
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pages 465–472
August 11-16, 2024 ©2024 Association for Computational Linguistics

Can LLMs substitute SQL? Comparing Resource Utilization of Querying
LLMs versus Traditional Relational Databases

Xiang Zhang1, Khatoon Khedri2, and Reza Rawassizadeh1

1Metropolitan College, Department of Computer Science, Boston University
2Independent Scientist

Email ids: 1xz0224@bu.edu, 2khatoon.khedri1985@gmail.com, 1,3rezar@bu.edu

Abstract
Large Language Models (LLMs) can automate
or substitute different types of tasks in
the software engineering process. This
study evaluates the resource utilization and
accuracy of LLM in interpreting and executing
natural language queries against traditional
SQL within relational database management
systems. We empirically examine the resource
utilization and accuracy of nine LLMs varying
from 7 to 34 Billion parameters, including
Llama2 7B, Llama2 13B, Mistral, Mixtral,
Optimus-7B, SUS-chat-34B, platypus-yi-34b,
NeuralHermes-2.5-Mistral-7B and Starling-
LM-7B-alpha, using a small transaction dataset.
Our findings indicate that using LLMs for
database queries incurs significant energy
overhead (even small and quantized models),
making it an environmentally unfriendly
approach. Therefore, we advise against
replacing relational databases with LLMs due
to their substantial resource utilization.

1 Introduction

The advent of Large Language Models (LLMs) has
revolutionized several scientific and engineering
disciplines, including software development tasks.
Many software development related tasks could be
done or automatized by LLMs. The satisfactory
performance of LLM in search and query led to
the introduction of specific LLM databases such
as Vector database (Zhang et al., 2023) auxiliary
knowledge information retrieval methods, a.k.a.,
Retrieval Augmented Generation (Shao et al.,
2023).

Relational databases are one of the oldest
and most common components of software
applications. These databases manage structured
data using interconnected tables in tabular form.
Structured Query Language (SQL) is the query
language used to interact with relational databases.

There are two widely known and significant
limitations of using LLMs: (i) factual mistakes

and hallucinations caused by neural networks
(Tian et al., 2023), and (ii) token size limitations
(Hoffmann et al., 2022), which do not allow them to
load a large dataset into their prompt, and thus have
a limited data size. There are ongoing efforts to
prove that the factuality and coverage of LLMs are
quickly improving with new training architectures
and the increasing amount of text used as input
(Elazar et al., 2021; Tam et al., 2022). Besides,
there are continuous efforts to increase or remove
the token size limitation, such as using Structured
state space models (S4), e.g., Mamba (Gu and Dao,
2023) instead of Transformers.

Our work does not quantify or tackle any
of these two known challenges. It focuses on
benchmarking resource utilization using LLM
instead of traditional SQL. In this research, we
intend to investigate whether LLMs could replace
traditional database management systems to search
and query tabular data. Assuming even though the
capability to generate SQL queries exists in LLMs,
we should measure resource consumption and how
accurately it identifies the correct answers from
tabular datasets.

An essential consideration in our exploration
is the environmental impact of LLMs. There
are ongoing discussions 1234 on the huge
electricity and water cooling supply, underscoring
sustainability-related challenges brought about by
the new existence and overall being of the LLMs.
Our results testify that even using a small-size
trained LLM still consumes a high amount of

1https://www.theatlantic.com/technology/archi
ve/2024/03/ai-water-climate-microsoft/677602

2https://www.oregonlive.com/silicon-forest/20
22/12/googles-water-use-is-soaring-in-the-dalle
s-records-show-with-two-more-data-centers-to-c
ome.html

3https://www.bloomberg.com/news/articles/2023
-07-26/thames-water-considers-restricting-flow-t
o-london-data-centers

4https://www.washingtonpost.com/business/2024
/03/07/ai-data-centers-power

465

https://www.theatlantic.com/technology/archive/2024/03/ai-water-climate-microsoft/677602
https://www.theatlantic.com/technology/archive/2024/03/ai-water-climate-microsoft/677602
https://www.oregonlive.com/silicon-forest/2022/12/googles-water-use-is-soaring-in-the-dalles-records-show-with-two-more-data-centers-to-come.html
https://www.oregonlive.com/silicon-forest/2022/12/googles-water-use-is-soaring-in-the-dalles-records-show-with-two-more-data-centers-to-come.html
https://www.oregonlive.com/silicon-forest/2022/12/googles-water-use-is-soaring-in-the-dalles-records-show-with-two-more-data-centers-to-come.html
https://www.oregonlive.com/silicon-forest/2022/12/googles-water-use-is-soaring-in-the-dalles-records-show-with-two-more-data-centers-to-come.html
https://www.bloomberg.com/news/articles/2023-07-26/thames-water-considers-restricting-flow-to-london-data-centers
https://www.bloomberg.com/news/articles/2023-07-26/thames-water-considers-restricting-flow-to-london-data-centers
https://www.bloomberg.com/news/articles/2023-07-26/thames-water-considers-restricting-flow-to-london-data-centers
https://www.washingtonpost.com/business/2024/03/07/ai-data-centers-power
https://www.washingtonpost.com/business/2024/03/07/ai-data-centers-power


energy in comparison to a native SQL engine
running on a relational database. Besides, we
have observed the inferior accuracy of LLMs in
comparison to SQL engines. However, larger
models might resolve the accuracy problem in the
near future, but the energy issue remains open.

2 Literature review

There are recent reports on the water and electricity
consumption of Generative Artificial Intelligence
(AI) models, especially LLMs. However, their
approach is mostly holistic and does not provide
a comparative analysis of doing a particular task
with LLM and without LLM (Dodge et al., 2022;
de Vries, 2023; Luccioni et al., 2023; Li et al.,
2023). On the other hand, interest in adopting
LLMs for general tasks like database querying
has grown in the natural language processing
community; there are several promising works in
this direction, which we have categorized into two
main groups. One group of work passes the query
in natural language and data into an LLM and, as a
result, gets the SQL query back. These works are
known as Text-to-SQL (Xu et al., 2019; Tang et al.,
2021; Wang et al., 2019; Baig et al., 2022; Ferreira
et al., 2020). The latter group (Rawassizadeh and
Rong, 2023; Deutch et al., 2017) provides the data
and the query in natural language as input into an
LLM. Then, they get the result in natural language
as well, we call them NLQuery-to-NLAnswer. In
this section, we briefly describe each group of
work.

2.1 Text-to-SQL approaches

Text-to-SQL approaches focus on transforming
natural language queries into structured SQL
commands, enabling users to interact with
databases without needing SQL knowledge. The
introduction of Google’s SQL-PaLM model (Sun
et al., 2023) marks a pivotal development in natural
language to SQL translation. SQL-PaLM model
efficiently refines LLMs to understand the natural
language query and convert it into SQL commands.

Baig et al. (2022) reviewed existing frameworks
for processing natural language to SQL queries.
The use of the attention mechanisms in neural
networks for natural language interfaces to
databases (NLIDB) was evaluated by Ferreira et al.
(2020). Wang et al. (2019) proposed the RAT-
SQL framework, based on the relation-aware self-
attention mechanism, to address schema encoding,

schema linking, and feature representation within
a Text-to-SQL encoder. RAT-SQL modeled the
database schema as a directed graph. NADAQ
(Xu et al., 2019) merged specialized encoder-
decoder architecture with traditional database
parsing techniques for querying databases using
natural language.

2.2 NLQuery-to-NLAnswer approaches
Recently, Rawassizadeh and Rong (2023) proposed
ODSearch, which retrieves data from wearable
and mobile devices through natural language
processing. It employs data compression and
Bloom filters to enable real-time responses to
natural language queries.

Deutch et al. (2017) presented a system
that extends the generation of natural language
interfaces to databases by generation of the
natural language answer. It operates based on
the provenance of the query result tuples. The
provenance information is converted into natural
language by structuring the originating query such
that the user is delivered an informative response.
Dries et al. (2009) also suggested a data model and
query language designed specifically for network
analysis in their research on a Query Language for
Analysis Networks.

These works foster an interactive and less
scripted interaction of a database system with the
users. With those considerations, both Text-to-SQL
and NLQuery-to-NLAnswer approaches highlight
the importance of studying the resource usage
of these systems. To our knowledge, except for
ODSearch (Rawassizadeh and Rong, 2023), which
does not use an LLM, none of the other works
investigate the resource utilization of queries.

2.3 Energy consumption of LLM
Recently, the environmental impact of artificial
intelligence has garnered significant attention from
the research community, especially on water and
electricity usage.

Large Language Models such as GPT-3
require substantial computational power for
training, leading to significant Execution Energy
Consumption and associated carbon emissions5.
Dodge et al. (2022) present a method for
calculating the carbon footprint of AI operations in
the cloud, focusing on the energy consumption and
CO2 emissions of machine learning models. The

5https://projectmanagers.net/top-10-disadvant
ages-of-large-language-models-llm

466

https://projectmanagers.net/top-10-disadvantages-of-large-language-models-llm
https://projectmanagers.net/top-10-disadvantages-of-large-language-models-llm


research highlights the importance of geographic
location in selecting cloud instances to minimize
carbon intensity. Luccioni et al. (2023) conducted
a systematic comparison of the energy and carbon
costs associated with deploying various machine
learning models. It reveals that multi-purpose,
generative AI models, such as those used in LLM,
are significantly more resource-intensive than task-
specific models, even when accounting for model
size. Their study calls for more intentional
consideration of energy and emissions costs in
the deployment of AI tools. de Vries (2023)
explores AI’s electricity use, considering both
pessimistic and optimistic scenarios for global data
center electricity consumption, and emphasizes
the need for cautious adoption of AI technologies
and understanding their energy implications. In
addition to studies focused on energy utilization,
Li et al. (2023) examine the often-overlooked
water footprint of AI corporations, particularly
the substantial freshwater consumption by LLM
models like GPT-3 during training in data centers.
They estimate that global AI demand could lead to
significant water withdrawal by 2027, emphasizing
the urgency of addressing AI’s water use.

The most related works to ours are proposed by
Tang et al. (2021). They use machine learning
to estimate SQL queries’ CPU and memory
demands, broadening evaluation beyond accuracy
to include resource consumption, which is crucial
for assessing LLMs’ efficiency in database queries.

3 Methodology

In this work, we evaluate nine open-source
LLMs that operate as NLQuery-to-NLAnswer. In
particular, we measure their accuracy and resource
utilization compared to SQL queries. Our study
assesses how effectively LLMs are generating not
only SQL but also direct answers from natural
language queries. As an SQL engine, we choose
to use (SQLite) 6, which is a common SQL engine
used in devices that have resource constraints, such
as Android phones. There are promising tools
available to measure the resource utilization of
LLMs (Samsi et al., 2023; MLE). However, we
have used our scripts to have enough flexibility to
measure different resources7.

6https://sqlite.org/index.html
7https://github.com/XiangZhang-zx/LLM-StockQu

ery-Dataset/blob/main/LLM_Generation_Comparison
.ipynb

3.1 Test Dataset

The dataset is a synthetic representation of stock
transactions in a real-world scenario built by
SQLite8. SQLite’s efficiency and minimal resource
requirements make it suitable for scenarios where
computational resources are limited, such as on
battery-powered devices (Rawassizadeh and Rong,
2023). The synthetic dataset we built comprises
100 records across five stock symbols, such as
AAPL, GOOGL, AMZN, MSFT, and TSLA, with
the transaction type being BUY or SELL. Date of
transactions, type, stock symbol, amount, and cost
data attributes used in our queries. The transaction
date was extracted along with its time from a
series that spanned over a range of dates for seven
consecutive days. Due to the small size of the
test dataset, we do not encounter the token size
limitation issue of LLM.

Amounts and costs were randomized using
random library to create a more realistic and
diverse dataset 9. Instead of structuring our dataset
with a schema, we directly feed 100 records
into our framework. This decision reflected the
more dynamic, real-world conditions under which
non-expert users might interact with databases.
Based on the foundational concepts presented in
Fundamentals of Database Systems (Elmasri and
Navathe, 2016), the following are ten SQL queries
designed to assess querying capabilities. These
queries utilize COUNT, SUM, MAX, and AVG, apply
condition filtering using WHERE, and implement
grouping with GROUP BY.

A. Count transactions per stock symbol.

B. Total quantity sold per symbol.

C. Total revenue from sales.

D. Maximum sale price per symbol.

E. Average purchase price per symbol.

F. Several unique stock symbols.

G. Quantities bought and sold per symbol.

H. Total investment in buy transactions.

I. The transaction quantity is on a specific date
(2023-9-23).

8https://github.com/XiangZhang-zx/LLM-StockQu
ery-Dataset/blob/main/dataset.csv

9https://docs.python.org/3/library/random.html

467

https://sqlite.org/index.html
https://github.com/XiangZhang-zx/LLM-StockQuery-Dataset/blob/main/LLM_Generation_Comparison.ipynb
https://github.com/XiangZhang-zx/LLM-StockQuery-Dataset/blob/main/LLM_Generation_Comparison.ipynb
https://github.com/XiangZhang-zx/LLM-StockQuery-Dataset/blob/main/LLM_Generation_Comparison.ipynb
https://github.com/XiangZhang-zx/LLM-StockQuery-Dataset/blob/main/dataset.csv
https://github.com/XiangZhang-zx/LLM-StockQuery-Dataset/blob/main/dataset.csv
https://docs.python.org/3/library/random.html


J. The highest transaction price for a stock on a
specific date (google, 2023-9-24).

3.2 Example Prompt Template and Generated
SQL

Listing1 is a portion of the prompt template used,
along with an example query and the corresponding
SQL script. The full dataset contains 100 records.

Listing 1: Prompt Template and Generated SQL
<s>[INST]
Date Transaction Symbol Quantity Price
2023 -09 -23 BUY AMZN 99 2089
2023 -09 -24 BUY MSFT 84 67
2023 -09 -25 SELL AAPL 27 684
...
(100 records in total)
...
Give me the SQL script to count the number of

transactions for each stock symbol.
[/INST] </s>

Generated SQL Script:
SELECT Symbol , COUNT (*) as Transaction_Count FROM

stocks GROUP BY Symbol;

3.3 Experimental LLMs

As shown in Table 1, in our evaluation, we
specifically chose a selection of large language
models (LLMs), including Llama2 (7B and 13B
versions), Mistral, and Mixtral, Optimus-7B,
SUS-chat-34B, platypus-yi-34b, NeuralHermes-
2.5-Mistral-7B, and Starling-LM-7B-alpha. These
models were chosen based on ranking at the top of
the Huggingface open LLM leaderboard (back in
late 2023), and also our infrastructure can execute
them. The traditional transformer stack was already
designed to adapt them in terms of performance
and efficiency. For Llama2 (7B and 13B), SUS-
chat-34B, and platypus-yi-34b, we adhere to the
traditional transformer stack. For Mistral, Mixtral,
Optimus-7B, NeuralHermes-2.5-Mistral-7B, and
Starling-LM-7B-alpha, we adhere to the pipeline
produced by Hugging Face, tuned to a quantized
4-bit configuration.

3.4 Experiment Setup

Our hardware infrastructure includes two NVidia
RTX 4090 GPU 24GB, with 256 GB RAM and
3.30 GHz Intel Core i9 CPU. The operating system
is Ubuntu 20.04 LTS, and we used CUDA Version
12.0 for GPU computations.

To evaluate the performance of the LLM,
we implemented a custom Python function that
automates the process of measuring the time, CPU,
and memory usage of the model. The function
records these metrics before and after the model

Table 1: Comparison of Large Language Models by
Parameters and Configuration

Model Parameters Configuration
Llama2 7B 7 Billion Traditional

Transformer
Llama2 13B 13 Billion Traditional

Transformer
Mistral 7 Billion Hugging Face

Pipeline, 4-bit
Quantized

Mixtral 7 Billion Hugging Face
Pipeline, 4-bit
Quantized

Optimus-7B 7 Billion Hugging Face
Pipeline, 4-bit
Quantized

SUS-chat-
34B

34 Billion Traditional
Transformer

platypus-yi-
34b

34 Billion Traditional
Transformer

NeuralHermes-
2.5-Mistral-
7B

7 Billion Hugging Face
Pipeline, 4-bit
Quantized

Starling-LM-
7B-alpha

7 Billion Hugging Face
Pipeline, 4-bit
Quantized

generates responses on natural language input
using the tracemalloc and time libraries1011. Then,
our function calculates the differences between the
start and end values of the metrics and reports
the execution time, CPU utilization, and memory
consumption. To quantify energy consumption
per process, the Turbostat utility was employed
to monitor the pkgwatt (package power)12. This
package, combined with the execution time, was
used to calculate the model’s energy consumption
in Joule (J).

In our experiments we use two pipelines, the
Transformers Pipeline allows explicitly setting
text generation performance and relevance with
torch library, combined with options control
on temperature, max_new_tokens, as well as
repetition_penalty values13. The Hugging Face
Pipeline contains quantized models to reduce

10https://docs.python.org/3/library/tracemallo
c.html

11https://docs.python.org/3/library/time.html
12https://www.linux.org/docs/man8/turbostat.ht

ml
13https://pytorch.org/docs/stable/index.html

468

https://docs.python.org/3/library/tracemalloc.html
https://docs.python.org/3/library/tracemalloc.html
 https://docs.python.org/3/library/time.html
https://www.linux.org/docs/man8/turbostat.html
https://www.linux.org/docs/man8/turbostat.html
https://pytorch.org/docs/stable/index.html


resource consumption using different options
impacting output response sharpness and speed,
such as max_new_tokens, top_k, and eos_token_id
values.

4 Experimental Evaluation

We examine the resource usage of SQL engine
compared to LLMS to query tabular data,
the proficiency of LLMs in generating SQL-
equivalent queries from natural language, and their
effectiveness in obtaining semantically accurate
responses from structured datasets.

To establish a baseline for the evaluation of
LLMs, we measure both the execution time and
memory consumption for queries (A-J) associated
with direct SQL query execution. Based on our
measurement of the direct SQL query execution on
the SQL engine, the average execution time is 0.41
ms, and the average memory usage is 1641 B. As
we have described earlier, the SQL engine we used
is SQLite.

The average execution time and memory
utilization for direct query results and query
generation of LLM models are presented in Tables
2 and 4. Moreover, we display the accuracy of
direct query results by LLM models in Table 3 and
the overall accuracy of them in Table 5.

In the results shown in Tables 3 and Tables 5,
symbols used are ✓ for correct generation and ✗

for incorrect or incomplete generation.

4.1 Natural Language Query Performance
Analysis

We present the results of our comparison by
focusing on different aspects of the models,
including execution time and accuracy. As shown
in Table 2, the average execution time varied
significantly across the models, from as quick as 23
seconds for Mistral to 260 seconds for SUS-chat-
34B. It indicates that the size and architecture of the
models have a significant impact on the execution
of the tasks. SUS-chat-34B also showed the
highest memory usage in the transformer pipeline,
highlighting the scalability concerns of using
large and complex models for natural language
processing tasks. Notably, in the Hugging Face
pipeline, models like Optimus-7B demonstrated
efficiency with minimal memory increase, proving
that using quantization techniques can reduce
the resource consumption of the models. Our
results suggest that larger LLMs can achieve higher

accuracy for natural language processing tasks but
also pose challenges in terms of execution time and
resource utilization.

According to Table 2, Llama2 7B was the
most resource-efficient model across the tasks,
with reasonable execution times and resource
usage. SUS-chat-34B, on the other hand, had high
resource consumption, raising questions about its
practicality in larger datasets. Optimus-7B, which
employs quantization techniques to reduce model
size and complexity, comes closest to achieving the
execution time and resource efficiency of SQLite.

In Table 3, platypus-yi-34b accurately
interpreted straightforward queries, such as
identifying the total number of unique stock
symbols. However, models often predict or
complete questions rather than providing the
requested information, highlighting a propensity
for these models to engage in dialogue rather than
execute database queries accurately. Regarding
inconsistencies, Llama2 7B and Llama2 13B
sometimes generated irrelevant responses,
indicating a need for improved training focused on
database querying capabilities.

Table 2: Average execution time and memory utilization
of direct query results of LLM models

Model Execution
Time (s)

Memory
Usage (kB)

Llama2 7B 60 64
Llama2 13B 106 70
SUS-Chat-
34B

260 63

platypus-yi-
34b

235 70

Mistral 23 301
NeuralHermes-
2.5-Mistral-
7B

78 464

Optimus-7B 33 247
Starling-LM-
7B-alpha

41 263

Mixtral 116 571

4.2 SQL Query Generation Results

We evaluated listed LLMs for generating SQL
queries from natural language inputs, and Table 4
displays the average execution time and memory
utilization of SQL query generation using our

469



Table 3: Accuracy of direct Query Results of LLM
Models (acc. refers to accuracy)

Model A B C D E F G H I J acc.
Llama2
7B

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%

Llama2
13B

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%

SUS-
Chat
34B

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%

platypus-
yi-34b

✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 10%

Mistral ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%
Neural
Hermes
2.5-
Mistral
7B

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%

Optimus
7B

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%

Starling
LM 7B-
alpha

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%

Mixtral ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%

experimental LLMs.
Llama2 7B, Llama2 13B, and Mistral 7B showed

mixed results in translating natural language to
SQL, ranging from partially accurate to essentially
reiterating the initial query. Another important
observation from the experiments was that most
of the models, including Mistral 7B, SUS-Chat-
34B, platypus-yi-34b, Optimus-7B, and Starling-
LM-7B-alpha, failed to include the condition of
transaction is equal to SELL or BUY in their
SQL queries. Table 4 and table 5 show that
in the transformer pipeline, while SUS-chat-34B
and platypus-yi-34b demonstrated high success in
correct script generation, but their high resource
consumption is a challenge. Conversely, within the
Hugging Face pipeline, Optimus-7B and Starling-
LM-7B-alpha achieved accurate SQL generation
with lower resources.

Table 5 shows meaningful variability in model
performance, with some models excelling in
accuracy while others struggled with resource
utilization and generating precise SQL queries.

4.3 Energy Utilization

Figures 1 and 2 present the average energy
utilization for direct SQL query execution along
LLM models. We can observe that SQL
engine consumes the least energy, quantified
at 8.22×10−6J. In the assessment of LLM
models for both direct query execution and SQL
query generation, Platypus-yi-34b was identified

as the most energy-intensive, recording energy
utilization of 2181.8J and 734.2J, respectively. In
contrast, Optimus-7B exhibited the lowest energy
consumption for direct query execution at 0.163J,
while Mistral registered the lowest for SQL query
generation, consuming 0.234J. Therefore, we can
conclude that the larger the model, the more
utilized energy is used to run a query.

Figure 1: The average energy consumption (J) for direct
query results of LLM models

Figure 2: The average energy consumption (J) for SQL
query generation of LLM models

5 Discussion

Direct query results from LLM models show
disappointingly low accuracy. These findings
highlight a significant challenge: LLMs struggle
to query databases effectively without additional
engineering. Specifically in generating SQL
queries, Models often misinterpreted complex
requests, incorrectly applying SQL clauses.

Our findings also point out that energy efficiency
varies among LLM models used for SQL query
generation, with larger models consuming more
energy. Quantized models, such as Optimus-
7B, performed well in the execution time and

470



Table 4: Average execution time and memory utilization
of SQL query generation using LLM models

Model Execution
Time (s)

Memory
Usage (kB)

Llama2 7B 106 70
Llama2 13B 61 55
Mistral 23 232
SUS-Chat-
34B

200 57

platypus-yi-
34b

597 93

NeuralHermes-
2.5-Mistral-
7B

38 266

Optimus-7B 16 206
Starling-LM-
7B-alpha

17 204

Mixtral 92 488

Table 5: Detailed Accuracy of Query Generation (acc.
refers to accuracy)

Model A B C D E F G H I J acc.
Llama2
7B

✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 10%

Llama2
13B

✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ 20%

SUS-
Chat 34B

✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ 70%

platypus-
yi-34b

✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ 50%

Mistral ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ 40%
Neural
Hermes
2.5-
Mistral
7B

✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ 30%

Optimus
7B

✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ 50%

Starling
LM
7B-alpha

✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ 60%

Mixtral ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ 60%

resource use, but limitations in scalability and
token size question their efficacy on larger datasets.
Nonetheless, LLMs could enhance database
management system (DBMS) querying alongside
traditional methods, improving accessibility for
non-experts. Further research should aim at hybrid
methodologies that combine LLM capabilities with
traditional SQL parsing technologies.

6 Conclusion and Future Work

LLMs offer a radically new perspective on database
querying and the nature of computational systems.
In this work, we measure the accuracy and resource
utilization of nine small open-source LLMs in
querying tabular data. Our results present the
significant resource expense of employing LLMs,
even small models that are highly compressed with
quantization. Besides, the accuracy of using LLM
(at least not the very large and commercialized
ones) for querying tabular data is low. As the
model gets larger, the accuracy improves, but we
did not experiment with larger models. Potential
further research can investigate fine-tuning existing
models with SQL schema, toward reducing the
misinterpretations made by the LLM models in
querying databases.

References
Ml energy. https://ml.energy. [Last accessed on

April 11, 2024].

Mirza Shahzad Baig, Ali Imran, Abdul Usman Yasin,
Arslan Haider Butt, and Muhammad Imran Khan.
2022. Natural language to sql queries: A review.
International Journal of Innovations in Science
Technology, 4:147–162.

Alex de Vries. 2023. The growing energy footprint of
artificial intelligence. Joule, 7(10):2191–2194.

Daniel Deutch, Nerya Frost, and Amir Gilad. 2017.
Provenance for natural language queries. Proc.
VLDB Endow., 10:577–588.

Jesse Dodge, Tess Prewitt, Remi Tachet des Combes,
Emily Odmark, Roy Schwartz, Emma Strubell,
et al. 2022. Measuring the carbon intensity of ai
in cloud instances. In Proceedings of the 2022
ACM Conference on Fairness, Accountability, and
Transparency, pages 1877–1894.

Anton Dries, Siegfried Nijssen, and Luc De Raedt.
2009. A query language for analyzing networks.
In Proceedings of the 18th ACM conference on
Information and Knowledge Management, pages 485–
494. ACM.

Yoav Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha
Ravichander, Eduard Hovy, Hinrich Schütze,
and Yoav Goldberg. 2021. Measuring and
improving consistency in pre-trained language
models. Transactions of the Association for
Computational Linguistics, 9:1012–1031.

Ramez Elmasri and Shamkant B. Navathe. 2016.
Fundamentals of Database Systems, 7 edition.
Addison-Wesley.

471

https://ml.energy
https://doi.org/10.14778/3055540.3055550


Sara Ferreira, Gonçalo Leitão, Igor Silva, Anabela
Martins, and Piero Ferrari. 2020. Evaluating human-
machine translation with attention mechanisms for
industry 4.0 environment sql-based systems. In
2020 IEEE International Workshop on Metrology
for Industry 4.0 & IoT, pages 229–234. IEEE.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
Sequence Modeling with Selective State Spaces.
arXiv preprint arXiv:2312.00752.

Josh Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Tingfeng Cai, Eliza Rutherford,
et al. 2022. Training compute-optimal large language
models. ArXiv, abs/2203.15556.

Peifeng Li, Jie Yang, Md Amirul Islam, and Suzhen
Ren. 2023. Making ai less" thirsty": Uncovering and
addressing the secret water footprint of ai models.
arXiv preprint arXiv:2304.03271.

Alexandra Sasha Luccioni, Yacine Jernite, and Emma
Strubell. 2023. Power hungry processing: Watts
driving the cost of ai deployment? arXiv preprint
arXiv:2311.16863.

Reza Rawassizadeh and Yu Rong. 2023. Odsearch: Fast
and resource efficient on-device natural language
search for fitness trackers’ data. Proceedings of
the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 6(4):1–25.

Siddharth Samsi, Dongfang Zhao, John McDonald,
Bo Li, Antonio Michaleas, Michael Jones, et al. 2023.
From words to watts: Benchmarking the energy costs
of large language model inference. In 2023 IEEE
High Performance Extreme Computing Conference
(HPEC), pages 1–9. IEEE.

Zhezheng Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023.
Enhancing retrieval-augmented large language
models with iterative retrieval-generation synergy.
arXiv preprint arXiv:2305.15294.

Ruiqi Sun, Sercan O. Arik, Hootan Nakhost, Hang Dai,
Rishabh Sinha, Peng Yin, and Tomas Pfister. 2023.
Sql-palm: Improved large language model adaptation
for text-to-sql. arXiv preprint arXiv:2306.00739.

Daniel Tam, Sachin Mascarenhas, Sheng Zhang,
Stephen Kwan, Mohit Bansal, and Colin Raffel.
2022. Evaluating the factual consistency of large
language models through summarization. arXiv
preprint arXiv:2211.08412.

Chuan Tang, Bo Wang, Zhenxiao Luo, Huaxin Wu,
Sanket Dasan, Min Fu, and Pranav Mishra. 2021.
Forecasting sql query cost at twitter. In 2021 IEEE
International Conference on Cloud Engineering
(IC2E), pages 154–160. IEEE.

Kevin Tian, Eric Mitchell, Huang Yao, Christopher
Manning, and Chelsea Finn. 2023. Fine-
tuning language models for factuality. ArXiv,
abs/2311.08401.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2019. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. arXiv preprint arXiv:1911.04942.

Bin Xu, Ruijiang Cai, Zijian Zhang, Xiaochun Yang,
Zhifeng Hao, Zhenhui Li, and Zhiqiang Liang. 2019.
Nadaq: Natural language database querying based on
deep learning. IEEE Access, 7:35012–35017.

Yanzhao Zhang, Zhiwei Yu, Wei Jiang, Yelong Shen,
and Jingjing Li. 2023. Long-term memory for large
language models through topic-based vector database.
In 2023 International Conference on Asian Language
Processing (IALP), pages 258–264. IEEE.

472

https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2311.08401
https://doi.org/10.48550/arXiv.2311.08401

