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Abstract

We present the Assignment-Maximization
Spectral Attribute removal. (AMSAL) algo-
rithm, which erases information from neural
representations when the information to be
erased is implicit rather than directly being
aligned to each input example. Our algorithm
works by alternating between two steps. In
one, it finds an assignment of the input rep-
resentations to the information to be erased,
and in the other, it creates projections of both
the input representations and the information
to be erased into a joint latent space. We test
our algorithm on an extensive array of data-
sets, including a Twitter dataset with multiple
guarded attributes, the BiasBios dataset, and
the BiasBench benchmark. The latter bench-
mark includes four datasets with various types
of protected attributes. Our results demon-
strate that bias can often be removed in our
setup. We also discuss the limitations of our
approach when there is a strong entanglement
between the main task and the information to
be erased.!

1 Introduction

Developing a methodology for adjusting neural
representations to preserve user privacy and avoid
encoding bias in them has been an active area of
research in recent years. Previous work shows it is
possible to erase undesired information from rep-
resentations so that downstream classifiers can-
not use that information in their decision-making
process. This previous work assumes that this
sensitive information (or guarded attributes, such
as gender or race) is available for each input in-
stance. These guarded attributes, however, are sen-
sitive, and obtaining them on a large scale is often
challenging and, in some cases, not feasible (Han
et al., 2021b). For example, Blodgett et al. (2016)

*Equal contribution.
'Our code is available at https://github.com
/jasonshaoshun/AMSAL.
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studied the characteristics of African-American
English on Twitter, and could not couple the
ethnicity attribute directly with the tweets they
collected due to the attribute’s sensitivity.

This paper introduces a novel debiasing setting
in which the guarded attributes are not paired
up with each input instance and an algorithm to
remove information from representations in that
setting. In our setting, we assume that each neural
input representation is coupled with a guarded at-
tribute value, but this assignment is unavailable.
In cases where the domain of the guarded attri-
bute is small (for example, with binary attributes),
this means that the guarded attribute informa-
tion consists of priors with respect to the whole
population and not instance-level information.

The intuition behind our algorithm is that if we
were to find a strong correlation between the input
variable and a set of guarded grounded attributes
either in the form of an unordered list of records
or as priors, then it is unlikely to be coincidental
if the sample size is sufficiently large (§3.5). We
implement this intuition by jointly finding pro-
jections of the input samples and the guarded
attributes into a joint embedding space and an
alignment between the two sets in that joint space.

Our resulting algorithm (§3), the Alignment-
Maximization Spectral Attribute removal. algo-
rithm (AMSAL), is a coordinate-ascent algorithm
reminiscent of the hard expectation-maximization
algorithm (hard EM; MacKay, 2003). It first loops
between two Alignment and Maximization steps,
during which it finds an alignment (A) based on
existing projections and then projects the repre-
sentations and guarded attributes into a joint space
based on an existing alignment (M). After these
two steps are iteratively repeated and an align-
ment is identified, the algorithm takes another
step to erase information from the input rep-
resentations based on the projections identified.
This step closely follows the work of Shao et al.
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Figure 1: A depiction of the problem setting and so-
lution. The inputs are aligned to each guarded sample,
based on strength using two projections U and V. We
solve a bipartite matching problem to find the blue
edges, and then recalculate U and V.

(2023), who use Singular Value Decomposition to
remove principal directions of the covariance ma-
trix between the input examples and the guarded
attributes. Figure 1 depicts a sketch of our set-
ting and the corresponding algorithm, with x;
being the input representations and z; being the
guarded attributes. Our algorithm is modular:
While our use of the algorithm of Shao et al.
(2023) for the removal step is natural due to the
nature of the AM steps, a user can use any such
algorithm to erase the information from the input
representations (§3.4).

Our contributions are as follows: (1) We
propose a new setup for removing guarded infor-
mation from neural representations where there
are few or no labeled guarded attributes; (2)
We present a novel two-stage coordinate-ascent
algorithm that iteratively improves (a) an align-
ment between guarded attributes and neural
representations; and (b) information removal
projections.

Using an array of datasets, we perform exten-
sive experiments to assess how challenging our
setup is and whether our algorithm is able to re-
move information without having aligned guarded
attributes (§4). We find in several cases that lit-
tle information is needed to align between neural
representations and their corresponding guarded
attributes. The consequence is that it is possible
to erase the information such guarded attributes
provide from the neural representations while
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preserving the information needed for the main
task decision-making. We also study the limita-
tions of our algorithm by experimenting with a
setup where it is hard to distinguish between the
guarded attributes and the downstream task labels
when aligning the neural representations with the
guarded attributes (§4.5).

2 Problem Formulation and Notation

For an integer n we denote by [n] the set
{1,...,n}. For a vector v, we denote by ||v|| its
£5 norm. For two vectors v and u, by default in col-
umn form, (v,u) = v'u (dot product). Matrices
and vectors are in boldface font (with uppercase
or lowercase letters, respectively). Random vari-
able vectors are also denoted by boldface upper-
case letters. For a matrix A, we denote by a;;
the value of cell (i,j). The Frobenius norm of
\/2_i.; ai;- The spectral
norm of a matrix is ||All, = maxy),—1 [|Ax]|,.
The expectation of a random variable T is de-
noted by E[T].

In our problem formulation, we assume three
random variables: X € R, Y € R, and Z € R,
such that d’ < d and the expectation of all three
variables is 0 (see Shao et al., 2023). Samples
of X are the inputs for a classifier to predict
corresponding samples of Y. The random vector
Z represents the guarded attributes. We want to
maintain the ability to predict Y from X, while
minimizing the ability to predict Z from X.

We assume n samples of (X,Y) and m sam-
ples of Z, denoted by (x¥), y®) for i € [n], and
2 for i € [m] (m < n). While originally, these
samples were generated jointly from the underly-
ing distribution p(X, Y, Z), we assume a shuffling
of the Z samples in such a way that we are only
left with m samples that are unique (no repeti-
tions) and an underlying unknown many-to-one
mapping 7 : [n] — [m] that maps each x*) to its
original z7).

The problem formulation is such that we need
to remove the information from the zs in such a
way that we consider the samples of zs as a set.
In our case, we do so by iterating between trying
to infer 7, and then using standard techniques to
remove the information from xs based on their
alignment to the corresponding zs.

a matrix A is [|[A||p =

Singular Value Decomposition Let A
E[XZ '], the matrix of cross-covariance between



X and Z. This means that A;; = Cov(X;, Z;) for
i €[d]and j € [d].

For any two vectors, a € ]Rd, b € R?, the fol-
lowing holds due to the linearity of expectation:

aAb' = Cov(a'X,b'Z). (1)

Singular value decomposition on A, in this
case, finds the ‘‘principal directions’’: directions
in which the projection of X and Z maximize
their covariance. The projections are represented
as two matrices U € R¥% and V' € R¥*?_ Each
column in these matrices plays the role of the
vectors a and b in Eq. 1. SVD finds U and V
such that for any ¢ € [d'] it holds that:

Cov(U/X,V,/Z)= max Cov(a'X,b'Z),

(a7b)€(9i

where O; is the set of pairs of vectors (a,b)

such that ||al|, = ||b]|, = 1, a is orthogonal to
Ui,...,U;_; and similarly, b is orthogonal to
Vl, ey Vifl.

Shao et al. (2023) showed that SVD in this
form can be used to debias representations. We
calculate SVD between X and Z and then prune
out the principal directions that denote the high-
est covariance. We will use their method, SAL
(Spectral Attribute removal.), in the rest of the
paper. See also §3.4.

3 Methodology

We view the problem of information removal
with unaligned samples as a joint optimization
problem of: (a) finding the alignment; (b) find-
ing the projection that maximizes the covariance
between the alignments, and using its comple-
ment to project the inputs. Such an optimization,
in principle, is intractable, so we break it down
into two coordinate-ascent style steps: A-step (in
which the alignment is identified as a bipartite
graph matching problem) and M-step (in which
based on the previously identified alignment,
a maximal-covariance projection is calculated).
Formally, the maximization problem we solve is:

n

(X(i))TUVTZ(i),
2)

where we constrain U and V' to be matrices with
orthonormal columns in R™*¥,
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Samples xM o x0) and
z(m),

Inputs:
z(1)
Algorithm: (calculate projection which removes
information from the xs that is in the zs)

ge ooy

Initialize 7 randomly to a function from [r] to [m].
Repeat the following for 7" iterations:

e (M-step) Using m, let 2 as in Eq. 3.
Calculate SVD on €2 to calculate (U, X, V).

* (A-step) With U and V as above, with top k
singular vectors, find 7 by solving the prob-
lem as in Eq. 2.

Return: The singular vectors from U that have
lowest singular values.

Figure 2: The main Assignment-Maximization Spectral
Attribute removal. (AMSAL) algorithm for removal
of information without alignment between samples of
X and Z.

Note that the sum in the above equation has
a term per pair of (x(¥),z™(), which enables us
to frame the A-step as an integer linear program-
ming (ILP) problem (§3.1). The full algorithm is
given in Figure 2, and we proceed in the next two
steps to further explain the A-step and the M-step.

3.1 A-step (Guarded Sample Assignment)

In the Assignment Step, we are required to find
a many-to-one alignment 7 : [n] — [m] between
{xW ... x™} and {z,...,z™}. Given U
and V' from the previous M-step, we can find
such an assignment by solving the following opti-
mization problem:

arg max Z(UTX(i), V Tz,
i=1

This maximization problem can be formulated
as an integer linear program of the following form:

i zn:pij<UTx(i), VTZ(j)>

max
Pef0,1jmxm =5
m
s.t. Vi. Zpij =1,
=1
m
vj. bo; < sz‘j < by
i—1

3)



This is a solution to an assignment prob-
lem (Kuhn, 1955; Ramshaw and Tarjan, 2012),
where p;; denotes whether x () is associated with
the (type of) guarded attribute z/). The values
(boj, b1;) determine lower and upper bounds on
the number of zs a given zU) can be assigned
to. While a standard assignment problem can be
solved efficiently using the Hungarian method of
Kuhn (1955), we choose to use the ILP formu-
lation, as it enables us to have more freedom in
adding constraints to the problem, such as the
lower and upper bounds.

3.2 M-step (Covariance Maximization)

The result of an A-step is an assignment 7 such
that 7(i) = j implies x(¥) was deemed as aligned
to z;. With that 7 in mind, we define the follow-
ing empirical covariance matrix 2, € R

NSO ()
Q, izlx <z ) (4)

We then apply SVD on €2, to get new U and
V that are used in the next iteration of the algo-
rithm with the A-step, if the algorithm continues
to run. When the maximal number of iterations is
reached, we follow the work of Shao et al. (2023)
in using a truncated part of U to remove the in-
formation from the xs. We do that by projecting
x() using the singular vectors of U with the
smallest singular values. These projected vectors
co-vary the least with the guarded attributes, as-
suming the assignment in the last A-step was pre-
cise. This method has been shown by Shao
et al. (2023) to be highly effective and efficient in
debiasing neural representations.

3.3 A Matrix Formulation of the AM Steps

Leteq,...,e,, be the standard basis vectors. This
means e; is a vector of length m with 0 in all
coordinates except for the ith coordinate, where
itis 1.

Let £ be the set of all matrices E where each
E < & is such that E € R™™ and each row
is one of e;, i € [m]. In that case, EZ' is an
n X d' matrix, such that the jth row is a copy
of the ith column of Z € R¥*". Therefore, the
AM steps can be viewed as solving the following
maximization problem using coordinate ascent:

argmax |[U'ZV — XEZTH;,
Ecg U, V.2
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where U, V are orthonormal matrices, and X is
a diagonal matrix with non-negative elements.
This corresponds to the SVD of the matrix
XEZ'.

In that case, the matrix E can be directly
mapped to an assignment in the form of 7, where
7(i) would be the j such that the jth coordinate
in the ith row of F is non-zero.

3.4 Removal Algorithm

The AM steps are best suited for the removal of
information through SVD with an algorithm such
as SAL. This is because AM steps are optimizing
an objective of the same type of SAL—relying on
the projections U and V' to project the inputs and
guarded representations into a joint space. How-
ever, a by-product of the algorithm in Figure 2 is
an assignment function 7 that aligns between the
inputs and the guarded representations.

With that assignment, other removal algo-
rithms can be used, for example, the algorithm of
Ravfogel et al. (2020). We experiment with this
idea in §4.

3.5 Justification of the AM Steps

We next provide a justification of our algorithm
(which may be skipped on a first reading). Our
justification is based on the observation that if
indeed X and Z are linked together (this con-
nection is formalized as a latent variable in their
joint distribution), then for a given sample that is
permuted, the singular values of €2 will be larger
the closer the permutation is to the identity per-
mutation. This justifies finding such a permuta-
tion that maximizes the singular values in an
SVD of Q.

More Details Let ¢ : [n] — [n] be the identity
permutation, ¢(i) = i. We will assume the case
in which n = m (but the justification can be
generalized to the case m < n), and that the
underlying joint distribution p(X, Z) is mediated
by a latent variable H, such that

p(X,Z,H) = p(H)p(X | H)p(Z | H). (5)

This implies there is a latent variable that con-
nects X and Z, and that the joint distribution
p(X,Z) is a mixture through H.



Proposition 1 (informal). Ler {(x,z")} be a
sample of size n from the distribution in Eq. 5.
Let 7 be a permutation over [n] uniformly sam-
pled from the set of permutations. Then with
high likelihood, the sum of the singular values
of Q is smaller than the sum of singular values
under €,.

For full details of this claim, see Appendix A.

4 Experiments

In our experiments, we test several combinations
of algorithms. We use the k-means (KMEANS) as
a substitute for the AM steps as a baseline for the
assignment step of s to zs. In addition, for the
removal step (once an assignment has been iden-
tified), we test two algorithms: SAL (Shao et al.,
2023; resulting in AMSAL) and INLP (Ravfogel
et al., 2020). We also compare these two algo-
rithms in oracle mode (in which the assignment
of guarded attributes to inputs is known), to see
the loss in performance that happens due to noisy
assignments from the AM or k-means algorithm
(OrACLESAL and OrAcLEINLP).

When running the AM algorithm or k-means,
we execute it with three random seeds (see also
§4.6) for a maximum of a hundred iterations and
choose the projection matrix with the largest ob-
jective value over all seeds and iterations. For the
slack variables (by; and by; variables in Eq. 3),
we use 20%-30% above and below the baseline
of the guarded attribute priors according to the
training set. With the SAL methods, we remove
the number of directions according to the rank of
the €2 matrix (between 2 to 6 in all experiments
overall).

In addition, we experiment with a partially
supervised assignment process, in which a small
seed dataset of aligned xs and zs is provided to the
AM steps. We use it for model selection: Rather
than choosing the assignment with the highest
SVD objective value, we choose the assignment
with the highest accuracy on this seed dataset.
We refer to this setting as PArRTIAL (for ‘‘partially
supervised assignment’’).

Finally, in the case of a gender-protected at-
tribute, we compare our results against a baseline
in which the input x is compared against a list of
words stereotypically associated with the genders
of male or female.> Based on the overlap with

’https://tinyurl.com/33bzddtw.
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these two lists, we heuristically assign the gen-
der label to x and then run SAL or INLP (rather
than using the AM algorithm). While this word-
list heuristic is plausible in the case of gender,
it is not as easy to derive in the case of other
protected attributes, such as age or race. We give
the results for this baseline using the marker WL
in the corresponding tables.

Main Findings Our overall main finding shows
that our novel setting in which guarded infor
mation is erased from individually unaligned
representations is viable. We discovered that
AM methods perform particularly well when deal-
ing with more complex bias removal scenarios,
such as when multiple guarded attributes are pres-
ent. We also found that having similar priors for
the guarded attributes and downstream task labels
may lead to poor performance on the task at hand.
In these cases, using a small amount of super-
vision often effectively helps reduce bias while
maintaining the utility of the representations for
the main classification of the regression problem.
Finally, our analysis of alignment stability shows
that our AM algorithm often converges to suit-
able solutions that align X with Z.

Due to the unsupervised nature of our prob-
lem setting, we advise validating the utility of
our method in the following way. Once we run
the AM algorithm, we check whether there is a
high-accuracy alignment between X and Y (rather
than Z, which is unavailable). If this alignment
is accurate, then we run the risk of significantly
damaging task performance. An example is given
in §4.5.

4.1 Word Embedding Debiasing

As a preliminary assessment of our setup and
algorithms, we apply our methods to GloVe word
embeddings to remove gender bias, and follow
the previous experiment settings of this problem
(Bolukbasi et al., 2016; Ravfogel et al., 2020;
Shao et al., 2023). We considered only the 150,000
most common words to ensure the embedding
quality and omitted the rest. We sort the remainiL%
embeddings by their projection on the he-she
direction. Then we consider the top 7,500 word
embeddings as male-associated words (z = 1)
and the bottom 7,500 as female-associated words
(z=-1).

Our findings are that both the k-means and the
AM algorithms perfectly identify the alignment


https://tinyurl.com/33bzddtw
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Figure 3: A t-SNE visualization of the word embed-
dings before and after gender information removal. In
(a) we see the embeddings naturally cluster into the
corresponding gender.

between the word embeddings and their asso-
ciated gender label (100%). Indeed, the dataset
construction itself follows a natural perfect clus-
tering that these algorithms easily discover. Since
the alignments are perfectly identified, the results
of predicting the gender from the word embed-
dings after removal are identical to the oracle
case. These results are quite close to the results of
a random guess, and we refer the reader to Shao
et al. (2023) for details on experiments with SAL
and INLP for this dataset. Considering Figure 3,
it is evident that our algorithm essentially follows
a natural clustering of the word embeddings into
two clusters, female and male, as the embeddings
are highly separable in this case. This is why the
alignment score of X (embedding) to Z (gender)
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is perfect in this case. This finding indicates that
this standard word embedding dataset used for
debiasing is trivial to debias—debiasing can be
done even without knowing the identity of the
stereotypical gender associated with each word.

4.2 BiasBios Results

De-Arteaga et al. (2019) presented the BiasBios
dataset, which consists of self-provided biogra-
phies paired with the profession and gender of
their authors. A list of pronouns and names is used
to obtain the authors’ gender automatically. They
aim to expose the caveats of automated hiring
systems by showing that even the simple task of
predicting a candidate’s profession can be affected
by the candidate’s gender, which is encoded in
the biography representation. For example, we
want to avoid one being identified as ‘‘he’’ or
“‘she’’ in their biography, affecting the likelihood
of them being classified as engineers or teachers.
We follow the setup of De-Arteaga et al.
(2019), predicting a candidate’s professions (y),
based on a self-provided short biography (x),
aiming to remove any information about the can-
didate’s gender (z). Due to computational con-
straints, we use only random 30K examples to
learn the projections with both SAL and INLP
(whether in the unaligned or aligned setting). For
the classification problem, we use the full dataset.
To obtain vector representations for the biogra-
phies, we use two different encoders, FastText
word embeddings (Joulin et al., 2016), and BERT
(Devlin et al., 2019). We stack a multi-class clas-
sifier on top of these representations, as there are
28 different professions. We use 20% of the train-
ing examples for the PArTIAL setting. For BERT,
we followed De-Arteaga et al. (2019) in using
the last CLS token state as the representation of
the whole biography. We used the BERT model
bert-base-uncased.

Evaluation Measures We use an extension of
the True Positive Rate (TPR) gap, the root mean
square (RMS) TPR gap of all classes, for eval-
uating bias in a multiclass setting. This metric
was suggested by De-Arteaga et al. (2019), who
demonstrated it is significantly correlated with
gender imbalances, which often lead to unfair
classification. The higher the metric value is,
the bigger the gap between the two categories
(for example, between male and female) for the



Model Task Acc. TPR-GAP
BERTMODEL 0.79 0.20
+ AMINLP 10.12 0.67  Jo0.12 0.09
+ KMEANS + INLP 10.11 0.68  J0.12 0.08
+ ORACLEINLP 10.11 0.68  J0.12 0.08
+ PARTIALINLP 10.12 0.67  J0.13 0.08
+ AMSAL 0.79  10.02 0.18
+ KMEANS + SAL 0.79  10.02 0.18
+ ORACLESAL 0.79  10.02 0.18
+ PARTIALSAL 0.79  10.02 0.18
+ WL + SAL 0.79  10.02 0.18
+ WL + INLP 10.12 0.68  |0.12 0.08
FASTTEXT 0.77 0.20
+ AMINLP 10.05 0.73  10.01 0.21
+ KMEANS + INLP 10.08 0.69 0.19
+ ORACLEINLP 10.03 0.74  Jo.10 0.09
+ PARTIALINLP 10.04 0.74  10.04 0.16
+ AMSAL 1003 0.74  10.03 0.17
+ KMEANS + SAL 10.04 0.73  10.02 0.17
+ ORACLESAL 10.01 0.76  10.08 0.12
+ PARTIALSAL 10.01 0.76  10.02 0.18
+ WL + SAL 1001 0.76  10.08 0.12
+ WL + INLP 10.03 0.74  lo.10 0.10

Table 1: BiasBios dataset results. The top part
uses BERT embeddings to encode the biographies,
while the bottom part uses FastText embeddings.

specific main task prediction. For the profession
classification, we report accuracy.

Results Table 1 provides the results for the bi-
ography dataset. We see that INLP significantly
reduces the TPR-GAP in all settings, but this
comes at a cost: The representations are signifi-
cantly less useful for the main task of predicting
the profession. When inspecting the alignments,
we observe that their accuracy is quite high with
BERT: 100% with k-means, 85% with the AM
algorithm, and 99% with PartiaL AM. For Fast-
Text, the results are lower, hovering around 55%
for all three methods. The high BERT assignment
performance indicates that the BiasBios BERT
representations are naturally separated by gender.
We also observe that the results of WL+SAL
and WL+INLP are correspondingly identical to
Oracle+SAL and Oracle+INLP. This comes as
no surprise, as the gender label is derived from
a similar word list, which enables the WL ap-
proach to get a nearly perfect alignment (over
96% agreement with the gender label).
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4.3 BiasBench Results

Meade et al. (2022) followed an empirical study
of an array of datasets in the context of debiasing.
They analyzed different methods and tasks, and
we follow their benchmark evaluation to assess
our AMSAL algorithm and other methods in the
context of our new setting. We include a short
description of the datasets we use in this section.
We include full results in Appendix B, with a
description of other datasets. We also encourage
the reader to refer to Meade et al. (2022) for details
on this benchmark. We use 20% of the training
examples for the PARTIAL setting.

StereoSet (Nadeem et al., 2021) This dataset
presents a word completion test for a language
model, where the completion can be stereotypical
or non-stereotypical. The bias is then measured
by calculating how often a model prefers the ste-
reotypical completion over the non-stereotypical
one. Nadeem et al. (2021) introduced the language
model score to measure the language model us-
ability, which is the percentage of examples for
which a model prefers the stereotypical or non-
stereotypical word over some unrelated word.

CrowS-Pairs (Nangia et al., 2020) This dataset
includes pairs of sentences that are minimally dif-
ferent at the token level, but these differences lead
to the sentence being either stereotypical or anti-
stereotypical. The assessment measures how many
times a language model prefers the stereotypi-
cal element in a pair over the anti-stereotypical
element.

Results We start with an assessment of the
BERT model for the CrowS-Pairs gender, race,
and religion bias evaluation (Table 2). We observe
that all approaches for gender, except AM+INLP,
reduce the stereotype score. Race and religion are
more difficult to debias in the case of BERT. INLP
with k-means works best when no seed align-
ment data is provided at all, but when we con-
sider PARTIALSAL, in which we use the alignment
algorithm with some seed aligned data, we see
that the results are the strongest. When we con-
sider the RoBERTa model, the results are sim-
ilar, with PARTIALSAL significantly reducing the
bias. Our findings from Table 2 overall indicate
that the ability to debias a representation highly
depends on the model that generates the rep-
resentation. In Table 10 we observe that the



Model Stt. Score Model Stt. Score Model Stt. Score

Gender Race Religion

BERT 57.25 BERT 62.33 BERT 62.86
+ AM + INLP 10.38 57.63 + AM + INLP 11.75 60.58 + AM + INLP 10.95 63.81
+ KMEANS + INLP 381 53.44 + KMEANS + INLP  14.85 67.18 + KMEANS + INLP 14.76 67.62
+ ORACLEINLP 14.58 52.67 + ORACLEINLP 15.63 67.96 + ORACLEINLP 1191 60.95
+ PARTIALINLP 14.58 52.67 + PARTIALINLP 15.63 67.96 + PARTIALINLP 1191 60.95
+ AMSAL 13.05 54.20 + AMSAL 10.19 62.52 + AMSAL 11.90 64.76
+ KMEANS + SAL 1229 54.96 + KMEANS + SAL 10.19 62.52 + KMEANS + SAL 11.90 64.76
+ ORACLESAL 15.72 51.53 + ORACLESAL 10.78 63.11 + ORACLESAL 14.76 67.62
+ PARTIALSAL 1572 51.53 + PARTIALSAL 10.78 63.11 + PARTIALSAL 14.76 67.62

ALBERT 48.09 ALBERT 62.52 ALBERT 60.00
+ AM + INLP 11.14 46.95 + AM + INLP 10.98 36.50 + AM + INLP 10.95 59.05
+ KMEANS + INLP 1038 47.71 + KMEANS + INLP  13.50 33.98 + KMEANS + INLP 19.52 69.52
+ ORACLEINLP 14.58 43.51 + ORACLEINLP 17.18 55.34 + ORACLEINLP 12.86 57.14
+ PARTIALINLP 14.20 43.89 + PARTIALINLP 17.18 55.34 + PARTIALINLP 12.86 57.14
+ AMSAL 10.76 47.33 + AMSAL 15.82 43.30 + AMSAL 110.48 70.48
+ KMEANS + SAL 10.38 48.47 + KMEANS + SAL 1640 43.88 + KMEANS + SAL 19.52 69.52
+ ORACLESAL 10.76 47.33 + ORACLESAL 13.69 41.17 + ORACLESAL 16.67 66.67
+ PARTIALSAL 10.76 47.33 + PARTIALSAL 13.69 41.17 + PARTIALSAL 16.67 66.67

RoBERTa 60.15 RoBERTa 63.57 RoBERTa 60.95
+ AM + INLP 13.45 56.70 + AM + INLP 19.31 45.74 + AM + INLP 14.76 65.71
+ KMEANS + INLP  |7.66 52.49 + KMEANS + INLP  ]6.79 43.22 + KMEANS + INLP 12.86 63.81
+ ORACLEINLP 1498 55.17 + ORACLEINLP 1175 61.82 + ORACLEINLP 1191 62.86
+ PARTIALINLP 1498 55.17 + PARTIALINLP 1175 61.82 + PARTIALINLP 1191 62.86
+ AMSAL 13.45 56.70 + AMSAL 11.74 65.31 + AMSAL 11238 73.33
+ KMEANS + SAL 13.83 56.32 + KMEANS + SAL 11.74 65.31 + KMEANS + SAL 11238 73.33
+ ORACLESAL 18.81 48.66 + ORACLESAL 13.48 67.05 + ORACLESAL 110.48 71.43
+ PARTIALSAL 18.81 48.66 + PARTIALSAL 13.48 67.05 + PARTIALSAL 11048 71.43

GPT-2 56.87 GPT-2 59.69 GPT-2 61.90
+ AM + INLP 16.11 50.76 + AM + INLP 13.88 55.81 + AM + INLP 61.90
+ KMEANS + INLP 2,67 54.20 + KMEANS + INLP  |1.16 58.53 + KMEANS + INLP 61.90
+ ORACLEINLP 16.49 50.38 + ORACLEINLP 10.19 59.88 + ORACLEINLP 61.90
+ PARTIALINLP 16.11 50.76 + PARTIALINLP 59.69 + PARTIALINLP 61.90
+ AMSAL 11.15 58.02 + AMSAL 14.65 55.04 + AMSAL 13.81 65.71
+ KMEANS + SAL 13.05 53.82 + KMEANS + SAL 15.43 45.74 + KMEANS + SAL 11.90 60.00
+ ORACLESAL 56.87 + ORACLESAL 14.85 54.84 + ORACLESAL 11524 77.14
+ PARTIALSAL 56.87 + PARTIALSAL 14.85 54.84 + PARTIALSAL t15.24 77.14

(a)

(b)

()

Table 2: (a) CrowS-Pairs Gender stereotype scores (Stt. score) in language models debiased by differ-
ent debiasing techniques and assignment; (b) CrowS-Pairs Race stereotype scores; (c) CrowS-Pairs
Religion stereotype scores. All models are deemed least biased if the stereotype score is 50%. The colored
numbers are calculated as | |b — 50| — |s — 50 | | where b is the top row score and s is the correspond-

ing system score.

representations, on average, are not damaged for
most GLUE tasks. Additional analysis, included
with a full version appendix, shows that the rep-
resentations, on average, are not damaged for
most GLUE tasks.

As Meade et al. (2022) have noted, when chang-
ing the representations of a language model to
remove bias, we might cause such adjustments
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that damage the usability of the language model.
To test which methods possibly cause such an
issue, we also assess the language model score
on the StereoSet dataset in Table 3. We overall
see that often SAL-based methods give a lower
stereotype score, while INLP methods more sig-
nificantly damage the language model score. This
implies that the SAL-based methods remove bias



Model S. Score (%) LM Score (%)
BERT 60.28 84.17
+ AM + INLP 11.14 59.14 10.43 83.75
+ KMEANS + INLP  J0.16 60.12 10.47 83.70
+ ORACLEINLP 1293 57.35 11.07 83.11
+ PARTIALINLP 1293 57.35 11.07 83.10
+ AMSAL 10.61 60.89 10.09 84.26
+ KMEANS + SAL 10.19 60.47 10.13 84.30
+ ORACLESAL 10.83 59.44 10.53 84.70
+ PARTIALSAL 10.83 59.44 10.53 84.70
ALBERT 59.93 89.77
+ AM + INLP 1029 59.64 1145 88.32
+ KMEANS + INLP 1059 59.34 10.08 89.69
+ ORACLEINLP 12.73 57.20 1159 88.17
+ PARTIALINLP 12.72 57.21 11.62 88.15
+ AMSAL 1022 59.71 1032 89.45
+ KMEANS + SAL 10.56 60.49 10.10 89.67
+ ORACLESAL 12.18 57.75 10.16 89.61
+ PARTIALSAL 12.18 57.75 10.16 89.61
RoBERTa 66.32 88.95
+ AM + INLP 1495 61.37 10.04 88.99
+ KMEANS + INLP  [2.20 64.13 11.47 87.48
+ ORACLEINLP 13.82 62.51 10.92 88.03
+ PARTIALINLP 13.82 62.51 1091 88.04
+ AMSAL 10.63 65.70 10.60 89.54
+ KMEANS + SAL 10.49 65.83 10.46 89.41
+ ORACLESAL 13.32 63.00 10.40 89.35
+ PARTIALSAL 13.32 63.00 10.40 89.35
GPT-2 62.65 91.01
+ AM + INLP 11.65 61.00 1377 87.24
+ KMEANS + INLP  |1.57 61.08 13.09 87.93
+ ORACLEINLP 1126 61.39 91.01
+ PARTIALINLP 1126 61.39 91.01
+ AMSAL 1158 61.07 10.23 90.79
+ KMEANS + SAL 14.00 58.64 10.60 90.41
+ ORACLESAL 14.55 58.09 11.75 89.26
+ PARTIALSAL 14.55 58.09 11.75 89.26

Table 3: StereoSet stereotype scores (Stt. Score)
and language modeling scores (LM Score) for the
gender category. Stereotype scores indicate the
least bias at 50% and the LM scores indicate high
usability at 100%.

effectively while less significantly harming the
usability of the language model representations.
We also conducted comprehensive results for
other datasets (SEAT and GLUE) and categories
of bias (based on race and religion). The results,
especially for GLUE, demonstrate the effective-
ness of our method of unaligned information
removal. For GLUE, we consistently retain the
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baseline task performance almost in full. See
Appendix B.

4.4 Multiple-Guarded Attribute Sentiment

We hypothesize that AM-based methods are bet-
ter suited for setups where multiple guarded at-
tributes should be removed, as they allow us to
target several guarded attributes with different
priors. To examine our hypothesis, we experi-
ment with a dataset curated from Twitter (tweets
encoded using BERT, bert-base—uncased),
in which users are surveyed for their age and
gender (Cachola et al., 2018). We bucket the age
into three groups (0-25, 26-50, and above 50).
Tweets in this dataset are annotated with their
sentiment, ranging from 1 (very negative) to 5
(very positive). The dataset consists of more than
6,400 tweets written by more than 1,700 users.
We removed users who no longer have public
Twitter accounts and users with locations that do
not exist based on a filter,? resulting in a dataset
with over 3,000 tweets, written by 817 unique us-
ers. As tweets are short by nature and their num-
ber is relatively small, the debiasing signal in
this dataset (the amount of information it contains
about the guarded attributes) might not be suffi-
cient for the attribute removal. To amplify this
signal, we concatenated each tweet in the dataset
to at most ten other tweets from the same user.

We study the relationship between the main
task of sentiment detection and the two protected
attributes of age and gender. As a protected at-
tribute z, we use the combination of both age and
gender as a binary one-hot vector. This dataset
presents a use-case for our algorithm of a com-
posed protected attribute. Rather than using a
classifier for predicting the sentiment, we use lin-
ear regression. Following Cachola et al. (2018),
we use Mean Absolute Error (MAE) to report the
error of the sentiment predictions. Given that the
sentiment is predicted as a continuous value, we
cannot use the TPR gap as in previous sections.
Rather, we use the following formula:

MAEGap = std(MAD,_; | j € [m]), (6)

3We used a list of cities, counties, and states in
the United States, taken from https://tinyurl.com
/4kmc6pyn. All users were in the United States when
the data was collected by the original curators.


https://tinyurl.com/4kmc6pyn
https://tinyurl.com/4kmc6pyn

Model MAE Age (gap)  Gender (gap)
BERTMODEL 0.745 0.031 0.011
+ AM + INLP 10.027 0.717 0.031  J0.008 0.003
+ KMEANS + INLP  10.052 0.693  10.001 0.030 10.010 0.021
+ ORACLEINLP 10022 0.723  10.008 0.022  10.005 0.017
+ PARTIALINLP 10.025 0.719  10.007 0.038 0.011
+ AMSAL 10.009 0.754  10.005 0.026  10.009 0.002
+ KMEANS + SAL  10.039 0.783  (0.001 0.030 ]0.007 0.004
+ ORACLESAL 10,012 0.757  10.002 0.029  10.009 0.003
+ PARTIALSAL 10.025 0.769  10.001 0.030  10.005 0.006

Table 4: MAE and debiasing gap values on the
Twitter dataset, when using BERT to encode the
tweets. For age and gender, we give the MAE gap
asin Eq. 5.

where MAD._; = 3> |mi; — pj| where i
ranges over the set of size ¢ of examples with
protected attribute value j, u; is the average of
absolute Y prediction error for that set and 7;;
is the absolute difference between 1i; and the ab-
solute error of example i.* The function std in
this case indicates the standard deviation of the m
values of MAD,_;, j € [m)].

Results Table 4 presents our results. Overall,
AMSAL reduces the gender and age gap in the
predictions while not increasing by much MAE.
In addition, we can see both AM-based meth-
ods outperform their k-means counterparts which
increase unfairness (KMeans + INLP) or signif-
icantly harm the downstream-task performance
(Kmeans + SAL). We also consider Figure 4,
which shows the quality of the assignments of the
AM algorithm change as a function of the labeled
data used. As expected, the more labeled data we
have, the more accurate the assignments are, but
the differences are not very large.

4.5 An Example of Our Method Limitations

We now present the main limitation in our ap-
proach and setting. This limitation arises when
the random variables Y and Z are not easily
distinguishable through information about X.
We experiment with a binary sentiment analysis
(y) task, predicted on users’ tweets (x), aim-
ing to remove information regarding the authors’
ethnic affiliations. To do so, we use a dataset
collected by Blodgett et al. (2016), which exam-
ined the differences between African-American
English speakers and Standard American English

“The absolute error of prediction a with true value b
is |a — bl.
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Figure 4: Accuracy of the AM steps with respect to age
and gender separately (on unseen data), as a function
of the fraction of the labeled dataset used by the AM
algorithm.

speakers. As information about one’s ethnicity is
hard to obtain, the user’s geolocation informa-
tion was used to create a distantly supervised
mapping between authors and their ethnic affilia-
tions. We follow previous work (Shao et al., 2023;
Ravfogel et al., 2020) and use the DeepMoji en-
coder (Felbo et al., 2017) to obtain representa-
tions for the tweets. The train and test sets are
balanced regarding sentiment and authors’ ethnic-
ity. We use 20% of the examples for the PARTIAL
setting. Table 5 gives the results for this dataset.
We observe that the removal with the assignment
(k-means, AM, or PartiaL) significantly harms
the performance on the main task and reduces it
to a random guess.

This presents a limitation of our algorithm.
A priori, there is no distinction between Y and
Z, as our method is unsupervised. In addition,
the positive labels of Y and Z have the same
prior probability. Indeed, when we check the as-
signment accuracy in the sentiment dataset, we
observe that the k-means, AM, and PArRTIAL AM
assignment accuracy for identifying Z are be-
tween 0.55 and 0.59. If we check the assignment
against Y, we get an accuracy between 0.74 and
0.76. This means that all assignment algorithms
actually identify Y rather than Z (both Y and Z
are binary variables in this case). The conclusion
from this is that our algorithm works best when
sufficient information on Z is presented such that
it can provide a basis for aligning samples of



Model Task Acc. TPR-GAP Model Fi (macro) TPR-GAP
DEEPMOIJ1I 0.77 0.14 DEEPMOIJIT 0.66 0.06
+ AM + INLP 0.77 0.14 + AM + INLP 10.0002 0.66 0.06
+ KMEANS + INLP 0.77 0.14 + KMEANS + INLP 10.1 0.56  10.02 0.04
+ ORACLEINLP 10.02 0.74 ]0.04 0.10 + ORACLEINLP 10.19 0.46  J0.06 0.00
+ PARTIALINLP 10.01 0.75 10.06 0.08 + PARTIALINLP 10.14 0.52  10.03 0.03
+ AMSAL 1024 0.52  10.03 0.17 + AMSAL 10.16 0.49  10.02 0.04
+ KMEANS + SAL 1023 0.54 +10.12 0.26 + KMEANS + SAL 10.17 0.48  10.04 0.02
+ ORACLESAL 0.76  10.03 0.11 + ORACLESAL 10.01 0.65 10.03 0.09
+ PARTIALSAL 10.19 0.57  10.15 0.29 + PARTIALSAL 10.11 0.54 0.06

Table 5: The performance of removing race information from the DeepMoji dataset is shown for
two cases: with balanced ratios of race and sentiment (left) and with ratios of 0.8 for sentiment and
0.5 for race (right). In both cases, the total size of the dataset used is 30,000 examples. To evaluate
the performance of the unbalanced sentiment dataset, we use the F| macro measure, because in an
unbalanced dataset such as this one, a simple classifier that always returns one label will achieve an
accuracy of 80%. Such a classifier would have a | macro score of 0.444.

Z with samples of X. Suppose such information
is unavailable or unidentifiable with information
regarding Y. In that case, we may simply iden-
tify the natural clustering of X according to
their main task classes, leading to low main-task
performance.

In Table 5, we observe that this behavior is
significantly mitigated when the priors over the
sentiment and the race are different (0.8 for sen-
timent and 0.5 for race). In that case, the AM
algorithm is able to distinguish between the race-
protected attribute (z) and the sentiment class (y)
quite consistently with INLP and SAL, and the
gap is reduced.

We also observe that INLP changed neither
the accuracy nor the TPR-GAP for the balanced
scenario (Table 5) when using a k-means assign-
ment or an AM assignment. Upon inspection, we
found out that INLP returns an identity projection
in these cases, unable to amplify the relatively
weak signal in the assignment to change the
representations.

4.6 Stability Analysis of the Alignment

In Figure 5, we plot the accuracy of the alignment
algorithm (knowing the true value of the guarded
attribute per input) throughout the execution of the
AM steps for the first ten iterations. The shaded
area indicates one standard deviation. We observe
that the first few iterations are the ones in which
the accuracy improves the most. For most of the
datasets, the accuracy does not decrease between
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Figure 5: Accuracy of the AM steps (in identifying
the correct assignment of inputs to guarded informa-
tion) as a function of the iteration number. Shaded
gray gives upper and lower bound on the standard
deviation over five runs with different seeds for the
initial 7. FastText refers to the BiasBios dataset, the
BERT models are for the CrowS-Pairs dataset and
Emb. refers to the word embeddings dataset from §4.1.

iterations, though in the case of DeepMoji we do
observe a ‘‘bump.’’ This is indeed why the PARTIAL
setting of our algorithm, where a small amount
of guarded information is available to determine
at which iteration to stop the AM algorithm, is
important. In the word embeddings case, the vari-
ance is larger because, in certain executions, the
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Figure 6: Ratio of the objective value in iteration ¢
and iteration O of the ILP for the AM steps as a
function of the iteration number ¢. Shaded gray gives
upper and lower bound on the standard deviation over
five runs with different seeds for the initial 7. See
legend explanation in Table 5.

algorithm converged quickly, while in others, it
took more iterations to converge to high accuracy.

Figure 6 plots the relative change of the ob-
jective value of the ILP from §3.1 against itera-
tion number. The relative change is defined as the
ratio between the objective value before the al-
gorithm begins and the same value at a given
iteration. We see that there is a relative stability
of the algorithm and that the AM steps converge
quite quickly. We also observe the DeepMoji
dataset has a large increase in the objective value
in the first iteration (around x5 compared to the
value the algorithm starts with), after which it
remains stable.

5 Related Work

There has been an increasing amount of work on
detecting and erasing undesired or protected in-
formation from neural representations, with stan-
dard software packages for this process having
been developed (Han et al., 2022). For example,
in their seminal work, Bolukbasi et al. (2016)
showed that word embeddings exhibit gender ste-
reotypes. To mitigate this issue, they projected the
word embeddings to a neutral space with respect
to a ‘‘he-she’’ direction. Influenced by this work,
Zhao et al. (2018) proposed a customized training
scheme to reduce the gender bias in word em-
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beddings. Gonen and Goldberg (2019) examined
the effectiveness of the methods mentioned above
and concluded they remove bias in a shallow way.
For example, they demonstrated that classifiers
can accurately predict the gender associated with
a word when fed with the embeddings of both
debiasing methods.

Another related strand of work uses adver-
sarial learning (Ganin et al., 2016), where an
additional objective function is added for balanc-
ing undesired-information removal and the main
task (Edwards and Storkey, 2016; Li et al., 2018;
Coavoux et al., 2018; Wang et al., 2021). Elazar
and Goldberg (2018) have also demonstrated
that an ad-hoc classifier can easily recover the
removed information from adversarially trained
representations. Since then, methods for informa-
tion erasure such as INLP and its generalization
(Ravfogel et al., 2020, 2022), SAL (Shao et al.,
2023) and methods based on similarity measures
between neural representations (Colombo et al.,
2022) have been developed. With a similar moti-
vation to ours, Han et al. (2021b) aimed to ease
the burden of obtaining guarded attributes at a
large scale by decoupling the adversarial informa-
tion removal process from the main task training.
They, however, did not experiment with debi-
asing representations where no guarded attribute
alignments are available. Shao et al. (2023) exper-
imented with the removal of features in a scenario
in which a low number of protected attributes is
available.

Additional previous work showed that methods
based on causal inference (Feder et al., 2021),
train-set balancing (Han et al., 2021a), and con-
trastive learning (Shen et al., 2021; Chi et al.,
2022) effectively reduce bias and increase fair-
ness. In addition, there is a large body of work for
detecting bias, its evaluation (Dev et al., 2021)
and its implications in specific NLP applica-
tions. Savoldi et al. (2022) detected a gender
bias in speech translation systems for gendered
languages. Gender bias is also discussed in the
context of knowledge base embeddings by Fisher
et al. (2019); Du et al. (2022), and multilingual
text classification (Huang, 2022).

6 Conclusions and Future Work

We presented a new and challenging setup for
removing information, with minimal or no avail-
able sensitive information alignment. This setup



is crucial for the wide applicability of debiasing
methods, as for most applications, obtaining such
sensitive labels on a large scale is challenging. To
ease this problem, we present a method to erase
information from neural representations, where
the guarded attribute information does not accom-
pany each input instance. Our main algorithm,
AMSAL, alternates between two steps (Assign-
ment and Maximization) to identify an assignment
between the input instances and the guarded in-
formation records. It then completes its execu-
tion by removing the information by minimizing
covariance between the input instances and the
aligned guarded attributes. Our approach is mod-
ular, and other erasure algorithms, such as INLP,
can be used with it. Experiments show that we
can reduce the unwanted bias in many cases while
keeping the representations highly useful. Future
work might include extending our technique to
the kernelized case, analogously to the method
of Shao et al. (2023).

Ethical Considerations

The AM algorithm could potentially be misused
by, rather than using the AM steps to erase infor-
mation, using them to link records of two differ-
ent types, undermining the privacy of the record
holders. Such a situation may merit additional
concern because the links returned between the
guarded attributes and the input instances will
likely contain mistakes. The links are unreliable
for decision-making at the individual level. In-
stead, they should be used on an aggregate as
a statistical construct to erase information from
the input representations. Finally,> we note that
the automation of the debiasing process, without
properly statistically confirming its accuracy us-
ing a correct sample, may promote a false sense
of security that a given system is making fair de-
cisions. We do not recommend using our method
for debiasing without proper statistical control
and empirical verification of correctness.
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A Justification of the AM Algorithm:
Further Details

We provide here the full details for the claim in
§3.5. Our first observation is that for a uniformly
sampled permutation 7: [n] — [n], the probabil-
ity that it has exactly £ < n elements such that
m(i) = 4 for all ¢ in this set of elements is
bounded from above by:®

We also assume that E[X | H] = 0 and
E[Z | H] = 0, and that the product of every pair
of coordinates of X and Z is bounded in absolute
value by a constant B > 0. Let {(x(¥, z()) h(®)}
be a random sample of size n from the joint
distribution p(X,Z,H). Given a permutation
7: [n] — [n], define I(w) = {i | w(i) = i}.
For a given set M C [n], define

Qs = 3 xD(ETO)T,
ieM

For a matrix A € R¥™? let o;(A) be its
jth largest singular value, and let o (A)
> 0i(A). Leto™ = o™ (E[Q,]).

We first note that for any permutation 7, i
holds that E[Q;x] = 0 where we define K

(] \ I ().

Lemma 1. For anyt > 0, it holds that:

p(HQﬂ"I(T{') - E[QWH(W)]H? > dd/t) (7)
t2
is smaller than 2dd’ exp <_u(77)|32>

Proof. By Hoeffding’s inequality, for any ¢ € [d],
j € [d], it holds that the probability that for

%Choose k elements that are fixed, and let the rest vary
arbitrarily.



|I(r)| i.i.d. random variables X*, Z* the follow-
ing is true:

Z Xrzh — Z E[XFzh)| >t

kel(m kel(mw

is smaller than 2 exp (—ﬁ) Therefore, by

a union bound on each element of the matrix 2,
we get the upper bound on Eq. 7. O

Lemma 2. Foranyt > 0, it holds that:

1920k — E[Qqr k]l

is smaller than 2| K |dd' B

Proof. Since X; and Z; are bounded as a product
in absolute value by B, and the dimensions of
Qi is d x d’, each cell being a sum of |K]|
values, the bound naturally follows. O

Let n such that no™ > 2kdd'B where k = |K|.
Then from Lemma 2, [|Q;x — E[Qk]l, <
no*. Consider the event o™ (€2,) < o (). Its
probability is bounded from above by the proba-
bility of the event o (£2,) < no™ OR o () >
no™ (for any n as the above). Due to the in-
equality of Weyl (Theorem 1 in Stewart 1990;
see below), the fact that Qr = Q1 x + Qrj1(n),
Lemma 1, and the fact that n — k < n, the prob-
ability of this OR event is bounded from above
by 4dd’ exp (—%)

The conclusion from this is that if we were to
sample uniformly a permutation 7 from the set
of permutations over [n], then with quite high
likelihood (because the fraction of elements that
are preserved under m becomes smaller as n be-
comes larger), the sum of the singular values of
2. under this permutation will be smaller than
the sum of the singular values of £2,—meaning,
when the xs and the zs are correctly aligned. This
justifies our objective of aligning the xs and the
zs with an objective that maximizes the singular
values, following Proposition 1.

Inequality of Weyl (1912) As mentioned by
Stewart (1990), the following holds:

L~emma 3. Let A and E be two matrices, and let
A = A+ E. Let 0; be the ith singular value of
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A and &; be the ith singular value of A. Then
|0 — il < ||El].

B Comprehensive Results on the
BiasBench Datasets

We include more results for the SEAT dataset
from BiasBench and for the CrowS-Pairs dataset
and StereoSet datasets for bias categories other
than gender. A description of the SEAT and
GLUE datasets (with metrics used) follows.

SEAT (May et al., 2019) SEAT is a sentence-
level extension of WEAT (Caliskan et al., 2017),
which is an association test between two catego-
ries of words: attribute word sets and target word
sets. For example, attribute words for gender bias
could be { he, man }, while a target words could
be { career, office }. For example, an attribute
word set (in case of gender bias) could be a set
of words such as { he, him, man }, while a target
word set might be words related to office work.
If we see a high association between an attribute
word set and a target word set, we may claim
that a particular gender bias is encoded. The final
evaluation is calculated by measuring the simi-
larity between the different attributes and target
word sets. To extend WEAT to a sentence-level
test, (Caliskan et al., 2017) incorporated the
WEAT attribute and target words into synthetic
sentence templates.

We use an effect size metric to report our
results for SEAT. This measure is a normalized
difference between cosine similarity of repre-
sentations of the attribute words and the target
words. Both attribute words and target words are
split into two categories (for example, in rela-
tion to gender), so the difference is based on four
terms, between each pair of each category set
of words (target and attribute). An effect size
closer to zero indicates less bias is encoded in
the representations.

GLUE (Wang et al., 2019) We follow Meade
et al. (2022) and use the GLUE dataset to test the
debiased model on an array of downstream tasks
to validate their usability. GLUE is a highly pop-
ular benchmark for testing NLP models, contain-
ing a variety of tasks, such as classification tasks
(e.g., sentiment analysis), similarity tasks (e.g.,



Model S. Score (%) LM Score (%) Model S. Score (%) LM Score (%)

Race Religion

BERT 57.03 84.17 BERT 59.70 84.17
+ AM + INLP 11.23 58.26 10.65 83.53 + AM + INLP 13.22 62.92 10.60 83.58
+ KMEANS + INLP  10.32 57.35 10.63 83.54 + KMEANS + INLP  11.67 61.38 10.28 83.89
+ ORACLEINLP 10.33 57.36 11.05 83.12 + ORACLEINLP 10.61 60.31 10.82 83.35
+ PARTIALINLP 10.33 57.36 11.05 83.12 + PARTIALINLP 10.61 60.31 10.82 83.35
+ AMSAL 11.98 59.01 10.55 84.72 + AMSAL 1142 61.12 10.60 84.77
+ KMEANS + SAL 12.10 59.13 10.49 84.66 + KMEANS + SAL 11.83 61.53 10.62 84.79
+ ORACLESAL 11.85 58.88 10.76 84.93 + ORACLESAL 10.09 59.79 10.68 84.85
+ PARTIALSAL 11.85 58.88 10.76 84.93 + PARTIALSAL 10.09 59.79 10.68 84.85
ALBERT 57.57 89.77 ALBERT 60.32 89.77
+ AM + INLP 10.94 56.63 1225 87.52 + AM + INLP 11.85 62.17 1120 88.57
+ KMEANS + INLP 1142 59.00 12.04 87.72 + KMEANS + INLP  12.78 63.10 1141 88.36
+ ORACLEINLP 12.54 55.04 1195 87.82 + ORACLEINLP 13.45 63.77 10.91 88.86
+ PARTIALINLP 12,54 55.04 11,97 87.80 + PARTIALINLP 13.45 63.77 10.91 88.86
+ AMSAL 10.84 56.73 10.09 89.86 + AMSAL 10.78 59.54 10.39 90.15
+ KMEANS + SAL 1131 56.27 10.06 89.82 + KMEANS + SAL 1039 59.94 10.36 90.13
+ ORACLESAL 1031 57.26 10.75 90.52 + ORACLESAL 11.18 59.14 11.26 91.02
+ PARTIALSAL 10.31 57.26 10.75 90.52 + PARTIALSAL 11.18 59.14 11.26 91.02
GPT-2 58.83 91.01 GPT-2 63.26 91.01
+ AM + INLP 10.90 57.93 1555 85.47 + AM + INLP 11.90 61.36 1657 84.44
+ KMEANS + INLP  10.10 58.93 10.94 90.07 + KMEANS + INLP  11.66 64.92 10.88 90.14
+ ORACLEINLP 10.21 59.04 10.04 91.06 + ORACLEINLP 10.69 63.95 10.19 91.21
+ PARTIALINLP 10.21 59.04 10.03 91.05 + PARTIALINLP 10.69 63.95 10.19 91.21
+ AMSAL 13.15 55.69 10.43 90.59 + AMSAL 14.83 58.43 10.60 90.41
+ KMEANS + SAL 12.65 56.18 10.08 91.09 + KMEANS + SAL 12.57 60.69 10.41 90.60
+ ORACLESAL 13.09 55.75 12.09 88.92 + ORACLESAL 1548 57.78 1391 87.10
+ PARTIALSAL 13.09 55.75 12.09 88.92 + PARTIALSAL 15.48 57.78 1391 87.10
RoBERTa 61.67 88.95 RoBERTa 64.28 88.95
+ AM + INLP 1731 54.37 13.06 85.88 + AM + INLP 13.84 60.44 14.09 84.86
+ KMEANS + INLP  |5.67 56.00 13.95 85.00 + KMEANS + INLP  [1.37 6291 12.82 86.13
+ ORACLEINLP 1342 58.26 10.01 88.96 + ORACLEINLP 13.94 60.34 10.83 88.12
+ PARTIALINLP 1342 58.26 10.02 88.96 + PARTIALINLP 13.94 60.34 10.84 88.11
+ AMSAL 10.74 62.41 11.02 89.96 + AMSAL 11.64 62.64 11.00 89.95
+ KMEANS + SAL 10.71 62.39 11.03 89.97 + KMEANS + SAL 12.04 62.24 10.99 89.93
+ ORACLESAL 11.79 63.47 10.49 89.44 + ORACLESAL 11.92 62.36 11.11 90.06
+ PARTIALSAL 11.79 63.47 10.49 89.44 + PARTIALSAL 1192 62.36 11.11 90.06

(a) (b)

Table 6: (a) StereoSet stereotype scores and language modeling scores (LM Score) for race debiased
BERT, ALBERT, RoBERTa, and GPT-2 models. Stereotype scores are least biased at 50% and the LM
Scores are best at 100%; (b) StereoSet stereotype scores and language modeling scores (LM Score) for
religion debiased BERT, ALBERT, RoBERTa, and GPT-2 models. Stereotype scores are least biased
at 50% and the LM Scores are best at 100%.

paraphrase identification), and inference tasks e Tables 7, 8, and 9 describe the SEAT effect

(e.g., question-answering). sizes for the gender, race, and religion cases,
The following tables of results are included: respectively.

e Table 6 presents the StereoSet results for re- e Table 10 presents the scores the debi-

moving the race (a) and religion (b) guarded ased representations achieve for the GLUE
attributes. benchmark.
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Model SEAT6 SEAT6b SEAT7 SEAT7b SEAT8 SEAT8b Avg. Effect Size

BERT 0931* 0090 -0.124 0937* 0783* 0.858* 0.620
+ AM + INLP 0744  -0.006 0036 0.968* 0.828* 0.849 * 10.049 0.572
+ KMEANS + INLP  0.809*  0.013 -0.084 0812* 0.756* 0.785" 10.077 0.543
+ ORACLEINLP 0269  -0339  —0403  0437* 0399  0.289 10264 0.356
+ PARTIALINLP 0269  -0338  —0404 0436* 0399  0.289 10265 0.356
+ AMSAL 0928*  0.110 -0.191 0.717* 0756* 0.756 * 10.044 0.576
+KMEANS + SAL  0.925*  0.109 -0.190 0.722* 0.752* 0.752* 10.046 0.575
+ ORACLESAL 0387  -0301 -0.876 -0.192 0299  0.309 10227 0.394
+ PARTIALSAL 0387  -0301 -0.876 -0.192 0299  0.309 10227 0.394

ALBERT 0.637* 0151  0487* 0956* 0.683* 0.823* 0.623
+ AM + INLP 0.620*  0.165  0408* 0.854* 0.649* 0.744 * 10.049 0.573
+ KMEANS + INLP  0.645*  0.147  0408* 0.822* 0.660* 0.829* 10.038 0.585
+ ORACLEINLP 0464 —0.084 —0222  0467* 0215  0.462* 10304 0.319
+ PARTIALINLP 0464  —0.084 —0222  0467* 0215  0.462* 10304 0.319
+ AMSAL 0.640* 0138 0477 0.933* 0.666* 0.820 10.010 0.612
+ KMEANS + SAL  0.640* 0136 0474* 0933* 0664* 0818* 10.012 0.611
+ ORACLESAL 0468 * -0.067 -0230 0312 0305  0.545* 10302 0.321
+ PARTIALSAL 0468 * -0.067 -0230 0312 0305  0.545* 10302 0.321

RoBERTa 0922* 0208  0979* 1.460* 0810* 1.261* 0.940
+ AM + INLP 0982* 0262  0845* 1.575* 0.840* 1.395* £0.043 0.983
+ KMEANS + INLP 0933 *  0.238 1090 1.595* 1.148* 1.435* £0.133 1.073
+ ORACLEINLP 0781* 0014  0651* 1281* 0708* 1.160* 10.174 0.766
+ PARTIALINLP 0782* 0014  0651* 1282* 0708* 1.161* 10.174 0.766
+ AMSAL 0902  0.187 1.021* 1.549* 0.893*  1.386 " £0.050 0.990
+KMEANS + SAL  0.920*  0.182  1.017* 1549* 0885* 1.389* £0.051 0.990
+ ORACLESAL 0.695* -0.014  0550* 1315* 0.684* 1.170* 10202 0.738
+ PARTIALSAL 0.695* -0.014  0550* 1315* 0.684* 1.170* 10202 0.738

GPT2 0.138 0.003  —0.023  0.002 -0.224 —0.287 0.113
+ AM + INLP 0.141 0009 -0.017 0010 -0213 -0.283 10.001 0.112
+ KMEANS + INLP  0.138 0006  —0.024  0.002 -0.223  —0.287 0.113
+ ORACLEINLP 0.130  -0.005 -0.024  0.000 -0229 -0.291 0.113
+ PARTIALINLP 0.130  -0.005 -0.024  0.000 -0229 -0.291 0.113
+ AMSAL 0.280 0.199 0900 0352 0408  0.118 10263 0.376
+ KMEANS + SAL 0298  —0.304 0030  0.044  0.114  —0.096 £0.035 0.148
+ ORACLESAL 0.155  -0379  -0.093 -0.059 -0.039 -0.173 £0.037 0.150
+ PARTIALSAL 0.155  -0379  -0.093 -0.059 -0.039 -0.173 £0.037 0.150

Table 7: SEAT effect sizes for gender-debiased representations of BERT, ALBERT, RoBERTa, and
GPT-2 models. Effect sizes closer to 0 are indicative of less biased model representations. Statistically
significant effect sizes at p < 0.01 are denoted by *. The final column reports the average absolute
effect size across all six gender SEAT tests for each debiased model.
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Model ABW-1 ABW-2 SEAT-3 SEAT-3b SEAT-4 SEAT-5 SEAT-5b  Avg. Effect Size

BERT ~0.079  0.690* 0778* 0469* 0901* 0887*  0.539* 0.620
+AM + INLP 055  0.583* 0.769* 0341° 0889 0937*  0.403* 10.038 0.582
+KMEANS + INLP  0.097  0.590* 0.775* 0381° 0.882* 0.888*  0.357* 10,053 0.567
+ ORACLEINLP 0295  0.565* 0.799* 0369° 0977 1.039* 0432~ 10.019 0.639
+ PARTIALINLP 0295  0565* 0.799* 0370° 0976* 1.039* 0432~ 10.019 0.639
+ AMSAL 0.138  0.621* 0.797* 0374% 0911* 1.015*  0435* 10.007 0.613
+ KMEANS + SAL 0131  0.624* 0.798* 0373° 0912* 1.013*  0436* 10.008 0.612
+ ORACLESAL —0.021  0.643* 0.788* 0.357* 0.885* 0.894*  0431* 10.046 0.574
+ PARTIALSAL ~0.021  0.643* 0.788* 0.357* 0.885* 0.894*  0.431* 10.046 0.574

ALBERT ~0.014 0410  1.132* -0252  0956* 1.041*  0.058 0.552
+AM + INLP —0.150  0505* 1.149* -0244  0982* 1.075* -0.036 10.040 0.592
+KMEANS + INLP  —0.015  0484* 1.162* -0228  0988* 1.067* -0.033 10.017 0.568
+ ORACLEINLP 0040  0534* 1.165* -0.150 0996 1.116*  0.021 10.023 0.574
+ PARTIALINLP 0040  0.534* 1.165* -0.150 0996 1.116*  0.021 10.023 0.574
+ AMSAL 0283  0471* 0985* -0299  0.802* 0938* -0.063 10.003 0.549
+ KMEANS + SAL 0292  0472* 0980* -0294  0.799* 0935* —-0.060 10.004 0.547
+ ORACLESAL 0300* 0471* 0994* -0281  0813* 0.949* —0.089 10.005 0.557
+ PARTIALSAL 0.300* 0471* 0994* -0281  0813* 0949* —0.089 10.005 0.557

RoBERTa 0.395* 0.159 -0.114 -0.003 -0315 0.780*  0.386* 0.307
+AM + INLP 0257  0.534* 0381* 0138 0202  0.646*  0.300* 10.044 0.351
+KMEANS + INLP 0270  0466* 0242* 0116 0079 0627 0310~ 10.006 0.301
+ ORACLEINLP 0222 0445 0354* 0130 0125  0.636*  0.301* 10.009 0.316
+ PARTIALINLP 0222 0445 0354* 0130 0125  0.636*  0.301* 10.009 0.316
+ AMSAL 0317* 0520* 0471* 0211  0314* 0576*  0275* 10.076 0.384
+ KMEANS + SAL 0314* 0522* 0476* 0212  0320* 0579*  0276* 10.078 0.385
+ ORACLESAL 0170 0220 0401* 0227 0225  0471* 0268 * 10.024 0.283
+ PARTIALSAL 0170 0220 0401* 0227 0225  0471*  0268* 10.024 0.283

GPT-2 1.060* —-0.200 0431* 0243* 0133  0.69* 0370 " 0.448
+AM + INLP 1.046* —0.169  0472* 0257 0.172  0.686*  0.366 " 10.005 0.452
+KMEANS + INLP  1.059* -0.189  0440* 0248 0.141  0.695* 0373~ 10.002 0.449
+ ORACLEINLP 1.060* -0200 0433* 0246° 0.135  0.693*  0.364* 0.447
+ PARTIALINLP 1.060* -0200 0433* 0246° 0.135 0693  0.364" 0.447
+ AMSAL ~0525  0.57 0.654* 0.398* 0.327* 0.120 0.117 10.119 0.328
+KMEANS + SAL  -0459  0.179  1.088* 0499* 0.827* 0.594* 0271~ 10.112 0.560
+ ORACLESAL 0.183  0.101  1.095* 0515* 0836* 0817°  0347* 10.109 0.556
+ PARTIALSAL 0.83  0.101 1.095* 0515* 0836* 0817°  0347* 10.109 0.556

Table 8: SEAT effect sizes for race debiased BERT, ALBERT, RoBERTa, and GPT-2 models. Effect
sizes closer to 0 are indicative of less biased model representations. Statistically significant effect sizes
at p < 0.01 are denoted by *. The final column reports the average absolute effect size across all six
gender SEAT tests for each debiased model.
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Model Religion-1 Religion-1b  Religion-2 Religion-2b Avg. Effect Size

BERT 0.744 * -0.067 1.009 * -0.147 0.492
+ AM + INLP 0.530 * -0.184 0.847 * -0.156 10.062 0.429
+ KMEANS + INLP 0.574 * -0.253 0.919 * -0.308 10.022 0.514
+ ORACLEINLP 0473 * -0.301 0.787 * -0.280 10.031 0.460
+ PARTIALINLP 0.473 * -0.301 0.787 * -0.280 10.031 0.460
+ AMSAL 0.683 * -0.117 0.941 * -0.178 10.012 0.480
+ KMEANS + SAL 0.686 * -0.112 0.938 * -0.180 10.013 0.479
+ ORACLESAL 0.735 * -0.036 0.884 * -0.156 10.039 0.453
+ PARTIALSAL 0.735* -0.036 0.884 * -0.156 10.039 0.453

ALBERT 0.203 -0.117 0.848 * 0.555* 0.431
+ AM + INLP 0.208 -0.065 0.891 * 0.557 * 10.001 0.430
+ KMEANS + INLP 0.126 -0.138 0.839 * 0518 * 10.025 0.405
+ ORACLEINLP 0.206 -0.110 0.727 * 0.385* 10.074 0.357
+ PARTIALINLP 0.206 -0.110 0.727 * 0.385 * 10.074 0.357
+ AMSAL 0.024 -0.256 0.722 * 0418 * 10.076 0.355
+ KMEANS + SAL 0.027 -0.253 0.722 * 0.415* 10.077 0.354
+ ORACLESAL 0.116 -0.168 0.585 * 0.289 10.141 0.289
+ PARTIALSAL 0.116 -0.168 0.585* 0.289 10.141 0.289

RoBERTa 0.132 0.018 -0.191 -0.166 0.127
+ AM + INLP -0.042 -0.203 -0.255 -0.273 10.067 0.193
+ KMEANS + INLP -0.014 -0.204 -0.187 -0.304 10.051 0.177
+ ORACLEINLP -0.309 -0.347 -0.191 -0.135 10.119 0.246
+ PARTIALINLP -0.309 -0.347 -0.191 -0.135 10.119 0.246
+ AMSAL -0.169 -0.228 -0.014 0.009 10.022 0.105
+ KMEANS + SAL -0.172 -0.231 -0.011 0.011 10.020 0.106
+ ORACLESAL -0.063 -0.208 -0.203 -0.109 10.019 0.146
+ PARTIALSAL -0.063 -0.208 -0.203 -0.109 10.019 0.146

GPT-2 -0.332 -0.271 0.617 * 0.286 0.376
+ AM + INLP -0.326 -0.264 0.671 * 0.333 10.022 0.399
+ KMEANS + INLP -0.331 -0.271 0.624 * 0.297 10.004 0.380
+ ORACLEINLP -0.331 -0.271 0.615* 0.284 10.001 0.375
+ PARTIALINLP -0.331 -0.271 0.615* 0.284 10.001 0.375
+ AMSAL 0.087 0.064 0.767 * 0.341 10.062 0.315
+ KMEANS + SAL 0.274 0.300 1.014 * 0.534 * 10.154 0.531
+ ORACLESAL -0.101 —-0.089 1.144 * 0.779 * 10.152 0.528
+ PARTIALSAL -0.101 -0.089 1.144 * 0.779 * 10.152 0.528

Table 9: SEAT effect sizes for religion debiased BERT, ALBERT, RoBERTa, and GPT-2 models.
Effect sizes closer to 0 are indicative of less biased model representations. Statistically significant effect
sizes at p < 0.01 are denoted by *. The final column reports the average absolute effect size across all
six gender SEAT tests for each debiased model.
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Model cola. mnli mrpc qnli qqp rte sst2  stsb  wanli Average
BERT 56.50 84.73 87.67 91.35 91.00 64.38 92.55 88.51 44.60 77.92
+ AM + INLP 57.69 84.67 88.75 91.24 90.88 64.38 92.74 88.80 42.25 10.01 77.93
+ KMEANS + INLP 56.84 84.72 8823 9135 9094 64.02 92.62 88.61 40.38 040 77.52
+ ORACLEINLP 5744 84.62 88.32 91.37 91.02 63.66 92.74 88.32 4648 1030 78.22
+ PARTIALINLP 57.36 84.68 88.09 91.36 91.05 6546 9247 88.74 43.19 10.12 78.04
+ AMSAL 57.19 84.85 8848 91.28 9096 63.78 92.66 88.75 37.56 J0.64 77.28
+ KMEANS + SAL 5694 84.76 88.68 91.43 9091 64.02 92.66 8874 37.56 10.62 77.30
+ ORACLESAL 56.68 84.72 88.18 91.24 9093 64.50 92.74 88.67 41.78 1020 77.72
+ PARTIALSAL 56.16 84.71 87.82 91.31 90.92 64.50 92.58 88.70 41.78 031 77.61
ALBERT 46.55 8531 91.17 91.73 90.82 70.88 91.55 90.57 43.66 78.03
+ AM + INLP 5730 85.46 90.57 91.63 90.49 70.28 91.86 90.62 4883 11.65 79.67
+ KMEANS + INLP 5591 8559 90.74 91.70 90.62 68.71 91.86 9094 4648 11.15 79.17
+ ORACLEINLP 55.43 85.28 91.27 91.65 90.80 72.08 91.86 90.76 40.38 10.81 78.83
+ PARTIALINLP 56.27 8543 91.39 91.58 90.68 71.60 92.51 90.70 46.01 1155 79.57
+ AMSAL 55.51 85.28 91.35 91.36 90.62 7341 91.67 90.61 38.50 10.67 78.70
+ KMEANS + SAL 5545 8554 9133 9153 90.66 73.16 9197 90.69 3991 10.89 78.92
+ ORACLESAL 54.50 8544 92.09 91.78 90.70 72.68 92.05 90.79 43.19 1122 79.25
+ PARTIALSAL 56.68 85.37 91.31 91.51 90.80 69.19 9235 90.59 43.19 1098 79.00
RoBERTa 58.38 87.63 92.06 92.64 9128 71.12 94.15 90.22 52.58 81.12
+ AM + INLP 5791 87.58 91.66 9257 9131 7148 94.15 90.10 52.11 Jo0.13 80.99
+ KMEANS + INLP 57.37 87.51 9147 9283 91.26 6992 94.15 89.96 56.34 10.08 81.20
+ ORACLEINLP 56.26 87.50 91.85 92.75 91.34 72.08 94.57 90.12 52.11 Jo0.16 80.95
+ PARTIALINLP 57.53 8770 9226 92.68 9131 69.80 94.19 90.15 5634 1021 81.33
+ AMSAL 5747 87.63 91.50 92.81 91.31 69.19 9430 90.01 56.34 10.06 81.17
+ KMEANS + SAL  58.23 87.56 9251 9297 91.31 6992 94.00 89.96 53.99 10.04 81.16
+ ORACLESAL 58.47 87.85 9222 9284 9127 70.76 9450 89.94 5211 Jo.o1 81.11
+ PARTIALSAL 58.05 87.52 91.25 9295 91.23 69.19 9427 90.06 52.11 038 80.74
GPT-2 3273 82.69 84.06 87.80 89.20 6546 92.16 84.50 40.85 73.27
+ AM + INLP 3378 82.66 8391 87.77 89.15 64.86 92.13 84.47 40.85 10.01 73.29
+ KMEANS + INLP 32.67 82.68 8436 87.83 89.16 6546 92.13 8451 40.85 10.02 73.29
+ ORACLEINLP 33.00 82.67 84.16 87.82 89.19 6546 9220 84.51 4038 Jo.01 73.27
+ PARTIALINLP 3451 8256 8422 87.88 89.17 6534 91.78 84.10 40.85 10.11 73.38
+ AMSAL 35.07 8277 84.86 88.21 89.13 6594 9228 8393 40.38 1035 73.62
+ KMEANS + SAL 3557 82778 84.80 88.27 89.16 6534 92.13 8393 3897 10.17 73.44
+ ORACLESAL 37.23 82777 84.64 8839 89.14 6450 92.05 84.02 40.85 1046 73.73
+ PARTIALSAL 37.66 8271 8520 88.28 89.21 66.55 92.13 84.15 3991 1071 73.98

Table 10: GLUE tests for gender-debiased BERT, ALBERT, RoBERTa, and GPT-2 models.
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