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Abstract

Event commonsense reasoning requires the
ability to reason about the relationship be-
tween events, as well as infer implicit context
underlying that relationship. However, data
scarcity makes it challenging for language mod-
els to learn to generate commonsense infer-
ences for contexts and questions involving in-
teractions between complex events. To address
this demand, we present Com? (COMplex
COMmonsense), a new dataset created by sam-
pling multi-hop logical queries (e.g., the joint
effect or cause of both event A and B, or the
effect of the effect of event C) from an existing
commonsense knowledge graph (CSKG), and
verbalizing them using handcrafted rules and
large language models into multiple-choice and
text generation questions.

Our experiments show that language models
trained on Com? exhibit significant improve-
ments in complex reasoning ability, resulting
in enhanced zero-shot performance in both in-
domain and out-of-domain tasks for question
answering and generative commonsense rea-
soning, without expensive human annotations.!

1 Introduction

Large language models struggle to effectively per-
form reasoning when presented with complex tasks,
such as reasoning about multiple events and their
relationships. This shortcoming is due to both the
inherent difficulty of reasoning over multiple pieces
of information, as well as a lack of adequate-scale,
supervised training datasets for learning (Zhao
et al., 2023). Unfortunately, complex and multi-
hop commonsense reasoning benchmarks (Gabriel
et al., 2021) are both technically challenging and
financially expensive to curate. Consequently, pre-
vious efforts either constructed datasets (a) with
simpler reasoning structures, such as single-hop
* Work done during internship at EPFL.

!Code and data are available at https://github.com/
tqfang/complex-commonsense-reasoning
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Figure 1: An example of conjunctive logical queries and
their verbalization as complex commonsense inferences.

chains (Mostafazadeh et al., 2020), (b) using distant
supervision based on one-hop inference (Gabriel
et al., 2021), or (¢) with human-annotations, but at
a relatively small scale (Ravi et al., 2023).

To alleviate this training data bottleneck, recent
works have explored extracting and formulating
questions from existing CommonSense Knowledge
Graphs (CSKGs; Hwang et al., 2021), which store
commonsense triples. However, using CSKGs to
produce high-quality reasoning datasets poses sev-
eral challenges. First, while the shared entities in
commonsense triples encode a complex, intercon-
nected graph structure, the sparsity of this structure
limits the number of potential questions that encode
more than one reasoning hop (Sap et al., 2019b;
Kim et al., 2023). Second, triples in CSKGs are rep-
resented in a context-free manner, such as the event
“PersonX gets tired of it” in Fig. 1, yielding ambigu-
ous (and sometimes incorrect) human annotations
in the CSKG, e.g., ATOMIC (Sap et al., 2019a) has
an error rate of over 10%. These errors propagate
when triples are naively combined to construct rea-
soning questions. Finally, also because triples in
CSKGs are represented in a context-free manner,
additional context must be added to make questions
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fluent, a problem exacerbated in multi-hop settings
where the entities of multiple reasoning hops must
be coherently verbalized together.

In this paper, we construct CoM? (COMplex
COMmonsense), a novel commonsense reason-
ing dataset using multi-hop queries in common-
sense knowledge graphs to construct question an-
swer pairs requiring complex narrative reasoning.
To build this dataset, we use conjunctive logical
queries (Hamilton et al., 2018), a subset of First-
Order Logical queries that use existential quanti-
fiers and conjunction. The multi-hop projection
operation involves inferring hidden contexts, while
the intersection operation enables reasoning among
multiple events, encompassing common cause or
effect, and abduction. For example, in Fig. 1, an in-
tersection of two triples can be verbalized to a short
narrative, and the process of inferring the common
tail can be seen as an abduction of the hidden cause
between the two heads.

To address the challenges above, we propose to
first densify the CSKG to merge nodes with high
semantic similarity, increasing the connectivity of
the graph. Then, we use an off-the-shelf plausibil-
ity scorer to filter out low quality triples, avoiding
error propagation as we construct more compli-
cated queries. Finally, we verbalize the queries to
a natural language context with handcrafted rules
and Large Language Models to derive coherent and
informative narrative contexts for our questions.
Our final Com? dataset comprises 790K question-
answer pairs (both with multiple-choice and gen-
erative answer settings), including 1.3K examples
that we manually verify for evaluation.

Our results demonstrate the challenges faced by
even powerful LLMs and supervised question an-
swering models on the Com? dataset, underscor-
ing the difficulty of performing complex multi-
hop reasoning. Moreover, fine-tuning question
answering models and generative commonsense
inference models on CoM? leads to substantial im-
provements across eight commonsense reasoning
datasets, showing the efficacy of our framework for
boosting commonsense reasoning ability.

To conclude, our contributions are three-fold.
First, we present a pipeline for sampling and ver-
balizing complex logical queries from CSKGs, to
form a complex commonsense reasoning bench-
mark, CoM2, with minimal human effort. Second,
we benchmark the complex reasoning ability of var-
ious state-of-the-art language models and question
answering models on COM?2. Finally, we validate

the benefit of fine-tuning on Com? on eight zero-
shot commonsense reasoning datasets.

2 Background and Related Work

Complex Logical Queries Recent years have
witnessed significant progress in reasoning on one-
hop relational data (Bordes et al., 2013; Sun et al.,
2019; Lin et al., 2023). In addition to one-hop
reasoning, further works have explored handling
complex logical structures, involving reasoning on
unobserved edges and multiple entities and vari-
ables (Ren et al., 2020; Wang et al., 2021, 2023b;
Bai et al., 2023a). In this paper, we focus on con-
junctive logical queries (Hamilton et al., 2018), a
subset of first-order logic that is defined with logi-
cal operators such as existential quantifiers 3 and
conjunctions A. Conjunctive logical queries require
a set of anchor entities, ), a unique target entity V>
representing the answer to the query, and a set of ex-
istential quantified variables Vi, -- , V};,, and are
defined as the conjunction of literals ey, - - - , ey:

q=Vo,AV1,--- [ Vim:re1t AesA---Ne, (1)
where e; is an edge involving variable nodes and
anchor nodes, satisfying e; = r(v;, V), Vi €
{Vo,Vi,--- Vb, vj € Vor € R, or ¢ =
T(‘/}v Vk)v ija Vk € {%7 Vla T 7Vm}7j 7é ]€,7“ €
R. R is the set of relations defined in the KB.

Previous efforts on answering logical queries on
knowledge graphs focus on constructing box em-
beddings (Ren et al., 2020), embeddings based on
beta distributions (Ren and Leskovec, 2020), parti-
cle simulations (Bai et al., 2022), and computation
tree optimization (Bai et al., 2023b). Other related
works focus on leveraging two-hop projection and
intersection queries in ConceptNet to improve com-
monsense question answering (Guan et al., 2023),
inferring missing entities in verbalized complex
queries on factual knowledge graphs (Ding et al.,
2023), and developing an LLM agent for complex
operators within the KG (Jiang et al., 2024). In-
stead of relying on embeddings or limited query
types for matching synthetic logical queries, we
leverage the concept of logical queries to effec-
tively acquire complex reasoning data from CSKGs
with minimum human efforts.

Complex Commonsense Reasoning Recent ad-
vances in commonsense reasoning have been
driven by the construction of human-annotated
(Speer et al., 2017; Sap et al., 2019a; Hwang et al.,
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Figure 2: Overview of the construction process. f rep-
resents a verbalization function for the context, and g
represents the one for the question.

2021; Jiang et al., 2021; Mostafazadeh et al., 2020;
Krishna et al., 2017; Shen et al., 2024) and human-
validated (West et al., 2022; Gao et al., 2023) Com-
monSense Knowledge Graphs (CSKG). A common
approach to create challenges for commonsense
reasoning involves constructing tasks in the form of
question-answering (Talmor et al., 2019; Sap et al.,
2019b), knowledge base completion (Malaviya
etal., 2020; Yang et al., 2023) and population (Fang
et al., 2021b,a), grounding (Gao et al., 2022), and
daily dialogue (Kim et al., 2023), based on CSKGs.
However, most of those previous benchmarks are
based on one-hop triples.

In contrast, real-world situations in narratives
usually involve more complicated reasoning across
multiple events, sentences, and paragraphs (Schank
and Abelson, 1975). Previous works learn repre-
sentations of narrative chains (Chambers and Juraf-
sky, 2008; Pichotta and Mooney, 2014) and draw
inferences (Fang et al., 2022; Yuan et al., 2023).
To address more complex paragraph-level or multi-
event reasoning, ParaCOMET (Gabriel et al., 2021)
proposed to pre-train on distantly supervised one-
hop paragraph-level commonsense inferences, and
COMET-M (Ravi et al., 2023) was fine-tuned on
a crowdsourced corpus focusing on reasoning on
multiple events. Instead of crowdsourcing or us-
ing language models to distill complex inferences,
we provide narrative-level inference by verbalizing
complex logical queries over CSKGs, to effectively
acquire grounded inferences at scale.

3 Methodology

In this section, we introduce the construction de-
tails of CoM?2, including the pre-processing, sam-

Training Query Types
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Figure 3: Visualization of query structures. The an-
chor entities and relations are specified to instantiate the
query. ‘p’ and ‘i’ represent projection and intersection,
and the number ahead of p and i indicates the number
of anchor entities and free variables.

pling, and verbalization of complex queries, as well
as the details of human annotations. An ovewview
of the pipeline is presented in Fig. 2.

3.1 Pre-processing

We use ATOMIC%g (Hwang et al., 2021), a compre-
hensive Commonsense Knowledge Graph covering
everyday social, physical, and event-level knowl-
edge, as the base CSKG. Before sampling queries,
we address the sparsity and quality issues first.

Sparsity CSKGs are usually highly sparse com-
pared to factual KGs due to the diversity and scale
of commonsense (Malaviya et al., 2020), resulting
in many isolated nodes that can hardly be sampled
as part of a complex query. To alleviate this is-
sue, we develop a set of rules and use sentence
embedding similarity to merge nodes in the CSKG,
leading to 22.4% of nodes being merged and an
average degree increase of 25.3%. In the final
query sampling process, the number of 2p paths
increased from 7,382 to 405,492, and the number
of 2i queries rose from 1.43M to 2.06M.

Quality The error rate of CSKGs (e.g., ATOMIC
has an error rate of ~10%) can be problematic
when we consider the intersection and projection
of more than two triples (errors in a single triple
could propagate to many multi-hop queries). We
use an off-the-shelf plausibility scorer Vera (Liu
et al., 2023), a T5-based scorer fine-tuned on 2
CSKGs and 19 QA datasets, to score every triple in
terms of commonsense plausibility (between O to
1). We filter out triples (~10%) with a plausibility
score lower than 0.5, the threshold provided in Liu
et al. (2023) for plausible statements.
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Context:

X and Y were at a park. Suddenly, Y's phone starts ringing and X reaches over
and pulls out Y's phone from their pocket. Just as X does that, Y playfully kicks
their legs in the air, and X swings Y's legs in response.

Question:

What state is both what X is seen as given V1 and what X is seen as given V2?

Context:

X starts to feel a sharp pain in their side. However, X is not in pain anymore
later.

Question:

What event or state is both what X wants do after V1 and also hindered V2?

Question:

What event or state is what X wants to do after what

X wants to do after V1?

Context:

X was looking for a new opportunity and decided to join Y's ranks. After joining,
X works hard for months to prove their dedication and commitment.

Question:

What event or state is both what Y wants to do after {what X wants to do after X
works hard for months}, and also what Y wants to do after X joins Y's ranks?

Figure 4: Examples of different query types, their verbalization, and corresponding questions.

3.2 Query Sampling

The query structures that we study are visualized
in Fig. 3. Following Ren et al. (2020), we use
projections (1p, 2p) and intersections (2i, 3i) as
training queries, and leave complex queries ip and
pi as zero-shot evaluation queries. To examine sce-
narios involving negation and differentiate them
from regular 2i queries, we use the term “2i-neg”
to represent 2i queries where one of the relations
is “HinderedBy”. In this formulation, multi-hop
projection involves inferring hidden reasoning con-
texts, while intersection operations require reason-
ing about complex interactions between events.

Given a query structure, we use pre-order traver-
sal to sample free variables and anchor entities
starting from an answer entity. We sample prede-
cessors uniformly based on (relation, entity) pairs.
During sampling, to avoid over-sampling on nodes
with extremely high degree, we empirically set a
cut-off degree 7 = 10 to only sample from top 7
neighbors of a node scored by Vera. In the end,
we conduct a post-order traversal starting from the
anchor entities to find all the answers of the query,
in addition to the starting answer entity.

Distractor Sampling We sample 4 additional
candidate distractors for each query, where 2 of
them are randomly sampled across the whole
CSKG, and 2 of them are sampled from the neigh-
bors of the anchor entities that are not the answers
to the whole query, represented as adversarial nega-
tive examples. When fine-tuning a question answer-
ing model, the negative examples are used as syn-

thetic question answering pairs for training. In the
evaluation set, these candidate negative examples,
together with the sampled answer, are manually
annotated to form a gold evaluation set.

3.3 Verbalization

CSKGs are constructed in a context-free manner.
To make the logical queries on such context-free
triples more human-interpretable, we introduce an
additional step of verbalizing the anchor entities to
a narrative, to effectively acquire fluent and plausi-
ble narrative-inference pairs.

Anchor Entity Verbalization We consider a
rule-based verbalizer and a ChatGPT-driven ver-
balizer. In the rule-based verbalizer, we add a dis-
course marker between the two or three anchor
entities depending on the semantics of the query
relations. For example, a simple situation would
be adding an “and” or “then” between two an-
chor entities in a 2i query. To make the query
more human-understandable, we consider using
ChatGPT to synthesize necessary contexts to make
the query an actual narrative. We include the de-
tailed rules for adding discourse connectives, and
prompts for using ChatGPT to verbalize complex
queries in Appx. §A.3.

Relation Verbalization The multiple relations in
complex queries can be deterministically converted
to a question using the natural language descrip-
tions of the relations, presented in Appx. §A.3.
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Method | 2i 2i-neg 3i 2p ip pi | Al
API-based LLMs
gpt-3.5-turbo-0613 3356  43.12  42.01 38.66 38.05 28.40 | 37.74
- 1-shot 4331 3531 5845 5773 5133 6296 | 48.22
- 1-shot w/ CoT 4580 36.43 5434 57.73 5044 66.67 | 48.75
- 8-shot (2i, 2p) 48.52 4126 57.08 67.53 53.10 74.07 | 53.22
- 8-shot (2i, 2p) w/ CoT 52.61 46.10 60.27 59.79 5221 6543 | 54.37
gpt-4-1106-preview 44.67 4647 5205 3247 4071 53.08 | 44.64
- 1-shot 47.85 42.01 50.68 38.66 4425 50.62 | 45.63
- I-shot w/ CoT 4897 4646 5296 4948 5221 58.02 | 50.04
- 8-shot (2i, 2p) 54.87 4647 5890 45.88 5221 66.67 | 53.00
- 8-shot (21, 2p) w/ CoT 57.82  49.07 6256 6134 5221 66.67 | 57.40
Open-source (QA) Language Models
HyKAS (Ma et al., 2021, zero-shot) 3492 3941 27.85 4175 37.17 3333 | 35.76
CAR (Wang et al., 2023a, zero-shot) 37.41 3048 3744 57773 3274 53.09 | 39.56
Llama2 (7B) (Touvron et al., 2023) 3515 2193 39.27 3557 2832 51.85 | 33.64
Vera (5B) (Liu et al., 2023) 47.62 2751 40.18 6649 5221 58.02 | 46.09
UnifiedQA-v2 (Khashabi et al., 2022) | 56.23 3941 6256 58.76 5133 62.96 | 54.21
Flan-T5 (11B) (Chung et al., 2022) 58.28 4721 6530 76.29 56.64 79.01 | 60.97
Fine-tuned on CoM?
DeBERTa-v3-Large (+CoM?) 60.09 5836 69.41 61.86 59.29 8148 | 62.79
CAR-DeBERTa-v3-Large (+CoM?) 61.22 56.13 69.86 68.56 56.64 85.19 | 63.78

Table 1: Model performance (%) on the multiple-choice question answering evaluation set of COM?2.

3.4 Human Annotation

To support reliable automatic evaluation, we for-
malize the problem of complex commonsense rea-
soning as a multi-choice question answering task,
with one true answer, three distractors, and a fifth
option indicating “None of the answers are correct”.
We crowdsourced the answers using Amazon Me-
chanical Turk (AMT). The workers are given the
verbalized query as the context, the verbalized re-
lations as the question, and the sampled (negative)
answers. If no sampled answers are correct, then
the worker is asked to select an additional “None
of the answers are correct” option. If the verbal-
ization itself does not make sense, the worker can
also select another option “The context doesn’t
make sense or is meaningless” and we discard the
example. Each question is annotated by three work-
ers. The workers are paid on average 16 USD per
hour. Our final dataset consists of ~782k training
examples and 1317 manually-validated evaluation
examples.

Quality The overall per-option inter-annotator
agreement is 78%, and the Fleiss kappa is 0.445,
indicating moderate agreement. Among 1.3K veri-
fied examples, 4.7% were labeled as incorrect con-
textualization. The likelihood that a sampled an-
swer is the correct response to the contextualized
question is 52.1%. For randomly sampled negative
examples and one-hop neighbors, the plausibility
rate is 23.5%, notably lower than the sampled an-

swers. The authors of this paper manually checked
the examples where the IAA between three anno-
tators is lower than 0.6 and fixed the answers to
ensure quality. A similar distribution is expected
for the training set. Another thing to note that even
though the training set is silver-standard, language
models fine-tuned on it can autonomously identify
patterns and acquire valuable insights from a large
number of complex queries, resulting in improved
reasoning performance, which will be shown in the
next section.
More details can be found in Appx. §A.

4 Experiments

We conduct experiments on the evaluation set of
Com?, formulated as a Multi-Choice Question An-
swering (MCQA) task. Specifically, we examine
the performance of state-of-the-art off-the-shelf lan-
guage models on CoM?, and also study the effect
of training a question answering model on the dis-
tantly supervised training set of COM?.

4.1 Setup

We use popular API-based and open-source LLMs
as baselines. Following the standard practice of
prompting LLMs for QA (Robinson et al., 2022),
we initialize a prompt that takes “[Context] [Ques-
tion] [Options]” as the input and ask the model to
only output the associated symbol (e.g., ‘A’) in the
QA pair as the prediction. For open-source lan-
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Model | CSKG | Out-of-domain | In-dom.
\ | aNLI CSQA PIQA SIQA WG | Avg. | Com?
Random - 50.0 20.0 50.0 33.3 50.0 | 40.7 20.0
DeBERTa-v3-L (He et al., 2023) - 59.9 25.4 44.8 47.8 50.3 | 45.6 14.7
Self-talk (Shwartz et al., 2020) - - 324 70.2 46.2 547 | - -
COMET-DynaGen (Bosselut et al., 2021) ATOMIC - - - 50.1 - - -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 - - -
MICO (Su et al., 2022) ATOMIC - 44.2 - 56.0 - - -
STL-Adapter (Kim et al., 2022) ATOMIC 71.3 66.5 71.1 64.4 60.3 | 66.7 -
Large Language Models
GPT-3.5 (text-davinci-003) - 61.8 68.9 67.8 68.0 60.7 | 654 -
GPT4 (gpt-4-1106-preview) - 75.0 43.0 73.0 57.0 77.0 | 65.0 44.6
ChatGPT (gpt-3.5-turbo) - 69.3 74.5 75.1 69.5 62.8 | 70.2 37.7
+ zero-shot CoT - 70.5 75.5 79.2 70.7 63.6 | 71.9 28.9
Backbone: DeBERTa-v3-Large 435m
HyKAS (Ma et al., 2021) ATM-10X 75.1 71.6 79.0 59.7 71.7 | 714 27.7
HyKAS (Ma et al., 2021) ATOMIC 76.0 67.0 78.0 62.1 76.0 | 71.8 35.8
CAR (Wang et al., 2023a) ATOMIC 78.9 67.2 78.6 63.8 78.1 | 73.3 36.8
CAR (Wang et al., 2023a) ATM® 79.6 69.3 78.6 64.0 782 | 73.9 39.8
HyKAS + Com?(Ours) ATM, Com? | 784  69.9 787 641 783 | 7139 | 62.8
CAR + CoM?(Ours) ATM® Com® | 812 709 803 656 774 | 751 | 638
Human Performance | - | 91.4 88.9 94.9 86.9 941 | 912 | -

Table 2: Zero-shot evaluation results (%) on five out-of-domain commonsense question answering benchmarks, and
the in-domain evaluation set of CoOM2. The best results are bold-faced, and the second-best ones are underlined.

guage models like Flan-T5 and Llama2, we use the
same prompt, and compute the logits received by
each of the options in the first prediction token.

We also study the effect of fine-tuning a question-
answering model on the synthetic training queries
discussed in §3.2. We follow the pipeline by
HyKAS (Ma et al., 2021), which fine-tunes lan-
guage models on QA pairs synthesized from one-
hop knowledge in CSKGs, and extend it to com-
plex queries. For one-hop (1p) triples, the head
and relation are transformed into a question with
pre-defined prompts. For complex queries, the ver-
balized queries (as illustrated in §3.3) are regarded
as the context, and questions are also transformed
with a different prompt template depending on the
relations. The tails to the one-hop triple or the sam-
pled answer to the query are regarded as the correct
answer, and the negative examples are randomly
sampled across the whole CSKG following a key-
word overlapping filtering (Ma et al., 2021; Wang
et al., 2023a). We use DeBERTa-v3-large as the
backbone encoder.”

4.2 Results and Analysis

Our results are presented in Tab. 1. We observe
that Chain-of-Thought (CoT) improves reasoning
performance, as it allows the model to first in-

2We refer readers to Appx. §B for detailed implementations
and prompt templates.

duce the causes or effects of individual events in
intersection-based queries (2i and 3i), or induce
hidden variables in projection-based queries (2p as
in Fig. 3). Adding eight-shot exemplars (consist-
ing of 2i, 2i-neg, and 2p queries) further improves
performance among prompting baselines.

For models fine-tuned on complex queries us-
ing HyKAS and CAR, we observe that the syn-
thetic training pairs, despite lacking manual anno-
tation, serve as valuable distant supervision sig-
nals. They enhance the complex reasoning capa-
bility of HyKAS and CAR, surpassing the perfor-
mance of the 8-shot GPT-4 model with CoT by
6%. CAR + CoM? also outperforms the 11B ver-
sion of UnifiedQA-v2 and Flan-T5, which are both
fine-tuned on numerous (commonsense) question
answering datasets, by 9% and 3%, respectively.

5 Downstream Evaluation

In addition to benchmarking Complex Common-
sense Reasoning, we also study the effect of lever-
aging Com? as training data to generalize to other
downstream commonsense reasoning tasks. As
tasks, we use zero-shot CommonSense Question
Answering (CSQA), and Generative Commonsense
Inference, including one-hop, multi-event, and
paragraph-level settings.
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Model ‘ Training Data ‘

Multi-Event | Paragraph-Level ||

2

Single-Event || CoMm

| | B-2 R-L BERT|R-L CIDE BERT|| R-L CIDE BERT|| R-L. CIDE BERT

(Distantly) Supervised Learning

COMET-M (BART-L) MEI 25.1 33.6 64.9 - - - - - - - - -
COMET-M (GPT-2-L) MEI 16.2 25.7 55.1 - - - - - - - - -
ParaCOMET (GPT-2-L) PCD - - - 18.8 27.8 60.2 - - - - - -
Zero-shot Learning || Supervised

COMET Ip 1.20 2.73 389 | 3.5 64 257 (/50.0 66.1 75.1 |[10.0 20.7 44.3
COMET-distill ATM10x 1.20 3.55 12.7 |11.8 16.8 295 || 1.6 48 243 83 119 36.1
Com2-COMET 1p, 2i 8.87 15.2 46.4 |13.8 22.1 53.7 ||50.7 68.0 77.1 |[13.6 26.1 39.8
CoM2-COMET 1p, 2p,2i,3i [5.41 10.4 448 | 9.2 16.6 44.1 ||504 669 77.1 ||147 33.0 46.3
LLama2-7b - 1.81 4.14 457 | 22 22 4861 54 29 515| 39 67 449
COMET-LLama2-7b 1p 7.62 144 442 | 9.1 123 51.0||275 264 642 (/109 223 449
Com?-LLama2-7b 1p, 2i 8.82 164 47.5 |14.6 22.1 553 ||31.6 31.1 66.0 {|35.7 107.2 61.3
Com2-LLama2-7b 1p,2p, 2i,3i |8.22 154 47.0 [159 213 553 ||31.3 29.8 65.5 ||35.6 105.0 60.1

Table 3: Experimental results on downstream narrative commonsense reasoning, including in a multi-event (Ravi
et al., 2023) setting, and a paragraph-level setting (Gabriel et al., 2021). In-domain settings include single-event
generation and complex inference in ComM?2. We use BLEU-2 (B-2), ROUGE-L (R-L), CIDEr (CIDE), and

BERTScore (BERT) as the evaluation metrics.

5.1 Commonsense Question Answering

Setup The task of zero-shot commonsense QA in-
volves selecting the most plausible option for com-
monsense questions without training on examples
from the benchmark dataset. We directly leverage
the model we trained in §4, the DeBERTa-v3-large-
based model fine-tuned on synthetic question pairs
from both ATOMIC and Com?2, and check the per-
formance on five popular commonsense question
answering datasets: Abductive NLI (aNLI; Bhaga-
vatula et al., 2020), CommonsenseQA (CSQA; Tal-
mor et al., 2019), PhysicallQA (PIQA; Bisk et al.,
2020), SociallQA (SIQA; Sap et al., 2019b), and
WinoGrande (WG; Sakaguchi et al., 2021). As
baselines, we consider the same methods, HyKAS
(Ma et al., 2021) and CAR (Wang et al., 2023a),
but use other CSKGs as training sets. In Tab. 2,
ATM-10X refers to ATOMIC-10x from West et al.
(2022), and ATMC refers to the training data from
CAR (Wang et al., 2023a) which is augmented
from ATOMIC with conceptualization.

Results and Analysis We report model perfor-
mance in Tab. 2. We observe the inclusion of CoM?
and one-hop triples from ATOMIC as training data
for CAR and HyKAS yields significant improve-
ments in question answering ability. Notably, the
combination of CAR and Com? achieves the high-
est performance among all models, surpassing even
ChatGPT and GPT-4, despite having a parameter
size at least two orders of magnitude smaller.
Notably, when using CAR as the base model,

training on COM? leads to the highest performance
gain of around 1.8% for a-NLI. When evaluating
on a-NLI, which includes instances of abductive
reasoning, the model may be helped by learning
from 2i queries where one relation represents cause
and the other represents effect (abduction examples
in Fig. 1 and Fig. 4). Meanwhile, the performance
on WinoGrande was adversely affected, likely be-
cause Winogrande primarily focuses on identifying
distinguishing features of entity pairs. The benefits
from learning event-event interactions from Com?
may not transfer well to this setting.

5.2 Generative Commonsense Inference

Setup We study generative commonsense infer-
ence as an additional evaluation task. We include
multi-event commonsense generation (COMET-
M; Ravi et al., 2023) and paragraph-level com-
monsense generation (ParaCOMET; Gabriel et al.,
2021) as two out-of-domain evaluation tasks. We
also include the vanilla COMET (Bosselut et al.,
2019) as an additional in-domain evaluation, which
focuses on 1p queries that require generating the
tail given head and relation as the input. We also
conduct experiments on the generative sub-task of
CoM?, where verbalized context and question in-
puts are used to inferences. The annotated ground
answer options are used as references.

For the (distantly) supervised learning baselines,
we fine-tune GPT-2-large on the annotated multi-
event inference dataset (MEI) from Ravi et al.
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(2023) and distantly labeled PCD dataset from
Gabriel et al. (2021) as a reference. In our zero-
shot learning setting, we study the effect of fine-
tuning COMET (GPT-2-large) on ATOMIC and
different query types of CoM?2. We also study fine-
tuning an LLM, Llama2-7b, by converting triples
and queries to an instruction-tuning format, follow-
ing the prompt template in §3.3 and Appx. §B.2.
We leverage the framework of Chen et al. (2023)3
to fine-tune Llama2-7b. We fine-tune on a mixture
of different query types as detailed in the Training
Data column. We present the performance results
of models fine-tuned on either the annotated or
distantly supervised training set for both tasks as
reference benchmarks. Specifically, we use MEI
for COMET-M and PCD for ParaCOMET. To en-
sure diversity and prevent overfitting to common
tails, complex queries are selected using an n-gram
based diversity filter (Yang et al., 2020).

Results and Analysis We present the results in
Tab. 3. Compared to models fine-tuned solely on
one-hop triples, COMET models fine-tuned on ad-
ditional complex queries demonstrate enhanced
generative commonsense inference capabilities for
multi-event and paragraph-level scenarios. When
comparing different query types, fine-tuning solely
on 2i queries yields the most significant improve-
ment in reasoning capability, likely because 2i
queries provide more explicit reasoning signals
compared to 2p queries, which can be ambiguous
due to the large candidate space of the hidden event.
For example, the average number of answers for 2p
queries is 7.93, compared with 1.09 for 2i queries.
In addition, the answers to 2i queries exhibit greater
diversity than 3i queries, as the CSKG is sparse and
provides a limited number of distinct tails for sam-
pling 3i queries compared to 2i queries.

6 Analysis & Discussion

6.1 Ablation Study

We analyze the impact of various data filters, query
types, and verbalization methods on generative
inference within CoM?. Detailed results can be
found in Tab. 4.

Filtering We include two types of filters, a Vera-
based plausibility filter and a diversity filter. Evalu-
ating the performance of generative commonsense
inferences on COM?2, we examine the impact of re-
moving both filters while employing GPT2-Large

3https://github.com/epfLLM

Com?
Model R-L CIDEr BERT
Filter
CoM2-COMET 147 330 46.3
- w/o plau. filter 13.0 31.2 423
- w/o div. filter 144 325 45.8
- w/o both filter 12.5 30.3 40.1
Query Types
COMET (1p) 100 207 443
+2i 136  26.1 39.8
+2p 9.8 19.9 434
+2i, 31, 2p 147 330 46.3
Verbalization
CoM2-COMET 13.6  26.1 39.8
CoM?-COMET (V) | 143 271 43.4
Com?2-Llama 357 1072 61.3
Com?2-Llama (V) 362 1054 61.4
PCD
Model R-L. CIDEr BERT
Verbalization
CoM2-COMET 13.8 221 53.7
COM2-COMET (V) | 140 232 54.0
Com?-Llama 146 221 55.3
Com?-Llama (V) 148 236 55.5

Table 4: Ablation studies on filters, type of queries, and
using ChatGPT for verbalizing queries (denoted as V).

as the backbone model. Removing the plausibility
filter results in a significant performance decline,
highlighting its critical role. On the other hand, the
diversity filter exhibits a minor positive influence
on enhancing performance.

Type of Queries We investigate the impact of
training our models on different types of logical
queries. The model trained only on 1p and 2p
queries does not generalize well to other query
types such as pi and ip, leading to a worse perfor-
mance than the model trained on all query types.
However, according to Tab. 1 and Tab. 3, mod-
els trained on only 2i queries generalize better to
downstream commonsense reasoning tasks, poten-
tially indicating that multi-event reasoning in most
existing commonsense benchmarks focus on inter-
section more than projection.

Verbalization We investigate the effect of using
a rule-based verbalizer or ChatGPT-enabled verbal-
izer to generate COM? contexts. Using ChatGPT-
verbalized queries leads to better downstream per-
formance on both PCD and Com?. In CoMm?2,
the presence of ChatGPT-verbalization intuitively
improves performance since the training context
aligns with the evaluation set’s format. On the other
hand, the context in the PCD dataset is long and
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Model | #Plau. #l-hop #False
LLama2-7b 26 2 28
COMET-LLama2-7b 29 8 23
Com?2-LLama2-7b (2i) 47 2 11
CoMm2-LLama2-7b (all) 45 3 12

Table 5: Human evaluation results on the generative
sub-task in CoM? using Llama2-7b as the backbone.
‘1-hop’ indicates the answer is plausible in terms of only
one-hop relations.

comprised of five sentences. Verbalization not only
adds more contexts to the training but also aligns
better with the PCD format.

6.2 Error Analysis

We present a human-annotated quality evaluation
of the Llama-7b-based model on the generation
sub-task of CoM?2. To ensure diverse coverage of
query types, we randomly sampled 60 queries, with
10 from each of the 6 types. Manual inspection re-
vealed a common error where the generated output
was partially correct, either providing the answer
to one of the triples in an intersection query or only
the one-hop answer instead of the two-hop answer
in 2-projection (2p) queries. Tab. 5 includes the
number of such ‘1-hop’ partially correct answers.
Our results demonstrate that the zero-shot Llama
model already produces 26 out of 60 plausible infer-
ences. Fine-tuning the model on one-hop ATOMIC
further increases the number of plausible genera-
tions while more frequently generating inferences
that are one-hop correct. Moreover, fine-tuning
on the synthetic training set of COM? significantly
improves the model’s ability to generate complex
commonsense inferences and reduces the occur-
rence of partially correct answers. We provide case
studies in Appx. §D.

7 Conclusion

In this paper, we leverage the concept of conjunc-
tive logical queries to create a complex common-
sense reasoning dataset derived from CSKGs. The
dataset, COM?2, comprises a human-annotated eval-
uation set and a distantly supervised training set
without further annotations. Our experiments high-
light the challenging nature of complex common-
sense reasoning that involves multiple events or
multi-hop scenarios, even for advanced language
models such as GPT-4. Additionally, we train
question answering models and generative com-
monsense reasoning models using CoM?. The re-

sults show significant improvements across eight
diverse downstream commonsense reasoning tasks,
highlighting the potential of leveraging CSKGs to
acquire complex reasoning signals inexpensively,
without relying on extra human effort.
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Limitations

Data Construction The construction of COM?
relies on sampling complex logical queries from ex-
isting CSKGs, which requires addressing sparsity,
quality, contextualization issues. Despite conduct-
ing normalization and filtering, there may still be
missing links within ATOMIC and mislabeled or
ambiguous triples, which limits the quality of our
sampled queries. Future works can focus on de-
riving complex queries from CSKGs with better
quality and more diverse semantics, which should
also have higher density, such as on ATOMIC-10x,
NovATOMIC (West et al., 2023).

Evaluation In the context of generative common-
sense reasoning, we employ lexical-overlap based
automatic evaluation metrics to assess the perfor-
mance of the model in a scalable manner. However,
since each query typically has 1 to 3 gold refer-
ences on average, this type of evaluation may not
accurately capture the true plausibility of common-
sense inferences, which is inherently open-ended.
To address this limitation, we have supplemented
the automatic evaluation with human annotation on
a subset of sampled queries, but this approach is
not scalable.
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Ethical Considerations

We sample the data from ATOMIC3), which is
an open-source commonsense knowledge graph
that may contain biases around gender, occupa-
tion, and nationality (Mehrabi et al., 2021). When
constructing COM?2, these biases may propagate if
biased triples are sampled in a complex query that
becomes of the training set. We collected 1.3k in-
ferences through crowdsourcing. The participants
were compensated with an hourly wage of 16 USD,
which is comparable to the minimum wages in
the US. The qualification was purely based on the
workers’ performance on the evaluation set, and
we did not collect any personal information about
the participants from MTurk.
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A Additional Details on Data
Construction

In this section, we provide additional details to
node normalization, plausibility filter, verbaliza-
tion, and human annotations. The overview of our
construction framework is presented in Fig. 2.

A.1 Nodes Normalization (Dealing with
Sparsity)

To alleviate the sparsity issue, we first normal-
ize the tail entities with simple rules similar with
that in Dense-ATOMIC (Shen et al., 2023) and
CKBP (Fang et al., 2021a). In ATOMIC, heads
are pre-defined complete sentences (for example,
“PersonX says sorry”’) while tails are usually short
phrases without a subject (for example, “to say
sorry”). This discrepancy produces many dupli-
cated nodes and make the graph sparser. We de-
velop simple rules to add “PersonX” or “PersonY”
in front of the tails to make them a complete sen-
tence, if the tail does not have a subject. This
process merged 3.7% nodes together.

Second, as the nodes in ATOMIC are free-text,
some nodes with the same semantic meaning are
represented as separated nodes due to some minor
annotation distinctions and errors, e.g., “PersonX
buys a ticket” versus “PersonX buys a ticket .”.
These discrepencies can be addressed using em-
bedding similarities (Wu et al., 2023). We use
a state-of-the-art sentence embedding model*, to
merge nodes with cosine similarity score over 0.95.
In this process, 20.0% nodes are merged together
and the average degree increases by 25.3%.

Relations Mapping rules
xWant/oWant/ Add PersonX/Y in front of the tail
xIntent/xNeed and remove the initial “to”
xEffect/oEffect Add PersonX/Y in front of the tail
Add PersonX/Y and “is” in front of
xReact/oReact .
the tail
Add a PersonX/Y and “is” in front
xAttr .
of the tail

Table 6: Normalization rules for ATOMIC tails.

A.2 Data Filtering

Plausibility Filter We verbalize a (h, r,t) triple
from ATOMIC using the default template as pro-
vided in Hwang et al. (2021). For example, (Per-
sonX repels PersonY’s attack, xAttr, brave) would

“https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

be transformed to a declarative statement “If Per-
sonX repels PersonY’s attack, then PersonX is seen
as brave”. To obtain a plausibility score, we input
the statement into the Vera-5B model. 0.5 is used as
the threshold to draw a boundary between plausible
and implausible statements. We perform a manual
inspection on the triples scored by Vera and ran-
domly select 40 samples for three plausibility score
intervals. Among these, we find that 4/40 triples
are plausible when the Vera scores range from 0 to
0.1. 13/40 triples are considered plausible within
the score range of 0.2 to 0.25. Furthermore, we
identify 20/40 triples as plausible when their plau-
sibility scores hover around 0.5, when most of the
triples are quite ambiguous. By setting the filter
threshold as 0.5, we filter out around 14% triples
that are of a relatively lower quality.

Diversity Filter To prevent overfitting to com-
mon tails, we conduct a diversity-based filter to
acquire diverse queries for training. We take in-
spirations from G-DAUG (Yang et al., 2020), to
use a simple greedy algorithm to iteratively select
training data, which has been proven useful for se-
lecting augmented data. To be more specific, for
each unique answer, we adopt an iterative approach
to select the verbalized query that contributes the
highest number of unique 1-gram terms to an on-
going vocabulary constructed for each answer. We
select top-20 queries for each unique answer entity.

A.3 Verbalization

Query Verbalization We employ two methods
to verbalize complex queries: a rule-based method
and a ChatGPT-based method.

In the case of 2i and 3i queries, the rule-based
method typically involves inserting an “and” be-
tween the anchor entities. However, if the query
suggests a specific chronological order between the
two events, we use “then” to connect the events.
For instance, in 2i queries where one triple is (V7,
xEffect, V%) and the other is (V5, xIntent, V>), it
implies that V>, serves as the effect of V] and the
intermediate hidden cause of V5. In this scenario,
V1 should occur before V5. Therefore, the verbal-
ization would be “V7 then V5.

For ChatGPT verbalization, we present the sys-
tem instructions for verbalizing different kinds of
queries in Tab. 7. Then, we generate the verbal-
ized contexts with six exemplars that are manually
annotated. In the system instruction, we also ask
ChatGPT to output “NA” if the given anchor en-
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Query

Prompt

2i, ip, pi

Given two events, come up with concise and necessary context to make the a coherent and understand-
able narrative. No more than 2 additional piece of context should be added. If the one of the given
events itself is ambiguous and hardly make sense even with extra context, return NA. If the two events
are totally irrelevant even with additional context, then simply return NA. If the given two events can
be directly composed to a narrative with simple a discourse connective without additional context,
then there’s not need to add additional context.\nMark the location of both events with <E1></E1>
for event 1 and <E2></E2> for event 2 in the generated narrative.

2i-neg

Given two events, create a cohesive narrative by incorporating event 1 (E1) and negated event 2 (E2) to
make the a coherent and understandable narrative. No more than 2 additional piece of context should
be added. If the one of the given events itself is ambiguous and hardly make sense even with extra
context, return NA. If the two events are totally irrelevant even with additional context, then simply
return NA. If the given two events can be directly composed to a narrative with simple a discourse
connective without additional context, then there’s not need to add additional context.\nMark the
location of both events with <E1></E1> for event 1 and <E2></E2> for event 2 in the generated
narrative.\nDon’t explain the reasons why E2 didn’t happen!!\nRemember that negating an event
means stating that it did not occur. For instance, if event 2 is “PersonX goes shopping,” the negated

form would be “PersonX didn’t go shopping”.

Table 7: System instructions for verbalizing complex queries given different query types.

tities are totally irrelevant or too ambiguous. We
filter out those queries where the output is “NA”.

For example, to better interpret the query in
Fig. 1, we need to take into consideration both
the relations of interest and the anchor entities. The
query asks about the effect of the first event and
what causes (intention) of the second event, which
is inherently represents abductive reasoning. This
requires the second event to happen before the first
event, to derive reasonable abduction. In this sense,
a natural rule of verbalizing the query would be
adding a discourse connective “after” to convert
the query to “After PersonX gets tired of it, Per-
sonX goes skydiving”. However, the verbalized
query may still be ambiguous without additional
context. To make the verbalized context more in-
formative and human-understandable, we take ad-
vantage of Large Language Models (i.e., ChatGPT)
to add additional context to compose the query to a
narrative.

Relation Verbalization We use conversion rules
and pre-defined templates to compose questions
based on the relations in the queries. Based on the
definition of each commonsense relation (Hwang
et al., 2021), we use the templates in Tab. 8§ to ver-
balize each relation. In terms of complex queries,
we use the conversion rules in Tab. 9 to convert the
query to a question.

Person Names To make the context more nat-
ural, we replace PersonX, PersonY, PersonZ in
the context to names randomly sampled from the
2021 public US social security application name

Query| .

Type Question Template

2% What event or state is both Prompt(rl) [V1] and
also prompt(r2) [V2]?

3 What event or state is both Prompt(rl) [V1],

Prompt(r2) [V2], and also Prompt(12) [V2]?
> What event or state is Prompt(rl) {Prompt(r2)
P
[V1]}?

; What event or state is prompt(r3) {both prompt(rl)
p [V1], and also prompt(r2) [V2] }?

; What event or state is both prompt(rl) {prompt(r3)
p [V3]}, and also prompt(r2) [V2]?

Table 8: Templates for verbalizing one-hop relations.

registry”.

A.4 Human Annotation

We introduce the details of the annotation process
in this subsection.

Worker Selection We have a qualification test to
select eligible workers for the main task. We pre-
pare six pre-selected 2i queries of different types,
including (negated) common effect, (negated) com-
mon cause, common attribute, and abduction. Only
Master annotators are eligible for participating the
qualification. We compare the pair-wise annotation
accuracy between each annotator and the gold an-
swer annotated by the authors of the paper, and se-
lect those who have at least 85% agreement as qual-
ified workers. After selection, we pick 53 worker
out of 120 participants in the qualification round.

Shttps://catalog.data.gov/dataset/baby-names-from-
social-security-card-applications-national-data
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Question 1: 1

ChatGPT synthesized context

Context: PersonX had been practicing a magic trick for months. Excited to showcase
their skills, PersonX decides to perform the trick for PersonY's friends. After practicing
for months, PersonX shows it off to PersonY's friends.

Question: What event or state is both what PersonX feels after PersonX practices for
months and also what PersonX feels after PersonX shows it off to PersonY's friends?,

V\

@ Sampled answer from ATOMIC

Verbalized
question

(J PersonX is well-liked

PersonX is rewarded

(J PersonX is mature

(J PersonX is stressed

Sampled negative examples.
i.e., tails of one of the head, but not both

(JNo answers are correct.

(] The context doesn't make sense or is meaningless. It is of low quality and hard for me to understand.

Figure 5: Annotation interface.

Relation ‘ Prompt Template

xIntent the intention of PersonX before
xNeed what PersonX needed to do before
xWant what PersonX wants to do after
xEffect the effect on PersonX after
xReact what PersonX feels after

xAttr what PersonX is seen as given
oEffect the effect on PersonY after
oReact what PersonY feels after
oWant what PersonY wants to do after
HinderedBy | what hindered

isAfter what happens before

isBefore what happens after

Table 9: Templates for verbalizing relations in complex
queries.

Annotation Interface A snapshot of the annota-
tion interface is presented at Fig. 5. In addition, we
have provided comprehensive instructions along
with detailed examples to guide the annotators
throughout the annotation process. To ensure their
understanding, we require annotators to confirm
that they have thoroughly read the instructions by
checking a checkbox before the annotation task.
We also manually checked the performance of the
annotators along with the annotation process and
gave feedbacks based on common errors. For ex-
ample, typical errors include mistakenly regard the
one-hop answer as correct instead of fully consid-
ering the multi-hop context.

Post-processing To aggregate the annotation re-
sult, we randomly sample one option that is labeled

as plausible by majority voting as the final positive
answer, and sample three negative options and dis-
tractors. If there are no options labeled as plausible,
then the correct answer is “None of the answers are
correct”. If there are less than three options labeled
as negative, we manually add one or two negative
examples to match the number. To improve the
quality, after crowdsourcing, the authors of this pa-
per manually checked the QA pairs with an IAA
lower than 0.6, and resolve the disagreements man-
ually.

B Additional Details of Experiments

B.1 Implementation Details of the Question
Answering Models

We follow the pipeline in HyKAS (Ma et al., 2021)
and CAR (Wang et al., 2023a) Let C represent
the original context, which is the head entity for
1p triple and the verbalized context for complex
queries, () represent the question verbalized from
the anchor relations, and (A, As, ...) be the list of
options. We first concatenate C', (), and an answer
option A; together via natural language prompts
following the order of “C' Q A;” to generate input
sequences (711,75, ...). We then repeatedly mask
out one token at a time to calculate the masked
language modeling loss.

1 n
S(T) = _EZIOgP(ti|-'-vtiflati+1a---) 2
i=1
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Model | Prompt

Llama2, Flan-T5
ChatGPT, GPT-4

E: [Option E]. \n

Answer this commonsense reasoning question, where you are supposed to handle a multiple-chioce
question answering task to select the correct answer. Select one correct answer from A to E.\n

Context: [Context] Question: [Question] A: [Option A]. B: [Option B]. C: [Option C]. D: [Option D].

Answer:
. [Question] \n

UnifiedQA (a): [Option A] (b) [Option B] (c) [Option C] (d) [Option D] (¢) [Option E] \n
[Context]

Vera \ [Context] [Question] [Option]

HyKAS, CAR | [Context] [Question] [Option]

Table 10: Prompt templates for multiple-choice question answering.
Model | Prompt

Llama2 (zero-shot)

words.

[System_Message] = As an expert in commonsense reasoning, your task is to provide a concise
response to a question based on the given context. The question focuses on studying the causes,
effects, or attributes of personas related to the given context. Answer shortly with no more than 5

<s>[INST] <<SYS>>\n[System_Message] \n<</SYS>>\n\n[Context] [Question] [/INST]

Llama? (fine-tuned)

<lim_startl>question\n[Context] [Question] <lim_endI>\n<lim_startl>answer\n[ Answer]

GPT-2

2i: [V1] [V2] [r1] [r2] [GEN] [Answer]
3i: [V1] [V2] [V3] [r1] [r2] [r3] [GEN] [Answer]
2p: [V1] [r1] [r2] [GEN] [Answer]

Table 11: Prompts for fine-tuning generative commonsense inference models.

We then compute the marginal ranking loss
based on Equation 3, where 7 represents the margin
and y is the index of the correct answer.

m

L= % > max(0,n—S,+S) ()
i=1,iy

We train the DeBERTa QA model for 1 epoch
with a learning rate of 5e-6 and a linear learn-
ing rate decay. The checkpoint that yields the
best performance on the synthetic validation set
in CAR (Wang et al., 2023a) or HyKAS (Ma et al.,
2021) is selected as the final model. During eval-
uating, we select the option that yields the lowest
score as the final prediction.

We provide the prompt templates for each model
in Tab. 10.

B.2 Implementation Details of Generative
Commonsense Inference Models

The training and evaluation of GPT2-based
model is based on the paradigm defined in
COMET (Bosselut et al., 2019). The input of one-
hop ATOMIC triples is serialized to “h r”” and the
expected output is ¢, where (h, r, t) forms a triple

in the CSKG. The input of 2p queries, (h, r1, V)
and (V, ry, V7), are serialized as “h r1 r3” and
the expected output is V. The input of 2i queries,
which includes (h1, 1, V7) and (ho, 72, V7), is se-
rialized as “hy ho r1 72" with the expected output
as V5. All models are fine-tuned for 3 epochs with
a batch size of 32, a learning rate of le-5, a linear
learning rate decay. The last checkpoint is taken as
the final model.

For Llama2, we follow the standard instruction
tuning procedure and use the pipeline provided by
Chen et al. (2023). We train the model with a batch
size of 32, learning rate of 1e-5, and linear learning
rate decay. We take the final checkpoint as our
model to make prediction.

The whole list of prompt templates that we use
is presented in Tab. 11.

C Additional Analysis

Differences from ParaCOMET and COMET-M
In ParaCOMET, the task involves providing a nar-
rative as input, requiring the model to determine
the commonsense causes or effects of a specific
sentence within the context. To generate training
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data, a single-hop COMET model fine-tuned on
ATOMIC is employed to create synthetic infer-
ences. These inferences are generated solely based
on the target sentence and the desired relation, with-
out accessing the whole context. The resulting one-
hop synthetic inferences are then utilized as distant
supervision signals during the fine-tuning process
for ParaCOMET.

COMET-M utilizes a context consisting of a sen-
tence containing multiple events. Unlike from a
sentence level, COMET-M focuses on generating
commonsense inferences based on a specific event
within the sentence. T his fine-grained approach
enables more precise and detailed commonsense
reasoning.

In contrast, our complex commonsense reason-
ing benchmark introduces additional complexities
compared to ParaCOMET and COMET-M. Besides
the complex structures in the context that involves
multiple events, the desired relation or question
involves multi-hop reasoning as well. For instance,
rather than focusing on the cause of a single sen-
tence or event, COM? explores questions related
to common causes, effects, attributions of multiple
events, and two-hop inferences. This distinctive
formulation sets our work apart and poses a greater
challenge for LLMs to effectively reason and pro-
vide accurate responses.

Results of the Ablations We present the results
of the ablation study in Tab. 4.

C.1 Difficulty of Different Query Types

The results in Tab. 1 showed that performance var-
ied depending on the evaluation query types. Inter-
estingly, pi queries exhibited a significantly higher
success rate compared to other query types, par-
ticularly ip queries, considering both pi and ip in-
volve a single free variable and both intersection
and projection operations. We present two perspec-
tives to explain this phenomenon. First, the limited
availability of sampled pi queries restricts the di-
versity of the data. Out of all the queries sampled
from the development set of ATOMIC3), only 4k
are pi queries, while there are 12k ip queries and
598k 2i queries. This paucity of pi queries con-
tributes to a lack of variety. Moreover, within these
4k pi queries, the number of unique answers is
limited to 459, indicating a limited range of pos-
sible responses. As a result, models fine-tuned on
ATOMIC can generate answers to pi queries more
easily, given that most of them consist of nodes

with high degrees. Second, the chances of the sam-
pled answer is actually the correct answer to pi
queries (67.8%) is significantly higher than other
query types (e.g., 47.2% for ip). This is also a
result of the first reason, as the answers to the sam-
pled queries are limited to nodes with high degrees,
which are usually events with a broad meaning such
as “PersonX gets better”.

Discussions on Further Applications of Complex
Queries Intuitively, 2i queries can represent vari-
ous scenarios such as common attribution, common
effect, common cause, and abduction (when one
relation pertains to effects and the other relates to
cause), depending on the types of relations involved
in the query. Besides, complex logical queries, par-
ticularly those involving intersection operations,
are relevant to defeasible reasoning (Rudinger et al.,
2020), where inferences can be weakened given
new evidence. In the one-hop setting, tails are anno-
tated in a context-free manner, considering only the
most general cases. However, in intersection-based
queries like 2i and 3i, additional anchor entities
and relations act as specific constraints, narrowing
down the inferences to a particular scope while
disregarding other commonsense inferences in the
context-free scenario. For instance, in the exam-
ple from Fig. 1, other potential tails for (PersonX
goes skydiving, xIntent) could include overcoming
fear, seeking enjoyment, or achieving a personal
milestone. Nevertheless, when constrained by an-
other query (PersonX gets tired of it, xWant), the
intentions related to fear, enjoyment, and fulfill-
ment are weakened, and only the correct inference
of “finding new things to do” remains.

D Error Analysis

We present some error cases in Tab. 12. In general,
a common error in both projection and intersec-
tion queries is that the generated answer can be
only the one-hop answer instead of the correct an-
swer that is multi-hop. For example, in the 2p
case, “get a new job” is a direct intention of some-
one who updates his or her resume. However, the
2p query asks about the intention of the intention,
which requires inducing the intention behind “get a
new job”. In this sense, “to be financially indepen-
dent” is more plausible inference. In the case of 2i
queries, the error lies in the absence of inferential
gaps between the context, where the generated an-
swers become paraphrases of the events rather than
being the result by any anchor entity. In the case
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Type| Context | Question | COMET | Com?-COMET
» Ezra updates Ezra’s resume (V1) WhaF event or state is the mtc‘nt‘l(m of Ezra get a new job X be financially indepen-
before the intention of Ezra before V1? (one-hop correct) dent v/
Every day, Benjamin goes to work diligently PP .
(V1), never missing a day. They are dedicated What event or state is both the effect on Ben- g\?gfarggxtljs Bséﬁl‘(ams
2i- and committed to their job. In particular, Ben- | jamin after Benjamin go to work every day is tr ?n t0 kee ajw ork- Benjamin gets tired from
neg | jamindoesn’t work hard on it (V2) and instead (V1) and also what hindered Benjamin work li fe ybaigance ini tead of working hard v/
takes a more relaxed approach, focusing on hard on it (V2)? having a sick leave)
maintaining a healthy work-life balance. €
. . . ’ What event or state is both the effect on Chloe
. Chloe ' known for being l}ardworkmb VD) after Chloe is hardworking (V1) and also what | to have a good life 2 | to have success in life 2
2i and dedicated. As a result, Chloe leads a good N\ . H . .
o Chloe wants to do after Chloe leads a good | (No inferential gap) (No inferential gap)
life (V2). .
life (V2)?
What event or state is what Lydia needed to
. . do before the event that is both what Lydia
ip After looking for a new car (V1), Lydia is wants to do after Lydia is looking for a new | None X take a car for test drive v/

driving to school (V2).

car (V1), and also what Lydia needed to do
before Lydia is driving to school (V2)?

Table 12: Error analysis of generated inferences on the evaluation set of COM?. We present the generations of
COMET-Llama-7b and CoM?-Llama-7b fine-tuned on all queries.

of ip, a common error for one-hop COMET is the
generation of “None” for complex cases, indicating
a deficiency in multi-hop reasoning capabilities.
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