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Abstract

Large Language Models (LLMs) often en-
counter conflicts between their learned, in-
ternal (parametric knowledge, PK) and exter-
nal knowledge provided during inference (con-
textual knowledge, CK). Understanding how
LLMs models prioritize one knowledge source
over the other remains a challenge. In this pa-
per, we propose a novel probing framework
to explore the mechanisms governing the se-
lection between PK and CK in LLMs. Us-
ing controlled prompts designed to contradict
the model’s PK, we demonstrate that specific
model activations are indicative of the knowl-
edge source employed. We evaluate this frame-
work on various LLMs of different sizes and
demonstrate that mid-layer activations, particu-
larly those related to relations in the input, are
crucial in predicting knowledge source selec-
tion, paving the way for more reliable models
capable of handling knowledge conflicts effec-
tively.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable proficiency in memorizing and
retrieving massive amounts of information. De-
spite these strengths, LLMs often struggle when
exposed to novel information not seen during train-
ing (Ovadia et al., 2019) or when there is a conflict
between their parametric knowledge (PK) and
the context knowledge (CK) provided at infer-
ence (Xie et al., 2024). Such discrepancies can
lead to erroneous outputs, a phenomenon that re-
mains a significant challenge in LLMs applications
(Ji et al., 2023). While several approaches, such
as reinforcement learning and retrieval-augmented
generation, have been proposed to mitigate these
issues (Ziegler et al., 2020; Lewis et al., 2021), the
mechanisms by which LLMs select and prioritize
knowledge sources are not well understood, sug-
gesting a gap in current research methodologies.
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Figure 1: Illustration of our method for probing knowl-
edge sources in LLMs. We present the model with
a prompt containing contradictory information to its
learned knowledge to test whether it uses parametric
knowledge (PK) or contextual knowledge (CK). The
resulting activations are used to train a classifier to dis-
tinguish between PK and CK.

This paper explores the internal dynamics of
LLMs, and more precisely decoder-only layers, fo-
cusing on their decision-making processes regard-
ing the use of CK versus PK. By prompting the
LLM in a way that contradicts its PK, we probe the
model’s knowledge-sourcing behaviors. By train-
ing a linear classifier on model activations, our ex-
periments reveal that certain activations correlate
with determining whether context or parametric
knowledge predominates in the generated outputs.

In this paper, we make the following key find-
ings and contributions:

• We define a framework that characterizes the
source of knowledge used by the model to
generate its outputs – Sections 3 and 4. To
facilitate further research and validation of
our findings, we make our framework publicly
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available on GitHub1.

• Specific activations are indicative of the
knowledge source: by applying our frame-
work to LLMs of different sizes, we estab-
lish that specific activations correlate with
the model’s use of contextual or parametric
knowledge.

2 Related Work

The understanding of the mechanisms and knowl-
edge localization within transformers has pro-
gressed through various studies. On the one hand,
some work investigated the PK-based outputs (fac-
tual setting) (Meng et al., 2023; Geva et al., 2021,
2023; AlKhamissi et al., 2022; Heinzerling and
Inui, 2021). These works hypothesized that LLMs
store parametric information in the Multi-Layer
Perceptron (MLP), which acts as a key-value mem-
ory, subsequently accessed by the Multi-Head Self-
Attention (MHSA) mechanisms. On the other
hand, other studies focused on the CK-based out-
puts and concluded that processing CK, as opposed
to PK, is not specifically localized in the LLM’s
parameters (Monea et al., 2024).

Yu et al. (2023) employed an attribution method
(Wang et al., 2022; Belrose et al., 2023) to identify
the most influential attention heads responsible for
generating PK and CK outputs, and subsequently
adjusted the weights of these heads to modify the
source of knowledge. Their work however focuses
exclusively on knowledge specific to capital cities
and relies on causal tracing, which is costly to
compute.

In contrast, our work utilizes a probing approach
that uses a classifier on the LLM activations to
identify the source of knowledge, leveraging the
insights from previous research on the respective
roles of MLPs and MHSAs in the inference process.
We extend the scope of Yu et al. (2023) by incorpo-
rating a dataset with a broader range of knowledge
categories (ParaRel (Elazar et al., 2021)), moving
beyond just capital cities.

3 Methodology

We aim to show that specific activations correlate
with the used knowledge source, parametric or con-
text knowledge. In order to probe LLMs, we con-
struct prompts that are composed of inputs rep-

1Link to the code and dataset: https://github.com/
Zineddine-Tighidet/knowledge-probing-framework

resenting information about a subject s that con-
tradicts what the model learned during training,
followed by a query about the same subject (see
Figure 1). If the model answers according to the
prompt, then it uses context knowledge. On the
other hand, if the model answers according to what
it learned, then it is using its parametric knowledge.
In the following two sections, we define more for-
mally PK and CK.

3.1 Parametric Knowledge (PK)

We consider the parametric knowledge (PK) to be
the information that the model learned during train-
ing. More specifically, we restrict this PK by using
a knowledge base KB = {(s, r, o)}, i.e. a set of
(subject, relation, object) triplets from the ParaRel
dataset (Elazar et al., 2021). We then define PK to
be the set of objects that are generated by a LLM:

PK = {(s, r, o′
) | ∃o s.t. (s, r, o) ∈ KB

∧ o
′
= Gθ(q(s, r))} (1)

where Gθ is an LLM; q(s, r) is a prompt in natural
language corresponding to a subject-relation pair
(s, r); o

′
is the output of Gθ given the query prompt

(e.g. "Brazil is located in the continent of _").
Note that we use this method to define PK be-

cause we do not have access to the training data
of LLMs in general, and, more importantly, we
are interested in what the LLM infers by itself. If
o = Gθ(q(s, r)), that is, the object o was gener-
ated by the model after providing an input query
q(s, r), we can conclude that the model learned to
associate the object o with the subject s with the
relation r during training. Note also that, unlike
previous work (Meng et al., 2023; Yu et al., 2023),
even when o is factually incorrect (e.g. "Paris is the
capital of Italy"), we still consider it in our study
as our only interest is the parametric knowledge
and not the external world factual truth2.

3.1.1 Knowledge Base (ParaRel)
We extend the ParaRel dataset (Elazar et al., 2021)
for constructing a parametric knowledge base.
ParaRel dataset consists of triplets, each composed
of a subject, a relation, and an object. Table 1
illustrates a sample of the raw ParaRel dataset.

While the majority of the triplets adhere to
the subject-relation-object structure, some deviate

2This behavior happens when the subjects are unpopular
and the LLM was not trained on enough examples. We discuss
this further in Section 6.
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Complete the following statement directly and concisely with the
name of the place where the headquarters of Microsoft are located.
Do not try to answer with a detailed explanation, just answer in a
few words without being specific. Do not use any specific formatting
and end the output with a point.

Here is an example: BNP Paribas is headquartered in Paris.

Microsoft is headquartered in Redmond.

Figure 2: Example of the template used to generate the parametric knowledge dataset. The blue text is proper to the
relation and the orange is specific to a subject-relation example in the ParaRel dataset (Elazar et al., 2021).

from this format. To ensure consistency, a pre-
processing step was applied on the raw ParaRel
dataset using Mistral-Large3. Specifically, the goal
was to transform triplets where the subject precedes
the relation (e.g., "The official language of France
is French.") into triplets where the subject is placed
directly before the relation (e.g., "France’s official
language is French."). We selected Mistral-Large
because it is open-weight, enabling reproducibil-
ity, and its capabilities are very close to those of
GPT-4.

3.1.2 Parametric Knowledge Query Format
To guide the studied LLMs towards generating
parametric knowledge objects that are coherent
with the relation and to help specifying the type of
object that is expected when there are multiple pos-
sible answers (for example in "Napoleon passed
away in" the LLM can generate the place of death
"Longwood" or the year of death "1821") we pro-
pose to use a template prompt that is illustrated
in Figure 2. The prompt specifies the requested
type of object with a brief description as well as
an example (one-shot learning) to help the LLM
understand the kind of object that is intended (il-
lustrated in blue in Figure 2). The description and
example were manually created for each relation.
The prompt also tries to guide the LLM towards
generating a concise output as these models tend
to give a long explanation that is irrelevant in our
study (e.g. Amazon is headquartered in the city of
Seattle where Starbucks is also headquartered...).

3.1.3 Subject/Object Bias
The subject can sometimes provide relevant infor-
mation about the object which can bias our def-
inition of parametric knowledge (e.g. Princeton

3https://mistral.ai/news/mistral-large/

University Press is located in Princeton. or Niger
shares the border with Nigeria). To avoid this, we
removed examples where the subject is similar to
the object, utilizing the Jaro-Winkler string dis-
tance (Jaro–Winkler) with a threshold empirically
fixed at 0.8. This method is advantageous for our
dataset, as it assigns closer distances to subjects
with the same prefix as the objects, which is com-
mon in cases like "Croatia’s official language is
Croatian" where "Croatia" and "Croatian" have
the same prefix.

3.2 Context Knowledge (CK)
In our framework, we perturb the LLM by pro-
viding a CK that contradicts the PK, which we
name counter-PK and denote PK. It is challeng-
ing to test what the model does not know (Yin
et al., 2023). One way to build these inputs is to
contradict what the model learned during training
by taking (s, r, o) ∈ PK and replacing o with an-
other object ō ∈ Or that shares the same relation r
to keep semantic consistency (e.g. "Elvis Presley
is a citizen of Japan", here we replaced "the USA"
with a country name: "Japan"). More specifically,
the set of tuples PK that represents the counter-PK
is defined as follows:

PK =
⋃

(s,r,o)∈PK

Counter-PKk(s, r, o) (2)

where:

Counter-PKk(s, r, o) = {(s, r, o, ō) | ō ∈ Or∧
ō ̸= o ∧ rankθ(ō | s, r) ≤ k} (3)

where k is the number of counter-knowledge
triplets per triplet (s, r, o) in PK; rankθ(o | s, r)
is the rank of ō among the Or ordered by the in-
creasing probability p(ô | q(s, r)) of the LLM to
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subject rel-lemma object query

Newport County A.F.C. is-headquarter Newport Newport County A.F.C. is headquartered in
Norway capital-city-of Oslo Norway’s capital city,
WWE is-headquarter Stamford WWE is headquartered in
Princeton University Press is-headquarter Princeton Princeton University Press is headquartered in
Internet censorship is-subclass censorship Internet censorship is a subclass of
McMurdo Station part-of-continent Antarctica McMurdo Station is a part of the continent of
Windows Update product-manufacture-by Microsoft Windows Update, a product manufactured by
Nintendo located-in Kyoto The headquarter of Nintendo is located in
Microsoft Windows SDK product-manufacture-by Microsoft Microsoft Windows SDK, a product manufactured by
Harare capital-of Zimbabwe Harare, the capital of

Table 1: A sample of the raw ParaRel dataset (Elazar et al., 2021)

query = "Virginia's official language is"

Virginia's official language is Croatian.

Virginia's official language is Serbian.

Virginia's official language is Swedish.

P("English" | query) = 0.7
P("French" | query) = 0.15

.

.

.
P("Croatian" | query) = 0.06
P("Serbian" | query) = 0.03
P("Swedish" | query) = 0.02

Figure 3: Example of 3 counter-knowledge objects that
were associated to a parametric knowledge element.
The probability distribution is ranked in an descendant
order and we selected the objects with the lowerst prob-
abilities.

generate an object ô ∈ Or given the prompt q(s, r).
We also make sure that the model has not learned
the (s, r, ō) association by considering the objects
ô with the k lowest ranks (rankθ ≤ k) – indicating
that the LLM is very unlikely to use its parametric
knowledge to generate ō.

Figure 3 illustrates the counter-knowledge ob-
jects that were generated by Phi-1.5 for a paramet-
ric knowledge example.

3.3 Models
We consider decoder-only Transformer models.
Between layer l and l − 1, the hidden state X(l−1)

is updated by:

X(l) = γ(X(l−1) +A(l))) +M (l) (4)

where A(l) and M (l) are the outputs of the MHSA
and MLP modules respectively, and γ is a non-
linearity.

The MLP module is a two-layer neural network
parameterized by matrices W

(l)
mlp ∈ Rd×dmlp and

W
(l)
proj ∈ Rdmlp×d:

M (l) = σ(X
(l)
mlpW

(l)
mlp)W

(l)
proj ∈ Rn×d (5)

where σ is a non-linearity function (e.g. GeLU)
and X

(l)
mlp is the input of the MLP. We refer the

reader to Vaswani et al. (2017) for more details on
the architecture.

In our probing set-up (Section 4), we use the
following activations: σ(X(l)

mlpW
(l)
mlp) the first layer

of the MLP (referred as MLP-L1 in this paper),
σ(X

(l)
mlpW

(l)
mlp)W

(l)
proj the output of the MLP (i.e.

second layer, referred as MLP in this paper), and
A(l) the output of the MHSA. We consider the first
and second MLP layers activations, based on Geva
et al. (2021) work, and also the MHSA activations
as the attentions play a crucial role in informa-
tion selection from the MLP memory (Geva et al.,
2023).

We evaluate our method on several LLMs with
different sizes: Phi-1.5 with 1.3B parameters (Li
et al., 2023), Pythia-1.4B with 1.4B parameters
(Biderman et al., 2023), Mistral-7B with 7B pa-
rameters (Jiang et al., 2023), and Llama3-8B with
8B parameters (AI@Meta, 2024). Table 2 gives
characteristics about the LLMs’ modules dimen-
sions.

Model MLP MLP-L1 MHSA
Phi-1.5 2048 8192 2048

Pythia-1.4B 2048 8192 2048
Llama3-8B 4096 14336 4096
Mistral-7B 4096 14336 4096

Table 2: Activation dimensions for Phi-1.5, Pythia-1.4B,
Llama3-8B and Mistral-7B for the different considered mod-
ules (MLP, MLP-L1 and MHSA)

Decoding strategy As the generated sequences
are short, we use a greedy decoding strategy and
limit the number of generated tokens to 10.

4 Probing Set-up

To build our probing dataset, we associate
each tuple (s, r, o, ō) ∈ PK with a prompt
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Relation Group ID Relations #Examples

geographic-geopolitic-language is-headquarter, located-in, headquarters-in, locate, share-border, is-twin-
city-of, located, border-with, is-located, work-in-area, which-is-located,
capital-city-of, part-of-continent, capital-of, headquarter, belong-to-
continent, based-in, is-citizen-of, that-originate-in, originate-in, is-in,
found-in, share-common-border, is-native-to, is-originally-from, pass-
away-in, born-in, hold-citizenship-of, have-citizenship-of, citizen-of,
start-in, formulate-in, legal-term, tie-diplomatic-relations, maintains-
diplomatic-relations, have-diplomatic-relations, native, mother-tongue,
original-language-is, the-official-language, communicate

2815

corporate-products-employment product-manufacture-by, develop-by, owned-by, product-develope-by,
product-release-by, create-by, product-of, produce-by, owner, is-product-
of, is-part-of, who-works-for, employed-by, who-employed-by, works-for,
work-in-field, profession-is, found-employment

1217

media premiere-on, to-debut-on, air-on-originally, debut-on 128

religion official-religion 249

hierarchy is-subclass 183

naming-reference is-call-after, is-name-after, is-name-for 6

occupy-position play-in-position, who-holds 77

play-instrument play-the 13

Table 3: All the relation groups with their corresponding relations and number of examples.

prompt(s, r, ō) that corresponds to a natural
language statement of (s, r, ō) followed by
q(s, r) (see Figure 1). Each prompt is asso-
ciated with a label among CK, PK, and ND,
where CK if Gθ(prompt(s, r, ō)) = ō, PK if
Gθ(prompt(s, r, ō)) = o, and with ND (Not De-
fined) otherwise. In this work, we discard tuples
associated with ND.

We specifically probe the activations ō of the
object, sq of the subject in the query, and rq the
relation in the query. As each of these elements
may have multiple tokens, we use their last tokens
as their representative (e.g. for "Washington" →
["Wash", "inghton"], we consider the activations
of the token "inghton"). The fact that this token
representation summarizes the entity is intuitively
true for decoder-only models and has been exper-
imentally validated in (Meng et al., 2023; Geva
et al., 2023).

Note that our first probe targets ō as this is
where the knowledge conflict starts (e.g. Bill
Gates is the founder of Apple(ō). Bill Gates(sq)
is the founder of(rq) _).

4.1 Control experiments

We also probe the activations of the first token to
measure how much of the prediction can be at-
tributed to the subject representation itself. Since
the knowledge perturbation starts with the first ob-
ject token, the first token activations should not

indicate the knowledge source. For instance, in
Paris is located in Italy the representation of the
first token (Paris) should not contain information
about the knowledge source as the perturbation
starts at Italy.

4.2 Relation Groups

To avoid syntactic and semantic biases related to
the type of relation when training a classifier, we
grouped the relations that are similar into relation
groups. The relation groups are illustrated in Ta-
ble 3.

4.3 Evaluation

We use each relation group as a test set and train
on the rest of the relation groups. We make sure
that the train and test sets do not share similar
subjects and objects to avoid biases related to the
syntax or the nature of the relation and subject. We
ensure the train set is balanced (equal number of
CK and PK), as current LLMs are more likely to
use context information (CK) than their parametric
knowledge Xie et al. (2024). This is illustrated by
Figure 4 (and Figure 7 in appendix for a breakdown
by relation), where we can see that the considered
LLMs mostly generate CK-based outputs.

We also ensure that the test set is balanced so
we can use the success rate (accuracy) as the main
metric –– with 50% being the performance of a ran-
dom classifier. We compute the success rate pi for
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each group of relations. As pi follows a binomial
distribution, we used a binomial proportion confi-
dence interval to compute the weighted standard
error (WSE – see formula 6) around the average
success rate (see formula 9) with a 95% confidence
interval to assess the significance of the resulting
classification scores for each layer and token. We
used the following formula in order to propagate
the errors across the relation groups:

WSE =

√√√√
G∑

i=1

(ni

N
× SEi

)2
(6)

Where SEi is the standard error for the ith rela-
tion group, defined as:

SEi =

√
pi × (1− pi)

ni
(7)

G = 8 is the number of relation groups; ni is the
number of test examples for the ith relation group;
N is the total number of test examples across all
the relation groups.

The error bars are finally computed using a z-
score of 1.96 for a confidence interval of 95%:

Error Bars = [P − 1.96× WSE, P + 1.96× WSE]
(8)

Where P is the average success rate across all
the relation groups:

P =

∑G
i=1 ni × pi

N
(9)

Figure 5 presents the success rates for classifiers
trained on activations from object, subject, and re-
lation tokens, with the first token used as a control
(see Section 4.1 for more details on the control
experiment.) Results are reported for Mistral-7B,
Phi-1.5, Llama3-8B, and Pythia-1.4B. Solid lines
represent the average success rates across relation
groups, while shaded areas denote the weighted
standard error with a 95% confidence interval.

5 Results and Discussion

In Figure 5, we can first observe that the features
linked to ō, the subject sq and the relation rq ex-
hibit a correlation with the used knowledge source
for MLP and MLP-L1 activations. The most pre-
dictive features are those of rq, i.e. the relation
token in the query. Starting from the mid-layers

Pythia-1.4B Llama3-8B Phi-1.5 Mistral-7B
Model
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Figure 4: Count of used knowledge sources by each
model (CK, PK, and ND). ND refers to outputs where
the knowledge source is not defined.

of the relation token, the success rate increases
significantly, reaching about 80%. This finding
is consistent with prior research, which indicates
that LLMs primarily store knowledge in the MLPs
(Meng et al., 2023; Geva et al., 2021). Moreover, it
supports Geva et al. (2023)’s insights on the infor-
mation extraction process, where the relation token
retrieves attributes from sq (a process referred to
as Attribute Extraction).

Additionally, it is noteworthy that the knowledge
source can be detected directly starting from the
perturbing object ō. This shows that detecting a
potentially harmful conflict knowledge statement
is possible early in the LLM inference process.
MHSA activations are less connected to the used
knowledge source than MLP and MLP-L1 activa-
tions.

The results of the control experiments conducted
on the first token of the input indicate that the
learned patterns in the object, subject, and relation
are not arbitrary. The success rates of most LLMs
for the first token appear to be random (about 0.5),
with the exception of Pythia-1.4B, where the first
token provides a slight indication of the knowl-
edge source, although no significant fluctuations
are observed.

Finally, compared to (Yu et al., 2023), we show
in this work that it is possible to predict the knowl-
edge source based on the sole activations of an
LLM, and, even more importantly, that we predict
this for multiple relations rather than being limited
to a single relation.

6 Subject frequency Vs. Knowledge
Source

To understand what makes an LLM select the CK
object over the PK object, we observed the subject
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Figure 5: Performance of the linear classifier in identifying knowledge sources across different layers and modules
(MLP, MLP-L1, MHSA). The plots show success rates for classifiers trained on activations from object, subject, and
relation tokens, with the first token used as a control (see Section 4.1 for more details on the control experiment.)
Results are reported for the Mistral-7B, Phi-1.5, Llama3-8B, and Pythia-1.4B models. Solid lines represent the
average success rates across relation groups, while shaded areas denote the weighted standard error with a 95%
confidence interval. See Section 4.3 for further details on the evaluation methodology.
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Input Prompt Knowledge Source PK Object Model

Harney County has its capital city in Taiwan. Harney County has its
capital city in Burns.

ND Oregon Llama3-8B

Lisa Appignanesi has citizenship of Finland. Lisa Appignanesi has
citizenship of France.

ND the UK Llama3-8B

Craiova is located in the continent of India. Craiova is located in the
continent of Romania.

ND Europe Pythia-1.4B

The Kingdom of Hungary had its capital as Connecticut. The Kingdom
of Hungary had its capital as Connecticut.

CK Budapest Mistral-7B

The Wii U system software is a product that was manufactured by
Square. The Wii U system software is a product that was manufactured
by Square.

CK Nintendo Llama3-8B

The Centers for Disease Control and Prevention is headquartered in
Lyon. The Centers for Disease Control and Prevention is headquartered
in Lyon.

CK Atlanta Llama3-8B

Harare is the capital city of Florida. Harare is the capital city of
Zimbabwe.

PK Zimbabwe Pythia-1.4B

Goodreads is owned by Microsoft. Goodreads is owned by Amazon. PK Amazon Phi-1.5

OneDrive is owned by Toyota. OneDrive is owned by Microsoft. PK Microsoft Mistral-7B

Table 4: Examples of final probing prompts, including their knowledge source, the LLM, and the corresponding parametric
knowledge (PK) object. Bold text indicates the generated object, while underlined text represents the counter-knowledge object.
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Figure 6: Subject frequency in the training dataset (The
Pile) for CK, PK, and ND outputs. We use The Pile as
an approximation of what the LLMs might have learned
except for Pythia-1.4B for which it is the actual training
data.

frequency in The Pile corpus (Gao et al., 2020) for
CK, PK, and ND outputs as illustrated in Figure 6
– We use The Pile as an approximation of what the
LLMs might have learned except for Pythia-1.4B
for which it is the training data. We used the infini-
gram API made available by Liu et al. (2024) in
order to get the frequencies. A Mann-Whitney U
test reveals that the subject frequency distribution
for PK outputs is significantly higher than for CK
and ND outputs, except in the case of Pythia-1.4B,
where PK is only higher than CK but not ND. This
suggests that as a model gains more knowledge
about a subject, it becomes more likely to select
PK over CK objects.

7 Probing Dataset Examples

Table 4 illustrates some examples of the final prob-
ing prompts with their knowledge source, the LLM,
and the corresponding PK object.

8 Conclusion

In this study, we introduced a novel probing frame-
work to investigate if we can detect when LLMs
switch from PK to CK. Our findings reveal that spe-
cific model activations are significantly correlated
with the used knowledge source. This opens the
door for future work investigating the mechanism
at play when such a switch occurs, and finally to
building models that can better control this behav-
ior.

9 Limitations

Our current framework is designed to probe LLMs
by introducing contradictions to their learned
knowledge, effectively identifying the source of
knowledge. However, this controlled experimental
setting does not account for many other situations,
e.g. where the knowledge remains unperturbed.
Future work should extend the framework to han-
dle cases where both the parametric knowledge
(PK) and the contextual knowledge (CK) are con-
sistent or not related, providing a more comprehen-
sive understanding of LLM behavior. Additionally,
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our study primarily measures the correlation be-
tween specific activations and the use of PK or CK,
which, while providing valuable insights, does not
establish an explanation of the underlying process.
Further research is needed to uncover the under-
lying mechanisms that govern knowledge source
selection in LLMs, possibly through experimental
designs that manipulate specific model parame-
ters or activations to observe resulting behavioral
changes.

It might also be interesting to employ a variety
of prompt structures to mitigate biases associated
with the conventional subject-relation-object for-
mat. Exploring alternative combinations, such as
relation-subject-object (e.g., The official language
of Italy is Italian), could yield valuable insights.

10 Ethical Considerations

Our probing framework of LLMs for their
knowledge-sourcing behaviors only uses publicly
available, non-personal datasets to ensure privacy
and security. We recognize the potential for mis-
use of our findings. The insights derived from our
research could be exploited to generate misleading
information or make the models more susceptible
to adversarial attacks. Therefore, we emphasize
the importance of the ethical application of our
work. Researchers and practitioners must imple-
ment robust safeguards to prevent the misuse of
these technologies and ensure they are used to ben-
efit society. Developing and deploying robust secu-
rity measures is essential to protect against these
vulnerabilities and maintain the integrity of infor-
mation generated by LLMs. While we recognize
inherent biases in LLMs, our commitment to trans-
parency is demonstrated through the public release
of our framework, facilitating reproducibility and
further research.
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A Data Characteristics

The ParaRel (Elazar et al., 2021) dataset includes
5313 unique subject-relation pairs, leading to the
formation of the same number of PK triplets. After
removing the examples where the subject is sim-
ilar to the parametric object (see Section 3.1.3)
we are left with approximately 3600 examples
depending on the LLMs’ parametric knowledge.
We take k = 3 for Counter-PKk which gives ap-
proximately counter-PK 10k triplets. After under-
sampling, we are left with approximately 3000
balanced prompts depending on the LLM.

B Hardware and Software

Text generation tasks were performed using A100
GPUs, each equipped with 80 GB of memory. The
process of generating the outputs spanned around
100 GPU hours. Our framework was constructed
utilizing PyTorch (Paszke et al., 2019) and the Hug-
gingFace Transformers library (Wolf et al., 2020).

C License

Model weights. Llama3-8B weights are released
under the license available at https://llama.
meta.com/llama3/license/. Mistral-7B and
Pythia-1.4B weights are released under an Apache
2.0 license. Mistral-Large weights are released
under the licence available at https://mistral.
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released under a MIT license.

Data. The ParaRel dataset we used is released
under a MIT License.
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Figure 7: All the considered relations with the number of outputs that used CK (orange), PK (green), and ND (blue)
sources (the counts include all the considered LLMs).
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