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Abstract

Radiology Report Generation (R2Gen) demon-
strates how Multi-modal Large Language Mod-
els (MLLMs) can automate the creation of ac-
curate and coherent radiological reports. Ex-
isting methods often hallucinate details in text-
based reports that don’t accurately reflect the
image content. To mitigate this, we intro-
duce a novel strategy, SERPENT-VLM (SElf
Refining Radiology RePort GENeraTion using
Vision Language Models), which improves the
R2Gen task by integrating a self-refining mech-
anism into the MLLM framework. We employ
a unique self-supervised loss that leverages sim-
ilarity between pooled image representations
and the contextual representations of the gen-
erated radiological text, alongside the standard
Causal Language Modeling objective, to re-
fine image-text representations. This allows the
model to scrutinize and align the generated text
through dynamic interaction between a given
image and the generated text, therefore reduc-
ing hallucination and continuously enhancing
nuanced report generation. SERPENT-VLM
outperforms existing baselines such as LlaVA-
Med, BiomedGPT, etc., achieving SoTA perfor-
mance on the IU X-ray and Radiology Objects
in COntext (ROCO) datasets, and also proves
to be robust against noisy images. A qualita-
tive case study emphasizes the significant ad-
vancements towards more sophisticated MLLM
frameworks for R2Gen, opening paths for fur-
ther research into self-supervised refinement in
the medical imaging domain.

1 Introduction

Radiology Report Generation (R2Gen) serves as a
crucial link between medical imaging and natural
language processing, to automate the interpreta-
tion of radiological images into comprehensive text
reports. This task requires models to learn long-
range dependencies effectively while generating

* Equal contribution.

the report, a challenge that remains largely unmet
in current systems. The primary goal of R2Gen
is to generate accurate and comprehensive medi-
cal reports from radiological imagery, an essential
step toward enhancing diagnostic accuracy and ef-
ficiency. Prevailing methods (Vinyals et al., 2015;
Xu et al., 2015; Tang et al., 2023; You et al., 2016;
Tang et al., 2021) in R2Gen often rely on (1) large
datasets for pre-training to impart domain-specific
knowledge, and (2) typically utilizing compute-
intensive encoder-decoder architectures for fine-
tuning. These approaches are fraught with draw-
backs, such as omission of minor yet clinically
significant details (Wang et al., 2022b; You et al.,
2021; Wang et al., 2021) and the persistent issue of
hallucination as seen in Fig. 1, where generated re-
ports from LlaVA-Med and BiomedGPT wrongly
include details not present in the images. Mini-
mizing hallucinations in radiology report genera-
tion is crucial since these inaccuracies can lead to
misdiagnoses, directly impacting patient treatment
plans and outcomes. Moreover, reducing hallucina-
tions ensures the reliability and trustworthiness of
automated reports, which is vital for maintaining
clinical credibility and facilitating effective patient
care. Therefore, the limitations pertaining to exist-
ing approaches underscore the necessity for a more
refined approach for accurate medical diagnosis,
addressing the critical gaps in R2Gen.

In this paper, we introduce a streamlined
pipeline, SERPENT-VLM, which begins by pro-
cessing a given X-ray image by passing it through a
visual encoder and mapping it to a vector represen-
tation in a high-dimensional space. This process
facilitates a nuanced understanding of the medical
imagery. The encoded image, alongside a report
generation prompt, is then passed as inputs to a
Large Language Model (LLM) for text generation.
We employ a cross-entropy loss for the causal lan-
guage modeling objective and introduce a novel
self-refining objective that leverages the pooled
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Ground Truth LlaVA-Med BiomedGPT SERPENT-VLM

The lungs are hyperexpanded .
cardiomediastinal silhouette is
within normal limits . no pleural

effusion focal airspace
opacities or pneumothorax . no

free subdiaphragmatic air .

heart size and mediastinal
contours are within normal

limits . pulmonary vascularity
is within normal limits . no
focal consolidation pleural
effusion or pneumothorax

identified . visualized
osseous structures of the
thorax are without acute

abnormality .

clear and well-defined lung
field. ribs are well-defined, no

obvious fractures or
dislocations. The costophrenic
angles are sharp, and there are
no pleural effusions. However,
there appears to be a small,

faint, and irregular shadow in
the lower left lung field,

which could be indicative of
a small nodule or mass.

Lung fields are clear, with well-
defined contours. Ribs show no

fractures or dislocations,
appearing intact. Costophrenic

angles maintain sharpness,
indicating absence of pleural

effusions. A slight haziness is
noted in the right upper lung

field, potentially indicating early
signs of infiltrative process.

The cardiomediastinal silhouette
and pulmonary vasculature are
within normal limits in size. The
lungs are clear of focal airspace

disease, pneumothorax, or
pleural effusion. There are no

acute bony findings.

Clear, well-defined diaphragm.
Slight irregularity, lower right

lung lobe, potential small
nodule, early pulmonary issue.

Normal heart shadow, no
cardiomegaly. Normal-sized 
aorta, no pneumothorax, no 
pleural effusion. Intact ribs,

vertebral column, no fractures,
dislocations. Centrally located

mediastinum, 
no masses, lymphadenopathy.
Normal lung vascular markings,

no atelectasis, pneumonia.

clear, well-defined diaphragm and
lung fields, except for faint

linearity in the middle right
lung, suggesting  early fibrotic
changes. The heart shadow is

normal, excluding cardiomegaly,
while the aorta is of normal size

with no evidence of pneumothorax
or pleural effusion. Bones,
including ribs and vertebral

column, show no fractures or
dislocations, despite minimal

displacement in the right
clavicle. 

the heart size and mediastinal
contours are within normal
limits . the lungs are clear

without focal airspace opacity
pleural effusion or

pneumothorax . there is no
visible pneumothorax . there is

no evidence of acute bony
abnormality 

Figure 1: Generated report samples on IU-Xray dataset. We qualitatively analyze reports generated by medical
pre-trained LLMs LlaVA-Med and BioMedGPT with SERPENT-VLM. Hallucinated information in the reports is
highlighted using yellow.

image representation and the generated report’s
contextual representation. This allows for tuning
the network without compromising inference la-
tency, while significantly improving performance
evaluated using metrics such as Bleu, RougeL,
BertScore.

The contributions of our work are summarized
as follows:

1. Our approach does not compromise on in-
ference latency, adopting a refining strategy
through a novel loss function used only for
fine-tuning

2. The introduction of a self-refining loss ensures
the generation of nuanced, hallucination-free
radiology reports

3. Our system not only matches but surpasses
the performance of leading generalistic pre-
trained medical LLMs.

4. Our approach demonstrates robustness
against noisy image inputs, maintaining the
generation of comprehensive reports.

This marks a substantial advancement in the field
of R2Gen, setting new benchmarks for accuracy,
efficiency, and robustness.

The remainder of the paper is organized as fol-
lows: We begin by delving into the literature re-
view in Section 2, focusing on current and past
state-of-the-art (SoTA) methodologies in the do-
main of radiological report generation. Section 3

discusses the proposed strategy for the self-refining
fine-tuning our approach. The datasets, baselines,
experimental setups, and ablation studies are de-
tailed in Section 4. Finally, we conclude with a
summary of our findings in Section 5.

2 Related Work

Medical Report Generation (MRG): Medical
Report Generation has been extensively studied
through ML models. (Jing et al., 2018) proposed
a co-attention network that aligns visual and tex-
tual information to generate comprehensive radiol-
ogy reports. Further enhancing the capabilities, a
memory-driven transformer (Chen et al., 2020) inte-
grates memory modules for encoding and decoding
processes, allowing for more sophisticated report
generation (Chen et al., 2020, 2021). Cross-modal
learning (Wang et al., 2022a) utilizes prototype ma-
trices and contrastive losses to refine the learning
of visual-textual correlations, complemented by a
self-boosting framework to align image features
with report text (Wang et al., 2021). (Liu et al.,
2021) addressed the problem of mitigating inherent
biases through a data-driven method, introducing
a prior-posterior knowledge-based report genera-
tion. (Nooralahzadeh et al., 2021) leveraged cur-
riculum learning to extract global concepts to create
a bridge between images and text. Task-specific ar-
chitecture with sentence-level attention mechanism
across visual features (Yuan et al., 2019) allows
the model to capture key medical concepts from
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images. A weakly supervised paradigm to amplify
hard negative samples (Yan et al., 2021) addresses
the medical data scarcity challenge.
Large Language Models and Vision language
Models: The advent of Large Language Mod-
els (LLMs) such as GPT-4, Claude, BARD show-
case excellent zero-shot language understanding
(bro, 2020; Li et al., 2021; Liu et al., 2021; Irvin
et al., 2019); image understanding and visual ques-
tion answering (Team et al., 2023) capabilities.
Open-source LLMs, like LLaMA and BLOOM,
and Multi-modal LLMs such as LlaVA (Liu et al.,
2024), Open Flamingo (Awadalla et al., 2023)
have also democratized access to cutting-edge
generative technology (Ouyang et al., 2022; Pan
et al., 2020). Furthermore, domain-specific mod-
els LlaVA-Med (Li et al., 2023) and BiomedGPT
(Zhang et al., 2024) have shown promising results
in pathology and radiology-related tasks. However,
knowledge grounding for medical reports (Hyland
et al., 2023), thereby reducing hallucination pro-
duced by these models remains a challenge.
Source & Representation of Feedback: Itera-
tive refinement in MRG has traditionally relied
on human feedback to achieve high-quality out-
puts (Tandon et al., 2022). Scalar reward func-
tions and domain-specific feedback tools, such as
compilers, were proposed as cost-effective alter-
natives to human feedback (Le et al., 2022; Ya-
sunaga and Liang, 2020). Recent developments
show that Large Language Models (LLMs) can
self-evaluate their responses. However, applying
this to Multi-modal Large Language Models re-
mains largely unexplored in terms of generating
grounded and hallucination-free responses.

We now discuss the proposed methodology in
the subsequent section.

3 Methodology

3.1 Overview of SERPENT-VLM
We summarize the pipeline of SERPENT-VLM
in Figure 2. It consists of two branches to estab-
lish the learning optimization criterion. 1) Causal
Language Modeling Objective enforces standard
cross-entropy loss (step 4 in Fig. 2) for supervised
radiology report generation. Our approach consists
of a visual encoder that extracts information from
chest X-ray images (step 1 in Fig. 2), a visual
mapper that projects low dimensional image fea-
tures onto high dimensional feature space (step 2
in Fig. 2) and a Large Language Model that au-

toregressively generates the diagnostic radiological
report (step 3 in Fig. 2). To further reduce hallu-
cination, we construct a pooled representation of
the given X-ray image, a contextual representation
leveraging the attention weights and last hidden
states of the generated report and enforce 2) Self
Refining Objective that tries to maximise the simi-
larity between pooled image representation and the
contextual representation of the generated report
through a self-supervised loss criterion (step 5 in
Fig. 2). We train the network through a weighted
combination of both the losses (step 6 in Fig. 2),
thereby enabling SERPENT-VLM to continuously
refine itself by aligning generated text with the in-
put image. We now discuss the details of each
component.

3.2 SERPENT-VLM Framework
The architecture of SERPENT-VLM can be parti-
tioned into three different modules - a visual en-
coder, a visual mapper and a large language model
(LLM). Formally, consider a chest X-ray image
Iv ∈ RCxHxW , where C is the number of in-
put channels, H , W being the height and width
of the image respectively. Iv = [Iv1 , Iv2 , · · · Ivk ]
comprises of a sequence of k patches with Ivi ∈
RCxPxP being the ith patch, and P is the patch size.
We leverage a transformer-based visual encoder
Venc to encode and obtain contextual representa-
tion ẽvi ∈ Rdv denoted by Eq. 1 and aggregate
each encoded patch to obtain a global image repre-
sentation ẽv depicted by Eq. 2.

ẽv1 , ẽv2 , · · · ẽvk = Venc(Iv1 , Iv2 , · · · Ivk) (1)

ẽv = Vpooler(ẽv1 , ẽv2 , · · · ẽvk) (2)

The encoded image features inherently reside in
a visual feature space, which is distinct and not
directly compatible with the textual feature space,
and hence need to be aligned with the word embed-
ding space of the LLM. To ensure this, we use a
learnable visual mapper Vmap to project the patch
embeddings ẽvi onto the word embedding space.
Formally, evi = Vmap(ẽvi). We construct a seed
prompt T instructing the LLM to generate a report
conditioned on the image Iv, and obtain the cor-
responding tokens Ttokens = [t1, t2, · · · , t|Ttokens|]
which is given as input to the Embedding mod-
ule of the LLM to construct the token embeddings
(refer Eq. 3),

et1 , et2 , · · · , et|Ttokens|
= Embedding(t1, t2, · · · , t|Ttokens|)

(3)
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Generate a comprehensive
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report for this chest X-Ray
image
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Tokenizer
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The heart and mediastinum
shapes are normal. Lung

fields are free of
abnormalities. Bone

structures are unharmed.
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Cardiac and mediastinal
contours are within normal
limits. The lungs are clear.
Bony structures are intact.
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Figure 2: Overview of the SERPENT-VLM pipeline. The X-ray image is processed using a visual encoder (step 1)
and projected onto a high-dimensional space using a visual mapper (step 2). The encoded image with the report
generation prompt is fed into the LLM (step 3). Cross-entropy loss is employed (step 4) for the causal language
modeling objective. The pooled image representation and the Contextual representation of the generated report
are used to compute the self-refining loss (step 5). A weighted combination of both objectives is used to train the
network (step 6).

We concatenate the sequence of projected im-
age patch embeddings evi with the seed prompt
text embeddings etj to obtain a sequence of input
embeddings eI = [ev; et] which are given as in-
put to the decoder-only LLM denoted by TD for
generating the logits of the response tokens in auto-
regressive fashion. Venc, Vpooler, Vmap and TD
are trained through cross-entropy loss Lreport en-
forced between the generated logits and the actual
responses. To further guide the report generation
process by aligning the generated response with the
input image, we enforce a self-supervised refining
loss.

3.3 Self-refining Strategy

We construct an aggregated representation of the
generated text by utilizing the attention weights of
the last layer of TD. Consider the logit distribu-
tion for each generated token as li ∈ Rd, where d
is the vocabulary size of TD. To encode the repre-
sentation of each generated token, which is further
used to compute the self-refining loss in a differ-
entiable fashion, we leverage Gumbel-Softmax on
the logit distribution to obtain l̂i for each predicted
token. We construct the aggregated representa-
tion êpi =

∑d
j=1 ej l̂ij of each predicted token by

taking a weighted sum of the embedding matrix
E = e1, e2, · · · , ed with l̂i being the correspond-
ing weights. Formally,

l̂ij =
e(log(lij)+gij)/τ

∑d
j=1 e

(log(lij)+gij)/τ
(4)

Since, the gumbel-softmax operator makes the logit
distribution peaky, taking a weighted sum effec-
tively yields the predicted token embeddings. Fur-
ther, we construct an aggregated representation
ht ∈ Rdt of the predicted token embeddings by
leveraging the attention weights from the last layer
of TD. We hypothesize that aligning the aggre-
gated representation of the generated report with
the pooled input image representation would re-
duce hallucination and ground the report genera-
tion task. For this, we enforce a self-refining loss
between ht and ev depicted by Eq. 3.3

Lrefine =
1

b

b∑

i

e−hT
t ev , (5)

where b is the batch size.
Minimizing the negative exponential of the simi-

larity between the image and generated text repre-
sentation pushes the representation closer, thus fur-
ther grounding the report generation process. We
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optimize our network with a weighted combination
of both the causal language modeling objective and
the self-refining objective. The total loss is denoted
by Eq. 6

Ltotal = λreport Lreport + λrefine Lrefine (6)

Lreport depicts the standard causal language mod-
eling objective that ensures the conditional genera-
tion of radiological report text based on the input
image, whereas Lrefine ensures that the generated
report is grounded in context of the input image,
thereby establishing a robust pipeline for radiology
report generation.

4 Experiments and Evaluation

We now discuss the details corresponding to the
experiments and ablation studies carried out and
enumerate the observations.

4.1 Implementation Details
We discuss the technical details and hyper-
parameter settings for all the experiments. For the
visual encoder Venc, we employed the base version
of Swin-Transformer-V21 and a feed-forward neu-
ral network for Vmap. We leverage LLaMA2-7B2

as our primary LLM. Further, the hidden dimension
of dv of Venc and dt of TD are 768 and 1024 re-
spectively. We freeze the weights of Venc, however
keep Vmap trainable. We employ LoRA with a rank
and α-scaling factor of 16 each to fine-tune the un-
derlying LLM TD. We train SERPENT-VLM for
15 epochs on IU-Xray dataset and 20 epochs on the
ROCO dataset with mixed precision on an effective
batch size (BS) of 6 using one NVIDIA A40 48GB
GPU using a learning rate of 1× 10−4 with linear
rate scheduler through AdamW optimizer. For in-
ference, we leverage beam search decoding with
beam size configured to 3.

4.2 Datasets and Evaluation Metrics:
We evaluate SERPENT-VLM on two commonly
used datasets diverse modality -

1. IU X-Ray which is a widely used publicly
available dataset for medical report genera-
tion tasks containing 3,955 fully de-identified
radiology reports with sections such as Im-
pression, Findings, Indication, etc., each asso-
ciated with frontal and/or lateral chest X-rays,
totaling 7,470 images;

1https://huggingface.co/microsoft/swinv2-base-patch4-
window12-192-22k

2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

2. ROCO which has ‘radiology’ and ‘out-of-
class’ subsets (synthetic radiology images,
clinical photos, portraits, compound radiology
images, and digital art) of roughly 65,460 and
8,182 ‘radiology’, and 4,902 and 613 ‘out-of-
class’ images in the train and test set respec-
tively.

Since the reports are verbose and need to be ac-
curately measured with word-level precision, we
compute overlap-based metrics like BLEU and
Rouge-L, and a semantic similarity-based metric
BertScore for evaluating the efficacy of our ap-
proach.

Dataset Train Val Test Image Views

IU X-Ray 2769 791 395 Frontal and Lateral
ROCO 65460 8183 8182 Frontal

Table 1: Statistics of Evaluation Datasets

4.3 Performance of SERPENT-VLM on
Radiology Report Generation

Table 2 illustrates the comprehensive compari-
son of SERPENT-VLM against various state-of-
the-art baselines across the IU-Xray and ROCO
datasets. In comparison with traditional non-
LLM approaches such as Show-Tell (Vinyals et al.,
2015), Att2in (Xu et al., 2015), and R2Gen (Chen
et al., 2020), SERPENT-VLM exhibits signifi-
cant improvements. For instance, on the IU-
Xray dataset, SERPENT-VLM achieves a Bleu4
score of 0.190, surpassing Show-Tell’s 0.078 and
R2Gen’s 0.165, and even outperforming the more
advanced R2GenCMN, which scores 0.170. This
indicates not only an improvement in capturing
long-range dependencies but also a notable reduc-
tion in detail hallucination, a common issue in
earlier models. Furthermore, when compared to
Medical LLMs and generalistic Vision-Language
Models such as LlaVA-Med (Li et al., 2023),
BiomedGPT (Zhang et al., 2024), and MiniGPT4
(Zhu et al., 2023), SERPENT-VLM demonstrates
superior performance, marking a significant leap
in R2Gen. For example, against LlaVA-Med,
which records a Bleu4 of 0.186 on IU-Xray,
SERPENT-VLM shows a marked improvement
with a score of 0.190. Similarly, in the context of
BertScore, SERPENT-VLM achieves an impres-
sive 0.935 compared to LlaVA-Med’s 0.845 and
BiomedGPT’s 0.793, underscoring its enhanced
textual coherence.
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IU-Xray ROCO

Methods Bleu1 Bleu2 Bleu3 Bleu4 RougeL BertScore Bleu1 Bleu2 Bleu3 Bleu4 RougeL BertScore

Show-Tell 0.243 0.13 0.108 0.078 0.307 0.378 0.104 0.076 0.051 0.027 0.089 0.34
Att2in 0.248 0.134 0.116 0.091 0.309 0.386 0.106 0.077 0.052 0.027 0.091 0.347
AdaAtt 0.284 0.207 0.15 0.126 0.311 0.442 0.122 0.089 0.060 0.031 0.104 0.397
Transformer 0.372 0.251 0.147 0.136 0.317 0.579 0.159 0.116 0.079 0.041 0.137 0.521
M2transformer 0.402 0.284 0.168 0.143 0.328 0.626 0.172 0.125 0.085 0.044 0.148 0.563
R2Gen 0.47 0.304 0.219 0.165 0.371 0.732 0.201 0.147 0.099 0.052 0.173 0.658
R2GenCMN 0.475 0.309 0.222 0.17 0.375 0.74 0.169 0.148 0.100 0.052 0.175 0.665
MSAT 0.481 0.316 0.226 0.171 0.372 0.749 0.212 0.150 0.102 0.053 0.177 0.673
METransformer 0.483 0.322 0.228 0.172 0.38 0.752 0.211 0.151 0.102 0.053 0.178 0.676
R2GenGPT (Deep) 0.480 0.316 0.216 0.169 0.377 0.748 0.213 0.150 0.101 0.053 0.177 0.672
MiniGPT4 0.494 0.329 0.220 0.179 0.390 0.767 0.219 0.156 0.103 0.056 0.183 0.689
BiomedGPT 0.516 0.343 0.233 0.183 0.403 0.793 0.229 0.163 0.109 0.058 0.189 0.712
LlaVA-Med 0.528 0.346 0.237 0.186 0.422 0.845 0.234 0.164 0.111 0.061 0.198 0.759
SERPENT-VLM 0.547 0.356 0.242 0.190 0.452 0.935 0.243 0.169 0.108 0.057 0.212 0.84

Table 2: Results of SERPENT-VLM on Benchmark datasets

4.4 Discussion on the Impact of different
Design Choices for SERPENT-VLM

We carry experiments pertaining to two different
design choices for SERPENT-VLM and establish
the efficacy of the proposed architecture through
the comparative analysis across experiments.

1. Effect of relative importance of two losses:
We vary the relative importance self-refining
loss (λrefine) and report-generation loss
(λreport) in Eq. 6. Table 3 shows that com-
bining the two losses yields much better per-
formance for IU X-ray and ROCO compared
to just using the report generation loss (row 5
vs. row 2). This highlights that self-refining
loss complements the report generation loss
by grounding the generated report on the input
image, thereby reducing hallucination. Fur-
ther, it is observed that using only self-refining
loss (row 1) leads to a degradation in per-
formance because SERPENT-VLM is trained
only through a self-supervised paradigm with-
out any kind of supervision. As observed,
this equilibrium is not merely about avoiding
hallucinations but also about fostering a syner-
gistic effect where each loss component rein-
forces the other, thereby elevating the overall
quality and reliability of the automated radi-
ology reports. The findings from our exper-
iments provide compelling evidence for the
critical role of balanced loss parameters in
achieving the desired outcomes, advocating
for a nuanced approach in their application
within the framework of SERPENT-VLM.

2. Effect of contextual representation design
strategy: We explore different aggregation

strategies for obtaining the contextual repre-
sentation of the generated report. As depicted
in Table 4, attention-based aggregation out-
performs other aggregation strategies by a sig-
nificant margin by obtaining a BertScore of
0.935 and 0.840; BLEU1 score of 0.547 and
0.243 on IU X-ray and ROCO respectively.
Average pooling (average of token represen-
tations), Max pooling (token representation
with maximum L2-norm) and Top-k average
pooling (average top k = 5 token represen-
tations based on attention-weights) give sub-
optimal performance on both IU X-ray and
ROCO benchmark, thereby establishing the
critical importance of sophisticated feature in-
tegration methods in enhancing the model’s
capability to synthesize coherent and contex-
tually relevant radiology reports. Exploration
into different aggregation strategies reveals
that the sophistication and adaptability of the
aggregation mechanism play a pivotal role in
the efficacy of medical report generation mod-
els.

4.5 How robust is SERPENT-VLM to noisy
images?

We assess the robustness of SoTA methods LlaVA-
Med and BiomedGPT, with our method SERPENT-
VLM, by introducing Gaussian noise to radiolog-
ical images. Fig. 3 demonstrate that SERPENT-
VLM significantly outperforms the current SoTA
models, LlaVA-Med and BiomedGPT, across all
Gaussian Noise scales, maintaining higher BLEU1

( 5-6% higher) and BertScore ( 9-10% higher) met-
rics, thus showcasing superior robustness in report
generation under noisy and corrupted images. This
also highlights SERPENT-VLM’s ability to focus
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Dataset λReport λRefine Bleu1 Bleu2 Bleu3 Bleu4 RougeL BertScore

IU-Xray

0 1.0 0.416 0.270 0.184 0.144 0.344 0.711
0.3 0.7 0.547 0.356 0.242 0.190 0.452 0.935
0.5 0.5 0.492 0.320 0.218 0.171 0.407 0.842
0.7 0.3 0.479 0.311 0.212 0.166 0.396 0.818
1 0.0 0.451 0.311 0.200 0.157 0.373 0.771

ROCO

0 1 0.187 0.130 0.083 0.044 0.163 0.647
0.3 0.7 0.243 0.169 0.108 0.057 0.212 0.840
0.5 0.5 0.214 0.149 0.095 0.050 0.187 0.739
0.7 0.3 0.207 0.144 0.092 0.048 0.180 0.714
1 0 0.194 0.135 0.086 0.046 0.170 0.672

Table 3: Impact of combining self-refining loss (weight λrefine) with report-generation loss (weight λreport).
Fusing both the loss components gives optimal performance.

Dataset Design Strategy Bleu1 Bleu2 Bleu3 Bleu4 RougeL BertScore

IU-Xray

Attention based aggregation 0.547 0.356 0.242 0.190 0.452 0.935
Average pooling 0.410 0.267 0.182 0.143 0.339 0.701
Top k average pooling 0.465 0.303 0.206 0.162 0.384 0.795
Max pooling 0.383 0.249 0.169 0.133 0.316 0.655

ROCO

Attention based aggregation 0.243 0.169 0.108 0.057 0.212 0.840
Average pooling 0.190 0.132 0.084 0.044 0.165 0.655
Top k average pooling 0.199 0.139 0.089 0.047 0.174 0.689
Max pooling 0.170 0.118 0.076 0.040 0.148 0.588

Table 4: Performance comparison of different design strategies for contextual representation. Attention weights-
based aggregation displays superior performance.

on relevant parts of the image, thereby mitigating
the effects of added noise and grounding the gener-
ated report - an indication of reduction in halluci-
nation phenomena. The integration of SERPENT-
VLM could markedly enhance diagnostic accuracy,
aiding radiologists in delivering faster and more
accurate patient care.

5 Summary and Conclusion

In this paper, we propose SERPENT-VLM, an in-
novative method for producing detailed and ac-
curate radiology reports from Chest X-rays with-
out hallucinations. The process utilizes a frozen
visual encoder to transform X-ray images into a
high-dimensional space, which a Large Language
Model (LLM) then uses to generate initial reports.
These reports undergo further refinement through a
novel combination of self-refining loss and Causal
Language Modeling Loss, significantly surpassing
existing methods as detailed in Section 4. Our
experiments in Section 4 and supplementary mate-
rials, confirm the effectiveness of our self-refining
approach, even with distorted noisy images. Our
future works involve the extension of our method to
other medical imaging types, such as MRIs and CT

scans, and to incorporate diagnostic RADreports to
enhance report accuracy further.

Limitations

The SERPENT-VLM has shown significant ad-
vancements in creating radiology reports from
chest X-rays, reducing inaccuracies, and better
matching the content of the images compared to
earlier models. However, this research has its limi-
tations. The testing of the model’s performance and
adaptability has been limited to particular datasets
(IU X-Ray and ROCO), which do not encompass
the broad spectrum of radiological images or health
conditions. It remains unclear how well this would
work in actual medical situations. Furthermore,
although the model’s ability to handle low-quality
images is emphasized, the wide range of image
quality in real-life scenarios could pose challenges
that have yet to be evaluated.

Ethics Statement

The deployment of SERPENT-VLM in clinical set-
tings involves significant ethical considerations.
The model’s potential to generate erroneous in-
terpretations from radiological images, despite re-
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(a) Performance metrics for ROCO dataset with varying levels
of Gaussian noise added to input radiological images.

(b) Performance metrics for IU-Xray dataset with varying
levels of Gaussian noise added to input radiological images.

Figure 3: Comparative performance metrics for ROCO and IU-Xray datasets.

duced hallucinations, necessitates cautious applica-
tion, especially since incorrect reports could lead to
misdiagnoses or inappropriate treatments. The use
of large datasets for training also raises privacy con-
cerns, requiring stringent data handling and patient
consent protocols.
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