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Abstract

We present PandaGPT, an approach to
emPower large lANguage moDels with visual
and Auditory instruction-following capabilities.
Our pilot experiments show that PandaGPT
can perform complex tasks such as detailed
image description generation, writing stories
inspired by videos, and answering questions
about audios. More interestingly, PandaGPT
can take multimodal inputs simultaneously and
compose their semantics naturally. For exam-
ple, PandaGPT can connect how objects look
in an image/video and how they sound in an
audio. To do so, PandaGPT combines the multi-
modal encoders from ImageBind and the large
language models from Vicuna. Notably, only
aligned image-text pairs are required for the
training of PandaGPT. Thanks to the strong
capability of ImageBind in embedding data
from different modalities into the same space,
PandaGPT displays emergent, i.e. zero-shot,
cross-modal behaviors for data other than im-
age and text (e.g., video, audio, depth, thermal,
and IMU). We hope that PandaGPT serves as
an initial step toward building AGI that can per-
ceive and understand inputs in different modal-
ities holistically, as we humans do.

1 Introduction

Humans possess remarkable abilities to perceive
and understand information from diverse sensory
modalities, such as seeing a painting and hearing an
audio guide. Analogously, to learn simultaneously,
holistically, and directly from many different forms
of information holds great promise for enabling
machines to have a more comprehensive and better
understanding of the world. To this end, there has
been an emergent interest in developing artificial
intelligence (AI) systems capable of perceiving and
understanding information from multiple modali-
ties simultaneously in a manner similar to humans.

However, much of the prior research has focused
on tackling individual modalities in isolation. For

∗Major contributors. Contact: ys484@cam.ac.uk and
jcykcai@tencent.com.

†Work done during internship at Tencent AI Lab.

instance, while significant progress has been made
in text-to-image retrieval and generation (Radford
et al., 2021), visually-grounded instruction follow-
ing (Liu et al., 2023; Zhu et al., 2023), and speech
understanding and generation (Zhang et al., 2023a),
these advances have largely been confined to sepa-
rate combinations of text and other modalities or,
at best, a few visual modalities (e.g., image and
video). These models are limited in their ability
to connect information from different modalities
and lack the capacity to perceive and understand
multimodal inputs holistically, thereby neglecting
the inherent richness and complementary nature of
multimodal data.

In this paper, we present PandaGPT, the first
general-purpose model capable of instruction-
following data from six modalities. PandaGPT
leverages the power of multimodal encoders from
ImageBind (Girdhar et al., 2023) and the ex-
pressive language models from Vicuna (Chiang
et al., 2023), demonstrating impressive and emer-
gent cross-modal capabilities across six modalities,
namely, image/video, text, audio, depth, thermal,
and inertial measurement units (IMU). Crucially,
PandaGPT achieves these capabilities despite be-
ing only trained on aligned image-text pairs, thanks
to the shared embedding space provided by Image-
Bind.

This integration of multimodal information en-
ables PandaGPT to perform a wide range of tasks,
including generating detailed descriptions of im-
ages, composing engaging stories inspired by
videos, and providing accurate answers to ques-
tions about audio inputs. Most interestingly, the
core innovation of PandaGPT lies in its ability to
naturally compose the semantics of multimodal in-
puts, which enables a rich set of compositional mul-
timodal tasks across different modalities. For ex-
ample, it can seamlessly connect the visual appear-
ance of objects in a photo with their corresponding
sounds in an audio clip, producing a cohesive and
comprehensive understanding of the scene. These
cross-modal capabilities empower the model to go
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Figure 1: Illustration of PandaGPT. During training, we only train the linear projection matrix and the additional
LoRA weights (as indicated with dashed boxes) while keeping the parameters of ImageBind and Vicuna frozen.

beyond traditional unimodal analysis. We hope
PandaGPT serves as an initial step toward build-
ing AGI that can perceive and understand inputs in
different modalities holistically, as humans do.

2 Related Work

Large Language Models. Large language mod-
els (LLMs) pre-trained over massive unlabeled text
have dominated the field of natural language pro-
cessing (NLP) today (Radford et al., 2018; Devlin
et al., 2019; Radford et al., 2019; Brown et al.,
2020; Su et al., 2021, 2022b). With alignment tech-
niques such as supervised instruction tuning (Sanh
et al., 2021; Wei et al., 2021; Mishra et al., 2021)
and reinforcement learning from human feedback
(Stiennon et al., 2020; Ouyang et al., 2022), LLMs
exhibit surprisingly effective zero- and few-shot
generalization abilities to perform almost any NLP
tasks. The most successful examples could be Ope-
nAI’s ChatGPT (OpenAI, 2023b) and GPT4 (Ope-
nAI, 2023a), which have made a profound impact
on the entire AI research community and beyond.
There also have been enormous open-source efforts
to replicate the success, such as BLOOM (Scao
et al., 2022), LLaMA (Touvron et al., 2023), Al-
paca (Taori et al., 2023), Vicuna (Chiang et al.,
2023), OpenAlpaca (Su et al., 2023) among many
others.

Multi-modal Alignment. Feature alignment
among multiple modalities has attracted great inter-
est for its applications such as cross-modal retrieval
(Frome et al., 2013; Faghri et al., 2017; Alayrac

et al., 2020). Recently, CLIP (Radford et al., 2021)
learns a joint embedding space for image and text.
Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al.,
2023), and MAGIC (Su et al., 2022a) bridge power-
ful pre-trained vision-only and language-only mod-
els and show strong zero-shot abilities. Audio-
CLIP (Guzhov et al., 2022) adds audio into the
CLIP framework for audio classification. Image-
Bind (Girdhar et al., 2023) learn a joint embed-
ding across six different modalities (image/video,
text, audio, depth, thermal, and IMU data) using
image-paired data only. More recently, there has
been a surge of interest to combine multi-modal
alignment and large language models for multi-
modal instruction following. LLaVa (Liu et al.,
2023), Mini-GPT4 (Zhu et al., 2023), and Video-
LLaMA (Zhang et al., 2023b) enable visually-
grounded instruction following. DetGPT (Pi et al.,
2023) proposes reasoning-based object detection.
SpeechGPT (Zhang et al., 2023a) adds speech un-
derstanding and generation abilities to LLMs. How-
ever, these advances have largely been confined to
separate combinations of text and other modalities
(e.g., image/video or audio).

3 Method

PandaGPT combines the multi-modal encoders
from ImageBind (Girdhar et al., 2023) and the large
language models from Vicuna (Chiang et al., 2023),
achieving impressive capabilities in vision- and
audio-grounded instruction following tasks. To
align the feature space of multimodal encoders
from ImageBind and large language models from
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Figure 2: Example showing PandaGPT’s capability in
image-grounded question answering.

Vicuna1, we train PandaGPT using 160k image-
language instruction-following data released by Liu
et al. (2023) and Zhu et al. (2023). Each training in-
stance consists of an image I and a multi-turn con-
versation data (x1,y1, ...,xn,yn), where xi and
yi are the human’s instruction and the system’s re-
sponse at the i-th turn, respectively. To reduce the
number of trainable parameters, we only train (i) a
linear projection matrix f to connect the represen-
tation produced by ImageBind to Vicuna; and (ii)
additional LoRA (Hu et al., 2021) weights on the
Vicuna’s attention modules.2 Figure 1 illustrates
the architecture of PandaGPT.

The training objective of PandaGPT is defined
as

L(θf , θl) =
n∏

i=1

pθ(yi|x<i,y<i−1, f(hI)), (1)

where θf and θl correspond to the learnable pa-
rameters of the linear projection matrix and LoRA
weights. The hI is the image representation pro-
duced by ImageBind and θ = {θf , θl, θ1, θ2},
where θ1 and θ2 are frozen parameters of Im-
ageBind and Vicuna, respectively. Note that the
loss is only computed from the part of system re-
sponses during training. We train PandaGPT on
the image-language instruction-following dataset
for two epochs using a learning rate of 5e-4 with
linear decay. The maximum sequence length for
Vicuna-13B is set to 400 based on our computation
resources (8×A100 40G GPUs). The training takes
around 7 hours to complete.

1We use the version-0 of Vicuna-13B as our base language
model.

2The total number of trainable parameters is around 0.4%
of the parameters of Vicuna.

Figure 3: Example showing PandaGPT’s capability in
image/video-inspired creative writing.

It is worth noting that the current version of
PandaGPT is only trained with aligned image-text
data. However, by leveraging the binding prop-
erty across six modalities (image/video, text, au-
dio, depth, thermal, and IMU) inherited from Im-
ageBind, PandaGPT demonstrates emergent, i.e.
zero-shot, cross-modal capabilities across all of the
modalities.

4 Capabilities of PandaGPT

Compared to existing multimodal instruction-
following models trained individually for one par-
ticular modality, PandaGPT can understand and
combine the information in different forms to-
gether, including image/video, text, audio, depth
(3D), thermal (infrared radiation), and inertial mea-
surement units (IMU) readings. We find that the
capabilities of PandaGPT include but are not lim-
ited to:

• image/video-grounded question answering:
see examples of Figure 2 , 6, and 7.

• image/video-inspired creative writing: see
examples of Figure 3.

• visual and auditory reasoning: see examples
of Figure 4, 8, and 9.

• multimodal arithmetic: PandaGPT is also ca-
pable of working with input composed across
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Figure 4: Example showing PandaGPT’s capability in
visual reasoning.

modalities. By arithmetically adding infor-
mation from different modalities as input,
PandaGPT can produce results that reflect con-
cepts from different parts. See Figure 5 and 10
for examples of image and audio arithmetic,
and see Figure 11 and 12 for examples of
video and audio arithmetic.

5 Conclusion and Limitations

In this study, we present PandaGPT, the first
general-purpose model capable of instruction-
following data from six modalities. The training of
PandaGPT is designed in a parameter-efficient way
on a 160k vision-language instruction-following
dataset. Through extensive and concrete examples,
we demonstrate that PandaGPT possesses strong
vision-language capabilities and such capabilities
are transferable to other modalities in an emergent,
i.e. zero-shot, way.

Despite the amazing capabilities in handling mul-
tiple modalities and their combinations. There are
multiple ways to further improve PandaGPT.

1. The training of PandaGPT can be enriched by
using other alignment data, for instance, other
modalities paired with text (e.g., audio-text
pairs).

2. We only use one embedding vector from Im-

Figure 5: Example showing PandaGPT’s capability in
multimodal arithmetic (Image and Audio).

ageBind for the content in other modalities
than text. More research into fine-grained fea-
ture extraction such as cross-modal attention
mechanisms could be beneficial for the im-
provement of performance.

3. PandaGPT currently only allows multimodal
information to be used as input, future possi-
bilities include generating richer multimedia
content (e.g., creating images and response in
audio).

4. New benchmarks to evaluate the composition
ability of multimodal inputs is demanded.

5. PandaGPT can also exhibit several common
deficiencies of existing language models, in-
cluding hallucination, toxicity, and stereo-
types.

Lastly, we would like to note that PandaGPT is a
research prototype and cannot be readily used for
real-world applications.

References
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,

Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in Neural
Information Processing Systems, 35:23716–23736.

Jean-Baptiste Alayrac, Adria Recasens, Rosalia Schnei-
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A More Examples of PandaGPT

Figure 6: Example showing PandaGPT’s capability in image-grounded question answering.
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Figure 7: Example showing PandaGPT’s capability in video-grounded question answering.
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Figure 8: Example showing PandaGPT’s capability in auditory reasoning.
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Figure 9: Example showing PandaGPT’s capability in auditory reasoning.

20



Figure 10: Example showing PandaGPT’s capability in multimodal arithmetic (Image and Audio).
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Figure 11: Example showing PandaGPT’s capability in multimodal arithmetic (Video and Audio).
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Figure 12: Example showing PandaGPT’s capability in multimodal arithmetic (Video and Audio).
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