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Abstract

We propose a graph-based event extraction
framework JSEEGraph that approaches the task
of event extraction as general graph parsing in
the tradition of Meaning Representation Pars-
ing. It explicitly encodes entities and events
in a single semantic graph, and further has the
flexibility to encode a wider range of additional
IE relations and jointly infer individual tasks.
JSEEGraph performs in an end-to-end manner
via general graph parsing: (1) instead of flat
sequence labelling, nested structures between
entities/triggers are efficiently encoded as sepa-
rate nodes in the graph, allowing for nested and
overlapping entities and triggers; (2) both enti-
ties, relations, and events can be encoded in the
same graph, where entities and event triggers
are represented as nodes and entity relations
and event arguments are constructed via edges;
(3) joint inference avoids error propagation and
enhances the interpolation of different IE tasks.
We experiment on two benchmark datasets of
varying structural complexities; ACE05 and
Rich ERE, covering three languages: English,
Chinese, and Spanish. Experimental results
show that JSEEGraph can handle nested event
structures, that it is beneficial to solve differ-
ent IE tasks jointly, and that event argument
extraction in particular benefits from entity ex-
traction. Our code and models are released as
open-source1.

1 Introduction

Event extraction (EE) deals with the extraction of
complex, structured representations of events from
text, including overlapping and nested structures
(Sheng et al., 2021; Cao et al., 2022). While there
are existing datasets annotated with such rich repre-
sentations (Doddington et al., 2004; Song et al.,
2015), a majority of current approaches model
this task using simplified versions of these datasets
or sequence-labeling-based encodings which are

1https://github.com/huiling-y/
JSEEGraph
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Figure 1: Example of nested and overlapping events in the
sentence “I, purposely buy things made in Canada or USA.”,
taken from Rich ERE (Song et al., 2015).

not capable of capturing the full complexity of
the events. Figure 1 shows an example from the
Rich ERE dataset (Song et al., 2015) of a sentence
containing both nested and overlapping events:

“buy” serves as trigger for two overlapping events,
transfermoney and transferownership
with their respective argument roles, and similarly

“made” for two artifact events triggered by the
coordination of two GPE entities Canada and USA;
at the same time, the event trigger “made” is nested
inside the entity span “things made in Canada or
USA”. For this example, models based on token tag-
ging (such as the commonly used BIO-encoding)
would fail completely when a token contributes to
multiple information extraction elements. In this
case, the version of the ACE05 dataset widely em-
ployed for EE would not fully capture the double-
tagged event triggers, by simply disregarding one
of the two events, and the nested entity “things
made in Canada or USA” would be “things”.

Event extraction is a subtask of a wider set of
Information Extraction (IE) tasks, jointly dealing
with extracting various types of structured infor-
mation from unstructured texts, from named enti-
ties, relations, to events. There have been contin-
ued efforts in creating benchmark datasets that can
be used for evaluating a wide range of IE tasks.
Both ACE05 (Doddington et al., 2004)2 and Rich

2https://catalog.ldc.upenn.edu/
LDC2006T06
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Figure 2: Example of graph representation for entities, rela-
tions, and events from the sentence “School district officials
have estimated the cost of rebuilding an intermediate school
at $40 million.”, from Rich ERE (Song et al., 2015).

ERE (Song et al., 2015)3 provide consistent an-
notations of entities, relations, and events. While
there are clear inter-relations between these differ-
ent elements, and despite the availability of rich
annotations, existing works often deal with individ-
ual tasks, such as named entity recognition (NER)
(Chiu and Nichols, 2016; Bekoulis et al., 2018) or
event extraction (EE) (Yang and Mitchell, 2016; Du
and Cardie, 2020; Li et al., 2020). Recently there
have been some efforts in jointly modelling multi-
ple IE tasks (Wadden et al., 2019; Lin et al., 2020;
Nguyen et al., 2022), but these methods explicitly
avoid nested instances.

We here propose to represent events, along with
entities and relations, as general graphs and ap-
proach the task of event extraction as Meaning
Representation Parsing (Oepen et al., 2020; Samuel
and Straka, 2020). As shown in Figure 2, in such
an information graph, event triggers and entities
are represented as nodes; event types, argument
roles, and relations are constrained edges; and nest-
ed/overlapped structures are straightforwardly rep-
resented, since a surface string can be abstracted
into an unlimited number of nodes, as illustrated
by the two separate nodes for the event triggers for

“cost”. Our approach does not rely on ontology- or
language-specific features or any external syntac-
tic/semantic parsers, but directly parses raw text
into an information graph. We experiment on the
benchmark datasets ACE05 (Doddington et al.,
2004) and Rich ERE (Song et al., 2015), zooming
in on nested structures. Our results show JSEE-
Graph to be versatile in solving entity, relation, and
event extraction jointly, even for heavily nested in-
stances and across three different languages. Abla-

3https://catalog.ldc.upenn.edu/
LDC2020T18

tion studies consistently show that event extraction
especially benefits from entity extraction.

The paper is structured as follows: section 2 pro-
vides the relevant background for our work, and
section 3 further describes the tasks addressed and
the datasets we employ, focusing in particular on
their complexity, as measured by level of nesting.
Section 4 presents the JSEE graph parsing frame-
work and section 5 the experimental setup for eval-
uating the JSEE parser. Section 6 presents the
results of our evaluations and provides a study of
the performance for nested structures, as well as
an ablation study assessing the effect of joint IE
modeling and an error analysis. Finally we provide
conclusions (Section 7) and discuss limitations of
our work.

2 Related work

Event extraction is commonly approached as super-
vised classification, even though other approaches
relying e.g. on generation (Paolini et al., 2021;
Lu et al., 2021; Li et al., 2021; Hsu et al., 2022)
or prompt tuning inspired by natural language un-
derstanding tasks (Shin et al., 2020; Gao et al.,
2021; Li and Liang, 2021; Liu et al., 2022) also
are gaining ground. Classification-based methods
break event extraction into several subtasks (trig-
ger detection/classification, argument detection/-
classification), and either solve them separately in
a pipeline-based manner (Ji and Grishman, 2008;
Li et al., 2013; Liu et al., 2020; Du and Cardie,
2020; Li et al., 2020) or jointly infer them as mul-
tiple subtasks (Yang and Mitchell, 2016; Nguyen
et al., 2016; Liu et al., 2018; Wadden et al., 2019;
Lin et al., 2020). Classification-based joint meth-
ods typically apply sequence-labeling-based encod-
ing and extract all event components in one pass,
whereas pipeline methods break the problem into
separate stages which are performed sequentially.
Whereas sequence-labeling approaches cannot dis-
tinguish overlapping events/arguments by the na-
ture of the BIO-encoding, pipeline methods may in
principle detect these. However, they typically suf-
fer from error propagation and are not equipped to
model the interactions between the different event
elements (triggers, arguments).

Nested events Some previous work addresses the
problem of overlapping or nested arguments in EE.
Xu et al. (2020) address overlapping arguments in
the Chinese part of the ACE05 dataset and jointly
perform predictions for event triggers and argu-
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ments based on common feature representations
derived from a pre-trained language model. Sheng
et al. (2021) propose a joint framework with cas-
caded decoding to tackle overlapping events, and
sequentially perform type detection, event and argu-
ment extraction in a Chinese financial event dataset.
They deal with cases of both “overlapping events”
and “overlapping arguments”, however, their ap-
proach may suffer from error propagation due to the
cascading approach. Cao et al. (2022) distinguish
between overlapped and nested events and propose
the OneEE tagging scheme which formulates EE
as a word-to-word relation recognition, distinguish-
ing separate span and role relations. OneEE is
evaluated on the FewFC Chinese financial event
dataset and the biomedical event datasets Genia11
and Genia13. While specifically focusing on nested
events, these previous works are limited by focus-
ing only on one language or on specialized (finan-
cial/biomedical) domains. In this work we aim to
provide a more comprehensive evaluation over two
datasets in several versions with increasing levels
of structural complexity (see below) and across
three different languages.

Joint IE approaches Wadden et al. (2019) pro-
pose the DyGIE++ model which approaches joint
modeling of IE entities and relations via span-based
prediction of entities and event triggers, and sub-
sequent dynamic graph propagation based on rela-
tions. They evaluate on ACE05 and Genia datasets
and limit their experiments to English only. Their
approach is restricted to a certain span width, lim-
iting the length of possible entities. OneIE (Lin
et al., 2020) is a joint system for IE using global
features to model cross-subtask or cross-instance
interactions between the subtasks and predict an
information graph. They propose the E+ extension
of ACE05 which includes multi-token events (E+)
as we do. As in our work, they also present re-
sults on Spanish and Chinese as well and develop
a multilingual model, but their experiments avoid
nested structures, by using only the head of entity
mentions and specifically removing overlapped en-
tities. Nguyen et al. (2022) model joint IE in a
two-stage procedure which first identifies entities
and event triggers and subsequently classify rela-
tions between these starting from a fully connected
dependency graph; a GCN is employed to encode
the resulting dependency graphs for computation of
the joint distribution. While the approach is shown
to be effective, it is still a pipeline approach which

can suffer from error propagation. Since it relies
on sequence labeling for entity/event detection, it
cannot identify overlapping entities/event triggers.
Furthermore, the approach relies on syntactic in-
formation from an external parser and focuses only
on English and Spanish in the Light ERE dataset
(Song et al., 2015).

Meaning Representation Parsing Meaning
Representation Parsing (MRP) (Oepen et al., 2014,
2015, 2020) is a framework covering several types
of dependency-based semantic graph frameworks.
Unlike syntactic dependency representations, these
semantic representations are not trees, but rather
general graphs, characterised by potentially hav-
ing multiple top nodes (roots) and not necessarily
being connected, since not every token is necessar-
ily a node in the graph. The semantic frameworks
include representations with varying levels of “an-
choring” to the input string (Oepen et al., 2020),
ranging from the so-called “bi-lexical” representa-
tions where every node in the graph corresponds
to a token in the input string to a framework like
AMR (Banarescu et al., 2013) which constitutes
the most abstract and unanchored type of frame-
work, such that the correspondence between the
nodes in a graph and tokens in the string is com-
pletely flexible. This allows for straightforward rep-
resentation of nesting and overlapping structures,
where multiple nodes may be anchored to overlap-
ping sub-strings. There have been considerable
progress in developing variants of both transition-
based and graph-based dependency parsers capable
of producing such semantic graphs (Hershcovich
et al., 2017; Dozat and Manning, 2018; Samuel
and Straka, 2020). Previous research has further
made use of AMR-based input representations to
constrain the tasks of event extraction (Huang et al.,
2018) and more recently joint information extrac-
tion (Zhang and Ji, 2021), where an off-the-shelf
AMR parser is used to derive candidate enitity and
event trigger nodes before classifying pairwise re-
lations guided by the AMR hierarchical structure.
While there are clear parallels between the MRP
semantic frameworks and the tasks proposed in IE,
little work has focused on the direct application
of MRP parsing techniques to these tasks. You
et al. (2022) is a notable exception in this respect,
who presents an adaptation of the PERIN seman-
tic parser (Samuel and Straka, 2020) to the event
extraction task. While their work is promising it is
limited to only one dataset (ACE05), which does
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Lang Split #Sents #Events #Roles #Entities #Relations

Dataset: ACE05

en
Train 19 371 4 419 6 609 47 546 7 172
Dev 896 468 759 3 421 729
Test 777 461 735 3 828 822

zh
Train 6 706 2 928 5 576 29 674 8 003
Dev 511 217 406 2 246 601
Test 521 190 336 2 389 686

Dataset: Rich ERE

en
Train 12 421 8 368 15 197 34 611 7 498
Dev 692 459 797 1 998 366
Test 745 566 1 195 2 286 544

zh
Train 9 253 5 325 9 066 26 128 6 044
Dev 541 366 522 1 609 379
Test 483 439 776 2 022 502

es
Train 8 292 5 013 8 575 20 347 4 140
Dev 383 254 447 1 068 199
Test 598 334 609 1 438 287

Table 1: Statistics of the preprocessed datasets.

not contain a lot of nested structures and is fur-
ther limited to English event extraction only. In
this work we extend their approach to the task of
joint information extraction, covering both enti-
ties, events and relations taken from two different
datasets in several versions and for three languages,
and further demonstrates the effectiveness of ap-
proaching general information extraction from text
via graph-parsing and the interpolation of different
IE tasks.

3 Task and Data

While the main focus of this work is on event ex-
traction, we hypothesize that our graph-based ap-
proach lends itself to dealing with two challenging
aspects of current research on this task: the pro-
cessing of nested and overlapping event structures,
and the joint modeling of inter-related IE structures.
In the following we quantify the level of nesting in
two widely used datasets which contain rich anno-
tations for both entities, events, and relations. We
further propose two versions of each dataset with
varying potential for nesting, which allows us to
focus on this aspect during evaluation.

Event Extraction is the task of extracting events
into structured forms, namely event triggers and
their arguments. An event trigger is the word(s)
that most clearly describes an event, such as “buy”,
which evokes a transferownership and an
transfermoney event in Figure 1. Event argu-
ments are the participants and attributes of an event,
and can be tagged as entities at the same time, as
demonstrated in Figure 2.

We use the benchmark datasets ACE05 (Dod-
dington et al., 2004) and Rich ERE (Song et al.,

Dataset #Event-types #Argument-roles #Entity types #Relation type

ACE05 33 22 7 6
Rich ERE 38 20 15 6

Table 2: Inventory of event types, argument roles, entity types
and relation types in ACE05 and Rich ERE.

2015), both containing consistent annotations for
entities, relations, and events, for joint evaluation
of multiple IE tasks and in multiple languages
(ACE05 in English and Chinese, and ERE in En-
glish, Chinese, and Spanish). Table 1 summarizes
the relevant statistics of the datasets. The inventory
of event types, argument roles, entity types and re-
lation types are listed in Table 2. Despite targeting
the same IE tasks, from ACE05 to Rich ERE, the
annotation guidelines have shifted towards more so-
phisticated representations, resulting in more com-
plex structures in Rich ERE (Song et al., 2015).
Prominent differences between ACE05 and Rich
ERE are:

• Entities, and hence event arguments, are more
fine-grained in Rich ERE, with 15 entity types,
as compared to 7 types in ACE05. In terms
of entity spans, ACE05 explicitly marks the
head of the entity versus the entire mention,
providing the possibility of solving a simpler
task for entity extraction and recognizing only
the head token as opposed to the full span of
the entity in question. This is commonly done
for this task in previous work of EE. However,
in Rich ERE, the entire string of text is anno-
tated for entity mentions, and heads are only
marked explicitly for nominal mentions that
are not named entities or pronominal entities.

• Event triggers can be double-tagged in Rich
ERE, namely one trigger can serve multiple
event mentions, giving rise to overlapping
events, as shown in Figure 1, while in ACE05,
an event trigger only evokes one event. This
means that Rich ERE presents a more com-
plex task of event extraction.

We measure the nested instances in ACE05 and
Rich ERE as a way to showcase different levels
of complexity for extracting entities, relations, and
events. More specifically, we quantify nested in-
stances in two versions of each dataset, one using
only the head of an entity mention (when it is an-
notated), and the other with the entire mention text.
Following Lin et al. (2020) we dub the version
which only marks the head of entities ACE-E+ and
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Dataset Lang Nesting #Sents
Trg-Trg Ent-Ent Trg-Ent Nested All

ACE05-E+ en 0 0 4 4 21044
zh 0 4 9 12 7738

ACE05-E++ en 0 13387 716 5315 21044
zh 0 10797 252 3748 7738

Rich ERE-E+
en 1066 1329 244 1529 13858
zh 301 1383 284 1266 10277
es 485 523 97 712 9273

Rich ERE-E++
en 1063 9453 1517 4277 13858
zh 301 7303 622 2993 10277
es 485 5526 854 2614 9273

Table 3: Nesting instances in ACE05 and Rich ERE. Nesting
between a pair of event triggers is referred to as Trg-Trg;
between a pair of entity mentions as Ent-Ent, and between
an event trigger and an entity as Trg-Ent. For both datasets,
in the E+ version, entity mentions include only heads, while
in the E++ version, entity mentions include the full text spans.

Rich ERE-E+, and introduce two additional ver-
sions of the datasets, dubbed, ACE-E++ and Rich
ERE-E++ which retain the full annotated mention
text span. Nesting is measured between any pair
of triggers and entities. Note that our notion of
nesting subsumes both overlapping and nested tar-
get/entities (Cao et al., 2022), i.e. both full and
partial overlap of text spans. As shown in Table
3, Rich ERE features many cases of nested trig-
gers, while these are not found in ACE05, due to
the aforementioned double-tagging in Rich ERE
(see Figure 1); when only considering the head of
an entity, ACE05 exhibits very little nesting, but
Rich ERE exhibits a considerable amount of nest-
ing within entities, as well as between entity-trigger.
The reason for this is that in Rich ERE, only certain
nominal mentions are marked with explicit heads;
when the full entity mentions are considered, both
datasets are heavily nested.

As mentioned above, this work deals with three
IE tasks, as exemplified by Figure 2: entities, re-
lations, and events. Given a sentence, our JSEE-
Graph framework extracts its entity mentions, re-
lations, and event mentions. In addition to event
extraction, we thus target two additional IE tasks
in our graph-based model:

Entity Extraction is to identify entity mentions
from text and classify them into types according to
a pre-defined ontology. For example, in Figure 2,

“district” is an organization (ORG) entity.

Relation Extraction aims to assign a relation
type to an ordered pair of entity mentions, based
on a pre-defined relation ontology. For example, in
Figure 2, the relation between PER “officials” and
ORG “district” is orgaffiliation.

4 Graph parsing framework

Our JSEEGraph framework is a text-to-graph
parser tailored for EE tasks, additionally with dif-
ferent IE components explicitly encoded in a single
graph, as shown in Figure 2. Our framework builds
on Samuel and Straka (2020) who developed the
PERIN parser in the context of Meaning Repre-
sentation Parsing (Oepen et al., 2020), as well as
(You et al., 2022) who applied PERIN to the task
of event extraction. We here extend this parser to
the IE graphs shown in Figure 2 in a multilingual
setting.

Given a sentence, as the example shown in
Figure 3, JSEEGraph encodes the input tokens
with the pre-trained language model XLM-R (Con-
neau et al., 2020) to obtain the contextualized em-
beddings and further maps the embeddings onto
queries; nodes (triggers and entities) are predicted
by classifying the queries and anchored to surface
tokens via a deep biaffine classifier (Dozat and
Manning, 2017); edges are constructed between
nodes with two biaffine classifiers, assigning argu-
ments to predicted events and relations to entity
pairs. We describe each module in detail in what
follows.

4.1 Sentence encoding

We use XLM-R (Conneau et al., 2020) to obtain
the contextualized embeddings of the input se-
quence. To be specific, a trainable weight wl is
used to get a weighted sum of representations of
different layers, so the final contextual embedding
e =

∑L
l=1 softmax(wl)el with el as the interme-

diate output from the lth layer. If an input token
consists of multiple subwords, the final contextual
embedding will be the weighted sum over all sub-
word embeddings with a learned subword attention.

Each contextual embedding is mapped into q
= {q1, · · · ,qn} queries via a linear layer, and
further transformed into hidden features h =
{h1, · · · ,hn} with a stack of transformer encoder
layers, which models inter-query dependency with
multi-head self-attention.

4.2 Node prediction

The node prediction module consists of a node label
classifier and an anchor biaffine attention classifier.

The node label classifier is a linear classifier
classifying each query into a node in the graph,
and the node label is predicted by a single-layer
feedforward network (FNN). If a query is classified
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Figure 3: An illustration of our JSEEGraph parsing the sentence “Crowds march in Egypt to protest Morsi detention.”, example
from Rich ERE.

into “null”, no node is created from this query.
Node anchoring, as shown in Equation (1), is

performed by biaffine attention (Dozat and Man-
ning, 2018) between the contextual embeddings e
and hidden feature of queries h, to map each query
(a candidate node) to surface tokens, as shown in
Equation (3). For each query, every input token is
binary classified into anchor or non-anchor.

Bilinear(X1,X2) = XT
1 UX2 (1)

Biaffine(X1,X2) = XT
1 UX2 +W(X1 ⊕X2) + b (2)

node(anchor) = Biaffine(anchor)(h, e) (3)

Node prediction is complete with queries that are
classified into nodes and anchored to corresponding
surface tokens. Predicted nodes are either event
triggers or entities, labeled as “trigger” or entity
type. A dummy node is randomly generated to
add to predicted nodes to play the role of <root>
node, and always holds the first position.

4.3 Edge prediction

Edge prediction between nodes is performed with
two deep biaffine classifiers, as in Equation (6),
one to predict edge presence between a pair of
nodes and the other to predict the corresponding
edge label. To construct edges between nodes, only
queries from which nodes have been constructed
will be used, and the new hidden features is h′,
which are further split into two parts with a single-
layer FNN, as show in Equation (4) and (5).

h′(edge)
1 = FNN

(edge)
1 (h′) (4)

h′(edge)
2 = FNN

(edge)
2 (h′) (5)

edge = Biaffine(edge)(h′(edge)
1 , h′(edge)

2 ) (6)

The edge presence biaffine classifier performs
binary classification, deciding whether or not an
edge should be constructed between a pair of nodes.
The edge label biaffine classifier performs multi-
class classification, and the edge label set is the
union of argument roles and relation types.

4.4 Constrained decoding

During inference, we apply a set of constraints
specifically developed for the correct treatment of
event arguments and entity relations based on the
graph encoding we define for the information graph
(Figure 2): 1) directed edges from the <root>
node can only connect to a trigger node, and the
corresponding edge label is an event type; 2) di-
rected edges from a trigger node to an entity indi-
cates an event argument, with the argument role
placed as edge label; 3) directed edges between a
pair of entities indicate an entity relation, and the
corresponding relation type is assigned to the edge
label.
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5 Experimental setup

5.1 Data
As mentioned above, we evaluate our system on
the benchmark datasets ACE054 (LDC2006T06)
and Rich ERE5 (LDC2020T18). As mentioned
above, Table 1 summarizes the statistics of the pre-
processed datasets.

Following Lin et al. (2020), we keep 33 event
types, 22 argument roles, 7 entity types, and 6 rela-
tion types for both the English and Chinese parts of
ACE05. We follow You et al. (2022) in employing
the ACE-E++ version of this data, which uses the
full text span of entity mentions instead of only the
head, as described in section 3 above.

For Rich ERE, we keep 18 out of 38 event types
defined in the Rich ERE event ontology 6, 18 out of
21 argument roles 7, 15 entity types, and 6 relation
types for English, Chinese, and Spanish. Given no
existing data splits, we randomly sample similar
proportions of documents for train, development,
and testing as the split proportions in ACE05.

5.2 Evaluation metrics
Following previous work (Lin et al., 2020; Nguyen
et al., 2021), precision (P), recall (R), F1 scores are
reported for the following information elements.

• Entity An entity mention is correctly ex-
tracted if its offsets and entity type match a
reference entity.

• Relation A relation is correctly extracted if
its relation type, and offsets of both entity
mentions match those of reference entities.

• Event trigger An event trigger is correctly
identified (Trg-I) if its offsets match a refer-
ence trigger, and correctly classified (Trg-C) if
its event type also matches a reference trigger.

• Event argument The evaluation of an argu-
ment is conditioned on correct event type pre-
diction; if a predicted argument plays a role
in an event that does not match any reference
event types, the argument is automatically con-
sidered a wrong prediction. An argument is

4https://catalog.ldc.upenn.edu/
LDC2006T06

5https://catalog.ldc.upenn.edu/
LDC2020T18

6The Rich ERE event ontology defines 38 event types,
but for Chinese and Spanish data, only 18 event types are
annotated. For consistency, we also use the same 18 event
types for the English part.

73 argument roles for the reduced event types are thus
excluded.

correctly identified (Arg-I) if its offsets match
a reference argument, and correctly classified
(Arg-C) if its argument role also matches the
reference argument.

5.3 Implementation detail

We adopt multi-lingual training for each dataset
for the reported results. Results of monolingual
models are listed in Appendix B. Detailed hyper-
parameter settings and runtimes are included in
Appendix A.

5.4 System comparison

We compare our JSEEGraph to the following sys-
tems: 1) ONEIE (Lin et al., 2020); 2) GraphIE
(Nguyen et al., 2022); 3) FourIE (Nguyen et al.,
2021); 4) JMCEE (Xu et al., 2020); 5) EventGraph
(You et al., 2022) on the ACE05 dataset. For Rich
ERE there is little previous work to compare to; the
only previously reported results (Li et al., 2022) for
EE only solve the task of argument extraction, us-
ing gold entity and trigger information, hence their
work is not included in our system comparison.

6 Results and discussion

We here present the results for our JSEEGraph
model for the EE task, as well as its performance
for the additional IE components: entities and re-
lations, evaluated as described above. We further
zoom in on the nested structures identified in Sec-
tion 3 and assess the performance of our system on
these rich structures which have largely been over-
looked in previous work on event extraction. We go
on to assess the influence of inter-related IE com-
ponents in an ablation study. Finally we provide an
error analysis of our model’s predictions.

6.1 Overall performance

As shown in Table 4, on ACE-E+, our overall re-
sults align with other systems. Our JSEEGraph
results are especially strong for event argument
extraction, with an improvement of around 10 per-
centage points from the best results of the previous
best performing systems in our comparison.

On the newly introduced ACE-E++, despite hav-
ing more complex structures, with a higher degree
of nested structures, the results of JSEEGraph on
trigger extraction remain stable. We further note
that our results on argument, entity, and relation
extraction suffers some loss from highly nested
entities, which is not surprising.
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Model Trg-I Trg-C Arg-I Arg-C Entity Relation
Dataset: ACE05-E+ English

EventGraph 70.0 65.4
GraphIE 74.8 59.9 91.0 65.4
ONEIE 75.6 72.8 57.3 54.8 89.6 58.6
FourIE 76.7 73.3 59.5 57.5 91.1 63.6
JSEEGraph 74.2 71.3 70.7 68.4 90.7 62.6
JSEEGraph w/o ent&rel 74.8 71.7 67.5 64.6

Dataset: ACE05-E+ Chinese

JMCEE 82.3 74.0 53.7 50
ONEIE 67.7 53.2 89.9 62.9
FourIE 70.3 56.1 89.1 65.9
JSEEGraph 71.9 69.6 74.3 70.1 87.4 63.3
JSEEGraph w/o ent&rel 70.5 67.8 69.2 65.5

Dataset: ACE05-E++ English

EventGraph 74.0 58.6
JSEEGraph 73.5 70.0 62.3 59.6 85.6 56.6
JSEEGraph w/o ent&rel 75.0 71.3 60.3 57.7

Dataset: ACE05-E++ Chinese

JSEEGraph 69.9 67.8 71.1 66.9 85.2 58.4
JSEEGraph w/o ent&rel 69.5 67.4 66.5 63.3

Table 4: Experimental results on ACE05 (F1-score, %). We
bold the highest score of each sub-task.

Model Lang Trg-I Trg-C Arg-I Arg-C Entity Relation

Dataset: Rich ERE-E+

JSEEGraph
en 68.6 62.3 59.6 56.2 80.3 53.7
zh 62.7 59.0 53.1 50.1 78.1 53.2
es 59.1 51.9 59.9 54.0 74.1 51.8

JSEEGraph w/o ent&rel
en 67.7 62.9 57.9 54.7
zh 63.7 60.0 50.7 48.2
es 62.3 54.3 57.3 52.5

Dataset: Rich ERE-E++

JSEEGraph
en 67.3 62.7 55.6 52.8 77.9 46.1
zh 65.2 61.7 51.0 48.7 77.5 54.3
es 59.7 54.1 59.1 55.4 70.2 49.4

JSEEGraph w/o ent&rel
en 66.4 61.9 52.9 50.7
zh 63.2 58.7 49.2 47.2
es 57.2 48.9 50.8 46.4

Table 5: Experimental results on Rich ERE (F1-score).

From Table 5, we find that the scores on Rich
ERE are consistently lower compared to those of
ACE05. The double-tagging of event triggers de-
scribed in Section 3 clearly pose a certain level of
difficulty for the model to disambiguate events with
a shared trigger. Argument and entity extraction
also suffers from more fined-grained entity types.

6.2 Nesting

In order to directly evaluate our model’s perfor-
mance on nested instances, we split each test set
into nested and non-nested parts and report the cor-
responding scores, as shown in Table 68.

We observe that JSEEGraph is quite robust in
tackling nested instances across different IE tasks
and languages. On ACE05-E++, more than half
of the test data are nested for both English and
Chinese, and the results on the nested parts are
lower, however consistently comparable with the
non-nested parts of the datasets. On Rich ERE-
E+, nested instances make up only a small part of

8ACE05-E+ is not included as it lacks sufficient nested
instances.

Lang Nested #sents Trg-I Trg-C Arg-I Arg-C Entity Relation

Dataset: ACE05-E++

en ✓ 418 72.1 68.5 59.2 57.0 85.1 57.0
✗ 359 77.0 74.0 73.2 69.0 87.4 47.5

zh ✓ 277 72.2 69.7 68.9 65.5 85.4 60.8
✗ 244 57.6 57.6 87.9 77.3 84.5 33.6

Dataset: Rich ERE-E+

en ✓ 93 81.3 71.6 54.8 51.4 81.3 49.8
✗ 652 61.4 56.9 64.0 60.5 79.8 56.3

zh ✓ 101 72.0 66.6 47.5 45.1 79.7 56.0
✗ 382 54.2 52.2 59.5 55.9 77.1 49.9

es ✓ 51 78.1 64.7 55.5 52.3 78.4 51.8
✗ 547 49.9 45.5 63.8 55.6 73.1 51.8

Dataset: Rich ERE-E++

en ✓ 251 75.4 69.2 53.0 50.5 81.0 45.7
✗ 494 46.0 45.3 75.0 70.6 71.0 49.4

zh ✓ 197 70.4 67.0 49.0 46.8 80.4 57.2
✗ 286 45.9 41.8 63.9 61.1 69.7 23.3

es ✓ 163 66.0 59.3 57.2 53.7 75.2 53.5
✗ 435 47.0 43.0 65.3 61.7 61.4 30.0

Table 6: Experimental results on test data with nesting as
compared to without nesting (F1-score, %).

the test data, but the results are still comparable
to the non-nested part. On Rich ERE-E++, about
one third of the test data are nested, results of the
nested parts are in fact consistently better for trig-
ger, entity, and relation extraction, but inferior for
argument extraction.

To conclude, JSEEGraph does not suffer con-
siderable performance loss from nesting among
different IE elements, and in many cases actually
gains in performance from more complex struc-
tures, notably for trigger, entity, and relation ex-
traction. It is clear that the system can make use
of inter-relations between the different IE elements
of the information graph in order to resolve these
structures.

6.3 Ablation study

In order to gauge the effect of the joint modeling
of entities, events, and relations, we perform an
ablation study where we remove the entity and
relation information from our information graph,
hence only performing the task of event extrac-
tion directly from text. In the reduced information
graph, node labels for entity types are removed, and
relation edges between entities are also removed.
We find that event extraction clearly benefits from
entity and relation extraction, especially for event
argument extraction. As shown in Table 4 and
Table 5, when we train our model only for event
extraction, the performance on argument extraction
drops consistently across different datasets and lan-
guages, but the performance on trigger extraction
remains quite stable.
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6.4 Error analysis

The experimental results show that JSEEGraph has
an advantage when it comes to the task of argument
extraction. In a manual error analysis we therefore
focus on the errors of event trigger extraction. After
a manual inspection of our model’s predictions on
the test data, we find that the errors fall into the
following main categories.

Over-predict non-event sentences. Our system
tends to be more greedy in extracting event men-
tions, and wrongly classifies some tokens as event
triggers even though the sentence does not con-
tain event annotation. For instance, the sentence

“Anne-Marie will get the couple’s 19-room home
in New York state” (from ACE05) does not have
annotated events, but our system extracts “get”
as trigger for a Transfer-Ownership event;
in this case, however, one could argue that the
Transfer-Ownership should be annotated.

Under-predict multi-event sentences When a
sentence contains multiple event mentions, JSEE-
Graph sometimes fails to extract all of the event
triggers. For example, this sentence “Kelly , the
US assistant secretary for East Asia and Pacific
Affairs , arrived in Seoul from Beijing Friday to
brief Yoon, the foreign minister” from ACE05 con-
tains a Transport event triggered by “arrived”
and a Meet event triggered by “brief”, but our
system fails to extract the trigger for the Meet
event; in this example, it requires a certain level
of knowledge to be able to identify “brief” as an
event trigger, which is beyond the capacity of our
model.

Wrong event types In some cases, even though
our model successfully identifies an event trigger,
it assigns a wrong event type. Some event types
can easily be confused with each other. In this sen-
tence from Rich ERE, “The University of Arkansas
campus was buzzing Friday after a student hurt
himself when a gun went off in his backpack in
the KUAF building”, an Injure event is evoked
by “hurt”, but our model assigns an event type of
Attack. Clearly, Injure and Attack events
are one typical case of event types that can be easily
confused.

Context beyond sentence This error applies
specifically to Rich ERE: even though the anno-
tation of events is on a sentence level, annotators
were instructed to take into account the context of

the whole article. Our model fails completely when
a trigger requires context beyond the sentence. For
instance, this sentence “If Mickey can do it , so
can we!” is taken from an article describing an
on-going demonstration in Disney Land, and “it”
is the trigger for a demonstrate event; without
the context, our model fails to identify the trigger.
These are cases which would require information
about event coreference.

7 Conclusion

In this paper, we have proposed JSEEG, a graph-
based approach for joint structured event extrac-
tion, alongside entity, and relation extraction. We
experiment on two benchmark datasets ACE05 and
Rich ERE, covering the three languages English,
Chinese, and Spanish. We find that our proposed
JSEEGraph is robust in solving nested event struc-
tures, and is especially strong in event argument
extraction. We further demonstrate that it is benefi-
cial to jointly perform EE with other IE tasks, and
event argument extraction especially gains from
entity extraction.

Limitations

Our work has two main limitations. Firstly, we
do not compare our system to previous works on
the Rich ERE dataset. This is mainly due to the
fact that most work use the light ERE (Song et al.,
2015) dataset. We were unfortunately not able to
got access to this version of the data9, which is why
no experiments were carried out on it.

Secondly, we only experiment with one language
model, the multilingual model XLM-R. As our
model is language agnostic, and we aimed to test
its performance on datasets in different languages,
the choice of a multilingual model was obvious.
XLM-R has been chosen based on its good perfor-
mance in other tasks, and to make our work compa-
rable to previous work (You et al., 2022). However,
another approach would be to test our model with
a selection of language-specific language models.
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A Training detail

We use the large version of XLM-R available
on HuggingFace transformers10 for obtaining
contextual embeddings of the input sequence. We
use the same hyperparameter configuration for all
our models, as shown in Table 7, and weights are
optimized with AdamW (Loshchilov and Hutter,
2019) following a warmed-up cosine learning rate
schedule.

Hyperparameter JSEEGraph

batch_size 16
beta_2 0.98
decoder_learning_rate 1.0e-4
decoder_weight_decay 1.2e-6
dropout_transformer 0.25
dropout_transformer_attention 0.1
encoder "xlm-roberta-large"
encoder_learning_rate 4.0e-6
encoder_weight_decay 0.1
epochs 110
hidden_size_anchor 256
hidden_size_edge_label 256
hidden_size_edge_presence 256
n_transformer_layers 3
query_length 2
warmup_steps 1 000

Table 7: Hyperparameter setting for our system, and we
use the same configuration for all models.

The training was done on a single node of Nvidia
RTX3090 GPU. The runtimes and sizes (including
the pretrained XLM-R) of the multilingual models
for each dataset are listed in Table 8,

Dataset Runtime Model size

ACE05-E+ 27:52 h 343.8 M
ACE05-E++ 27:25 h 343.8 M
Rich ERE-E+ 33:13 h 344.6 M
Rich ERE-E++ 32:16 h 344.6 M

Table 8: The training times and model sizes (number of
trainable weights) of all our experiments.

10https://huggingface.co/docs/
transformers/index

Lang Trg-I Trg-C Arg-I Arg-C Entity Relation
Dataset: ACE05-E+

en 73.1 70.0 68.5 65.4 90.4 61.4
73.2 69.8 66.7 64.2

zh 69.2 67.0 71.4 67.8 85.6 60.2
64.8 62.6 62.5 59.3

Dataset: ACE05-E++

en 73.8 70.3 63.7 60.6 85.3 55.4
72.7 69.9 58.9 56.3

zh 66.7 64.5 66.0 63.1 82.1 53.7
66.0 64.3 62.2 58.4

Dataset: Rich ERE-E+

en 65.3 60.5 59.8 56.1 80.6 53.6
68.7 62.4 56.0 52.8

zh 62.3 57.7 53.9 50.2 78.3 54.5
62.4 59.0 48.2 46.3

es 54.2 47.9 52.5 46.7 72.9 44.7
56.7 49.7 51.3 47.3

Dataset: Rich ERE-E++

en 66.9 60.4 54.6 52.1 76.3 42.1
66.2 59.2 49.5 46.8

zh 63.6 60.2 47.1 44.8 76.2 51.5
60.5 57.2 41.5 38.8

es 54.4 48.9 47.2 43.2 68.2 43.0
54.5 48.4 35.7 32.1

Table 9: Experimental results of monolingual models
(F1-score, %)

B Monolingual training results

Apart from multilingual training, we also train two
monolingual models for each language, one for
joint event extraction with entity and relation and
the for event extraction only. Results of monolin-
gual models are summerized in Table 9.
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