.1 21.0 7.0
CV 0.69 0.08 0.64 0.09 0.69 0.10 0.72 0.10

GV 2 14.0 3.9 14.7 4.7 12.7 4.0 11.7 2.8

(b) Uniformity measures for source, MT and HT across
datasets, with manually set COMET thresholds for each
dataset to only select examples with high quality MT.

different underlying cause, for example, COMET
bias to score more uniform sentences higher. Such
biases are a base for further investigation since
they do not allow us to directly automatically com-
pare translation quality between diverse and non-
diverse texts (i.e. if one system’s translations are
more uniform, they could be unfairly scored bet-
ter than less uniform translations). This property
diminishes the validity of our approach to filtering
and in future work, we will focus on better ways of
selecting high-quality translations for evaluation.
For GV 2 score, the behavior is similar, however,
we see a different trend for CV (Appendix A.1).

Based on our inspection of the translations,
we have chosen COMET thresholds for which
the translations seem acceptable, without serious
translation errors. These thresholds are dataset
specific, since COMET scores are domain depen-
dent.1. The results are presented in Table 2b.
Again, the only notable difference to the whole
dataset is on the wilde test set, where HT is less
uniform (in LV 2) considering only examples with
high-quality MT.

4.3 Multiple references

In this analysis, we explore how translation pro-
cesses, both human (ref) and machine (mt), affect
the uniformity of surprisal distributions, utilizing
the ORT dataset to compare multiple high-quality
human translations against machine translations.
Surprisal estimates were generated using the
MU-NLPC/CzeGPT-2 model, with parallel ex-

1The thresholds are: wmt: 0.88, books: 0.81,
global: 0.7, wilde: 0.72, global doc:
0.65

metric src ref1 ref2 ref3 ref4 mt mt2

µ(s0.25) 1.72 1.49 1.49 1.53 1.48 1.51 1.52
ρ(s0.25) 0.08 0.10 0.09 0.10 0.10 0.10 0.10
µ(s) 10.21 7.07 6.91 7.73 6.94 7.13 7.59
ρ(s) 1.62 1.87 1.57 1.97 1.85 1.70 1.96
µ(s3) 2797 2902 1939 3289 2862 2130 3290
ρ(s3) 1497 3455 2546 3615 3487 2763 3663
µ(gini) 0.33 0.45 0.42 0.44 0.45 0.42 0.44
ρ(gini) 0.05 0.07 0.06 0.07 0.07 0.07 0.07
µ(CV ) 0.62 0.94 0.85 0.90 0.95 0.84 0.92
ρ(CV ) 0.11 0.23 0.19 0.22 0.24 0.19 0.23
µ(LV 2) 70.6 83.5 62.7 92.8 83.0 65.1 93.2
ρ(LV 2) 30.4 83.6 65.3 84.6 85.3 65.5 82.4
µ(GV 2) 42.0 53.7 40.3 58.2 53.2 41.1 58.2
ρ(GV 2) 18.7 47.6 36.1 47.9 48.2 35.4 47.2

Table 3: Mean values and standard deviations of sentenece-
level uniformity measures for source, two machine transla-
tions and the three human reference sets. The texts are not
tokenized for the surprisal estimation, thus the estimates for
punctuation are often summed up with the adjacent words in
the calculations of the uniformity metrics. Across most of the
metrics, ref2 and mt are the most uniform translations.

metric src ref1 ref2 ref3 ref4 mt mt2

µ(s0.25) 1.72 1.45 1.47 1.51 1.45 1.48 1.48
ρ(s0.25) 0.08 0.10 0.09 0.11 0.09 0.09 0.09
µ(s) 10.34 6.50 6.57 7.52 6.48 6.55 6.85
ρ(s) 1.59 1.77 1.62 2.19 1.75 1.34 1.41
µ(s3) 2738 2422 1802 3445 2436 1565 2340
ρ(s3) 1388 3958 3336 4176 4102 2479 2953
µ(gini) 0.32 0.45 0.43 0.45 0.45 0.41 0.44
ρ(gini) 0.06 0.08 0.07 0.08 0.07 0.07 0.08
µ(CV ) 0.60 0.94 0.86 0.93 0.93 0.83 0.90
ρ(CV ) 0.13 0.25 0.20 0.23 0.24 0.21 0.24
µ(LV 2) 68.0 71.8 60.6 96.6 73.2 52.9 73.0
ρ(LV 2) 32.1 99.7 88.8 98.6 105.8 58.7 70.9
µ(GV 2) 40.4 47.7 38.7 61.8 47.6 34.2 46.7
ρ(GV 2) 18.3 51.5 44.3 54.0 53.8 31.8 39.2

Table 4: Mean values and standard deviations of sentenece-
level uniformity measures for source, two machine transla-
tions and the three human reference sets, using only examples
where COMET score is above 0.88 for both mt and mt2.
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Figure 3: Relationship between COMET scores of the MT and the LV 2 measure. As a proxy of translation quality, we use
COMET score threshold to filter out low-quality translations.

periments conducted using an alternative language
model (BUT-FIT/Czech-GPT-2-XL-133k)
for comparison, detailed in Appendix A.1.3.

Figure 4 presents Pearson’s r for three unifor-
mity measures (LV 2, CV , GV 2), revealing the de-
gree of correlation between the source and transla-
tions.

Table 3 summarizes the mean values and stan-
dard deviations of sentence-level uniformity mea-
sures, showing variations across source, human,
and machine translations. We see that mt usually
scores as the most uniform, while mt2 is among
the least uniform translations, showing large vari-
ance among different MT systems.

Again, we seek to filter out translation errors in
MT which could increase the diversity of surprisals
by producing expressions unrelated to the rest of
the sentences. This approach allows for a focused
analysis on translations that accurately convey the
source text’s meaning without significant errors,
which could otherwise distort the surprisal distri-
bution. Upon inspection of the translations, we
set the COMET threshold to 0.88 for both mt and
mt2 simultaneously. Figure 5 shows the LV 2 mea-

sure for both the unfiltered and filtered datasets.
Similar bar charts for CV and GV 2 scores can be
found in Appendix A.1.3. We see that mt1 usually
scores as the most uniform, while mt2 is among
the least uniform translations, showing large vari-
ance among different MT systems. We see that
while mt2 is the most diverse translation for the
whole dataset, after filtering out the lower qual-
ity translations, ref3 becomes the most diverse
in terms of LV 2 score. This result again suggests
that at least a part of the surprisal diversity of MT
is caused by translation errors.

5 Future work

The results of our study are inconclusive and we
plan to obtain more diverse test sets, where the
MT adherence to generating uniform texts could
be harmful. Suppose we find such texts, where tra-
ditional, encoder-decoder MT models using beam
search decoding struggle. In that case, we will
evaluate also large language models, where the de-
coding algorithm is usually based on sampling.

We speculate that the constraints on surprisal
distribution imposed by beam search might be
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(a) Local variance squared (b) Sentence CV (c) Global variance squared

Figure 4: Correlation coefficients (Pearson’s r) of three sentence-level measures of uniformity across the source texts, four
human references and the machine translation.
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Figure 5: Difference of LV 2 scores between all (orange) and
high-quality (green) MT translations.

compensating for the models’ inherent lack of
global planning. In an ideal scenario, a model
might introduce a word with high surprisal inten-
tionally, planning to balance this with lower sur-
prisal words in subsequent segments. However, the
current model designs, focusing on next-token pre-
diction, might not accurately forecast these future
steps, i.e. the model could produce high surprisal
word with a “plan” to get the surprisal “back” in
the future timesteps, but, due to next-token-only
objective, the future steps are miscalculated. The
beam search will not produce such word, due to the
adherence to the local uniformity, so the modelling
flaw stays hidden.

If this hypothesis turns out to be true, our focus
will shift to improve the global planning capabili-
ties of the models, e.g. by employing an alternative
training objective.

6 Conclusions

Overall, we do not have reliable proof that MT
produces texts that are more uniform in surprisal

distribution than humans yet. Either our hypoth-
esis is false, or our measurement methodology is
flawed. One possible reason could be that the LMs
we used to estimate the surprisals are trained on
human text, not on MT outputs so it overestimates
surprisal of some phenomena in MT. We plan fur-
ther experiments to improve our methodology and
extend the analysis to more datasets.

While our study was not able to reliably prove
our initial hypothesis that MT systems make the
distribution of surprisal more uniform in their
translations than a human translator, we have
gained some insights from the experiments we car-
ried out. Firstly, NMT systems demonstrate a ten-
dency to produce translations that exhibit surprisal
uniformity closely aligned with source texts, more
so than a human translator. Secondly, the absolute
values of uniformity measures are similar between
HT and MT as well, however, it depends on the
MT system used. Some of the systems produce
more uniform translations than humans.

Notably, in more varied datasets, such as those
containing literary works or poetry, human trans-
lations showed greater diversity compared to MT
outputs, according to some of the measures.

Some of the findings indicate that part of the
variance in surprisal distribution observed in MT
may stem from translation inaccuracies. By scor-
ing the translations using quality estimation met-
rics and filtering out low-scoring examples, in MT
surprisal uniformity on one of the datasets in-
creases, while HT uniformity stays the same.
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Mark Fishel, Alexander Fraser, Markus Freitag,
Yvette Graham, Roman Grundkiewicz, Paco Guz-
man, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Tom Kocmi, André Martins, Makoto
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A Translation

A.1 English to French dataset

A.1.1 Correlations
Scatter plots 6, 7, 8, 9, 10, 11 show how well the

lv2 and GV 2 measures correlate between source
sentence and HT, MT1 and MT2 sentences on
books, wmt and wilde datasets.

A.1.2 Absolute values
Figures 12, 21, 22, 13, 14, 15, 16, 17 and 18

show histograms of the senetence-level values of
lv2, CV and GV 2 across books, wmt and wilde
datasets. Figures 19 and 20 show the lv2 his-
tograms on wilde and wmt after applying filtering
based on COMET threshold of the MT.

Figures 24 and 25 show values of CV and GV 2

depending on the COMET threshold for MT trans-
lations.

Figure 23 shows the relationship between the
COMET score threshold on the human translation
and the mean lv2 score of the source sentence and
all the translations. We see that in books, global
and wmt, both the source sentence and the trans-
lations are more uniform for high COMET scores.
This might suggest a preference of COMET score
for uniform surprisal (for example, rooted in train-
ing data).

A.1.3 Multiple reference dataset
We experimented also with alternative pre-

processing and LMs for estimating the word-
level surprisals in the Czech translations of the
ORT dataset. The estimates in the main text
are computed on untokenized input, i.e. sur-
prisals of punctuation adjacent to a word are
summed with that word’s surprisal. In Tables 5
and 6, we present the results on tokenized (i.e.
punctuation surprisals are considered separately)
texts and texts with punctuation removed alto-
gether. We also used an alternative language model
(BUT-FIT/Czech-GPT-2-XL-133k) to esti-
mate the surprises. See Tables 7, 8, 9 for untok-
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(a) HT (b) MT1 (c) MT2

Figure 6: Scatter plots of lv2 on books dataset between source, and either HT, MT1 or MT2.

(a) HT (b) MT1 (c) MT2

Figure 7: Scatter plots of lv2 on wmt dataset between source, and either HT, MT1 or MT2.

(a) HT (b) MT1 (c) MT2

Figure 8: Scatter plots of lv2 on wilde dataset between source, and either HT, MT1 or MT2.

(a) HT (b) MT1 (c) MT2

Figure 9: Scatter plots of GV 2 on books dataset between source, and either HT, MT1 or MT2.
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(a) HT (b) MT1 (c) MT2

Figure 10: Scatter plots of GV 2 on wmt dataset between source, and either HT, MT1 or MT2.

(a) HT (b) MT1 (c) MT2

Figure 11: Scatter plots of GV 2 on wilde dataset between source, and either HT, MT1 or MT2.

(a) SRC (b) HT (c) MT1 (d) MT2

Figure 12: Histogram of lv2 on books dataset for source, HT, MT1 and MT2.

(a) SRC (b) HT (c) MT1 (d) MT2

Figure 13: Histogram of GV 2 on books dataset for source, HT, MT1 and MT2.

(a) SRC (b) HT (c) MT1 (d) MT2

Figure 14: Histogram of GV 2 on wmt dataset for source, HT, MT1 and MT2.
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(a) SRC (b) HT (c) MT1 (d) MT2

Figure 15: Histogram of GV 2 on wilde datasets for source, HT, MT1 and MT2.

(a) SRC (b) HT (c) MT1 (d) MT2

Figure 16: Histogram of CV on books dataset for source, HT, MT1 and MT2.

(a) SRC (b) HT (c) MT1 (d) MT2

Figure 17: Histogram of CV on wmt dataset for source, HT, MT1 and MT2.

(a) SRC (b) HT (c) MT1 (d) MT2

Figure 18: Histogram of CV on wilde datasets for source, HT, MT1 and MT2.

(a) SRC (b) HT (c) MT1 (d) MT2

Figure 19: Histograms of lv2 on wmt dataset for source, HT, MT1 and MT2, after applying COMET threshold, only keeping
examples where MT1 COMET score is above 0.88
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(a) SRC (b) HT (c) MT1 (d) MT2

Figure 20: Histograms of lv2 on wilde dataset for source, HT, MT1 and MT2, after applying COMET threshold, only keeping
examples where MT1 COMET score is above 0.72

(a) SRC (b) HT (c) MT1 (d) MT2

Figure 21: Histogram of lv2 on wmt dataset for source, HT, MT1 and MT2.

enized, tokenized and punctuation-free results, re-
spectivelly.

Figures 26 and 27 show mean values of CV
and GV 2 scores on unfiltered, whole dataset (or-
ange) and dataset containing only examples where
COMET score for both mt and mt2 is above 0.88.

metric src ref1 ref2 ref3 ref4 mt mt2

µ(s0.25) 1.73 1.52 1.55 1.55 1.51 1.56 1.55
ρ(s0.25) 0.07 0.08 0.08 0.09 0.08 0.09 0.09
µ(s) 10.36 7.03 7.47 7.46 6.90 7.69 7.48
ρ(s) 1.48 1.25 1.28 1.31 1.14 1.39 1.32
µ(s3) 2814 1211 1444 1372 1155 1525 1390
ρ(s3) 1316 837 859 896 768 893 959
µ(gini) 0.32 0.39 0.38 0.38 0.39 0.38 0.38
ρ(gini) 0.05 0.05 0.06 0.05 0.05 0.05 0.05
µ(CV ) 0.60 0.73 0.73 0.71 0.74 0.72 0.71
ρ(CV ) 0.10 0.13 0.13 0.12 0.13 0.13 0.13
µ(LV 2) 72.4 44.8 48.6 47.0 44.4 47.8 49.4
ρ(LV 2) 29.5 22.0 23.4 22.5 21.1 21.2 26.7
µ(GV 2) 41.8 27.9 31.4 30.0 27.3 32.5 30.3
ρ(GV 2) 17.2 13.5 14.2 14.8 13.1 15.0 16.1
µ(GV 2

glob) 27.9 27.9 31.4 30.0 27.3 32.7 30.4
ρ(GV 2

glob) 13.1 13.1 14.4 15.0 12.6 15.6 16.4

Table 5: Mean values and standard deviations of sentenece-
level uniformity measures for source, two machine transla-
tions and the three human reference sets. The texts are to-
kenized for the surprisal estimation, thus the estimates for
punctuation are considered separately in the uniformity mea-
sures’ calculations.

metric src ref1 ref2 ref3 ref4 mt mt2

µ(s0.25) 1.73 1.48 1.50 1.51 1.47 1.52 1.51
ρ(s0.25) 0.07 0.09 0.09 0.09 0.09 0.09 0.10
µ(s) 10.36 6.48 6.74 6.89 6.35 6.96 6.97
ρ(s) 1.48 1.37 1.33 1.37 1.27 1.47 1.49
µ(s3) 2814 1156 1214 1264 1097 1249 1360
ρ(s3) 1316 948 923 947 867 897 1097
µ(gini) 0.32 0.40 0.39 0.39 0.41 0.39 0.40
ρ(gini) 0.05 0.06 0.06 0.06 0.05 0.06 0.06
µ(CV ) 0.60 0.79 0.76 0.76 0.80 0.75 0.77
ρ(CV ) 0.10 0.15 0.15 0.14 0.14 0.14 0.15
µ(LV 2) 72.4 42.2 43.5 44.4 41.4 42.8 48.3
ρ(LV 2) 29.5 25.7 26.2 25.1 24.1 23.7 30.7
µ(GV 2) 41.8 28.2 28.6 29.5 27.5 29.0 31.4
ρ(GV 2) 17.2 16.4 16.4 16.5 15.9 16.5 19.5
µ(GV 2 glob) 28.1 28.1 28.6 29.6 27.4 29.1 31.6
ρ(GV 2 glob) 16.0 16.0 16.4 16.8 15.3 16.9 20.0

Table 6: Mean values and standard deviations of sentenece-
level uniformity measures for source, two machine transla-
tions and the three human reference sets. The surprisal esti-
mates for punctuation are discarded for the uniformity mea-
sures’ calculation.
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(a) SRC (b) HT (c) MT1 (d) MT2

Figure 22: Histogram of lv2 on wilde dataset for source, HT, MT1 and MT2.

(a) Books
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Figure 23: Relationship between COMET scores of the HT and the lv2 measure.
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Figure 24: Relationship between COMET scores of the MT and the CV measure. As a proxy of translation quality, we use
COMET score threshold to filter out low-quality translations.
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Figure 25: Relationship between COMET scores of the MT and the GV 2 measure. As a proxy of translation quality, we use
COMET score threshold to filter out low-quality translations.
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metric src ref1 ref2 ref3 ref4 mt mt2

µ(s0.25) 1.72 1.35 1.37 1.39 1.33 1.39 1.39
ρ(s0.25) 0.08 0.10 0.09 0.10 0.09 0.11 0.10
µ(s) 10.21 4.70 4.96 5.25 4.55 5.24 5.30
ρ(s) 1.62 1.01 1.02 1.09 0.94 1.26 1.23
µ(s3) 2797 417 483 565 397 540 615
ρ(s3) 1497 355 383 425 322 460 553
µ(gini) 0.33 0.42 0.42 0.42 0.43 0.42 0.43
ρ(gini) 0.05 0.06 0.06 0.06 0.06 0.06 0.06
µ(CV ) 0.62 0.80 0.79 0.79 0.82 0.77 0.80
ρ(CV ) 0.11 0.15 0.15 0.15 0.14 0.14 0.15
µ(LV 2) 70.6 26.6 29.9 32.0 26.5 30.2 34.7
ρ(LV 2) 30.4 15.4 16.8 16.3 14.7 16.5 20.4
µ(GV 2) 42.0 14.8 16.3 17.9 14.5 17.2 19.0
ρ(GV 2) 18.7 7.9 8.7 9.2 7.5 9.8 11.5
µ(GV 2 glob) 14.8 14.8 16.3 18.1 14.5 17.3 19.2
ρ(GV 2 glob) 7.6 7.6 8.7 9.5 7.0 10.1 11.9

Table 7: Mean values and standard deviations of sentenece-
level uniformity measures for source, two machine transla-
tions and the three human reference sets. The texts are not
tokenized for the surprisal estimation, thus the estimates for
punctuation are often summed up with the adjacent words
in the calculations of the uniformity metrics. The surprisals
are calculated by BUT-FIT/Czech-GPT-2-XL-133k
model.

metric src ref1 ref2 ref3 ref4 mt mt2

µ(s0.25) 1.73 1.33 1.36 1.36 1.32 1.38 1.37
ρ(s0.25) 0.07 0.09 0.09 0.09 0.09 0.10 0.10
µ(s) 10.36 4.45 4.77 4.83 4.32 5.06 4.92
ρ(s) 1.48 0.89 0.91 0.95 0.82 1.21 1.09
µ(s3) 2814 356 441 439 336 518 499
ρ(s3) 1316 300 325 346 266 494 461
µ(gini) 0.32 0.43 0.43 0.42 0.44 0.42 0.43
ρ(gini) 0.05 0.06 0.06 0.06 0.06 0.06 0.06
µ(CV ) 0.60 0.80 0.81 0.79 0.82 0.79 0.80
ρ(CV ) 0.10 0.14 0.15 0.14 0.14 0.14 0.16
µ(LV 2) 72.4 24.6 27.3 27.3 24.5 28.4 30.7
ρ(LV 2) 29.5 12.5 13.8 13.4 11.9 15.5 17.9
µ(GV 2) 41.8 13.4 15.7 15.4 13.2 17.3 17.0
ρ(GV 2) 17.2 6.7 7.6 7.8 6.1 10.6 10.3
µ(GV 2 glob) 13.4 13.4 15.7 15.5 13.2 17.5 17.1
ρ(GV 2 glob) 6.5 6.5 7.7 7.9 5.8 11.2 10.6

Table 8: Mean values and standard deviations of sentence-
level uniformity measures for source, two machine transla-
tions and the three human reference sets. The surprisals
are calculated by BUT-FIT/Czech-GPT-2-XL-133k
model. The texts are tokenized for the surprisal estimation,
thus the estimates for punctuation are considered separately
in the uniformity measures’ calculations.

Figure 26: Difference of CV scores between all (orange) and
high-quality (green) MT translations.

metric src ref1 ref2 ref3 ref4 mt mt2

µ(s0.25) 1.73 1.33 1.35 1.36 1.31 1.37 1.37
ρ(s0.25) 0.07 0.10 0.09 0.10 0.09 0.11 0.10
µ(s) 10.36 4.52 4.77 4.91 4.38 5.07 5.05
ρ(s) 1.48 0.96 0.97 1.01 0.90 1.22 1.17
µ(s3) 2814 380 433 461 359 488 537
ρ(s3) 1316 342 359 385 304 416 512
µ(gini) 0.32 0.43 0.43 0.42 0.44 0.42 0.43
ρ(gini) 0.05 0.06 0.07 0.06 0.06 0.06 0.06
µ(CV ) 0.60 0.81 0.80 0.79 0.83 0.78 0.81
ρ(CV ) 0.10 0.15 0.15 0.15 0.14 0.14 0.16
µ(LV 2) 72.4 25.1 27.9 28.0 25.1 28.2 32.1
ρ(LV 2) 29.5 14.6 16.2 14.8 13.9 15.1 20.3
µ(GV 2) 41.8 14.0 15.3 15.7 13.8 16.2 17.8
ρ(GV 2) 17.2 7.6 8.2 8.4 7.0 8.9 11.2
µ(GV 2 glob) 14.0 14.0 15.3 15.8 13.8 16.4 18.0
ρ(GV 2 glob) 7.3 7.3 8.2 8.5 6.6 9.3 11.5

Table 9: Mean values and standard deviations of sentence-
level uniformity measures for source, two machine transla-
tions and the three human reference sets. The surprisals
are calculated by BUT-FIT/Czech-GPT-2-XL-133k
model. The surprisal estimates for punctuation are discarded
for the uniformity measures’ calculation.

Figure 27: Difference of GV 2 scores between all (orange)
and high-quality (green) MT translations.
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