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Abstract
Current multimodal models, aimed at solving
Vision and Language (V+L) tasks, predomi-
nantly repurpose Vision Encoders (VE) as fea-
ture extractors. While many VEs—of differ-
ent architectures, trained on different data and
objectives—are publicly available, they are
not designed for the downstream V+L tasks.
Nonetheless, most current work assumes that
a single pre-trained VE can serve as a general-
purpose encoder. In this work, we focus on
analysis and aim to understand whether the in-
formation stored within different VEs is com-
plementary, i.e. if providing the model with
features from multiple VEs can improve the
performance on a target task, and how they
are combined. We exhaustively experiment
with three popular VEs on six downstream V+L
tasks and analyze the attention and VE-dropout
patterns. Our analyses suggest that diverse VEs
complement each other, resulting in improved
downstream V+L task performance, where the
improvements are not due to simple ensem-
ble effects (i.e. the performance does not al-
ways improve when increasing the number of
encoders). We demonstrate that future VEs,
which are not repurposed, but explicitly de-
signed for V+L tasks, have the potential of im-
proving performance on the target V+L tasks.

1 Introduction

The dominant strategy for solving Vi-
sion+Language (V+L) tasks involves using
Transformer models (Vaswani et al., 2017) that
jointly attend over the representations of the
respective modalities (Lu et al., 2019; Su et al.,
2020; Li et al., 2020b; Chen et al., 2020; Huang
et al., 2020, inter alia). While representation-
learning of the text modality is comparatively
straightforward using token embeddings,1 image
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1But still far from solved especially in multilingual set-

tings (Rust et al., 2021; Clark et al., 2022; Xue et al., 2022)

representations are more difficult to learn. Given
an image, a common approach is to use pre-trained
Vision Encoders (VE), where the VE’s output
features are passed as inputs, together with the
text embeddings, into a Transformer model. The
attention mechanism then learns a cross-modal
representation space over the text and image
features to solve the target V+L task.

Consequently, the success of a multimodal
model builds heavily on the features extracted from
a VE and is thus highly dependent on the VE’s
architecture, training objectives (e.g. image clas-
sification, image encoding, object detection, etc.),
and pre-training data. This dependency is further
exacerbated for multimodal models that utilize VEs
as static feature extractors (i.e. the weights of the
VE are frozen), but also for models that are trained
end-to-end, as the biases introduced by the archi-
tecture, objectives, and data of the VE remain.

Since many computer vision models can be re-
purposed as VEs for V+L tasks, a few prior works
have focused on identifying individual VEs that
perform the best on downstream tasks (Jiang et al.,
2020; Shen et al., 2022; Eichenberg et al., 2022;
Zhang et al., 2021). A common assumption is that a
single pre-trained VE can perform the best for a tar-
get task or even serve as a general-purpose encoder
for a wide range of V+L tasks. However, a natural
question arises: to what extent is this assumption
correct? Given that all VEs differ in architecture,
objectives, and pre-training data, we hypothesize
that the extracted features of multiple different VEs
encode complementary information.

In this work, we focus on answering: 1) Do
different VEs encode complementary features? 2)
How are features from different VEs utilized by
Transformers? We provide comprehensive analyses
for multi-VE models and test whether combining
VEs is beneficial over a single-VE setup under the
viewpoint of feature complementarity. Similar to
prior work that analyzed other components of V+L
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Transformers (Bugliarello et al., 2021; Hendricks
et al., 2021), we will not focus on improving the
performance through ensembling like Yan et al.
(2021b). Rather, we utilize combinations of VEs
as the setting for answering our research questions.

We cover three popular classes of VEs in our
experiments: 1) object detection models providing
a feature representation of salient image parts con-
taining objects (Region) (Anderson et al., 2018),
2) CNN models computing a feature map of the
image for grid features (Grid), and 3) Vision Trans-
formers (ViT) (Dosovitskiy et al., 2021) computing
contextualized patch features of the image (Patch).
As the downstream domain and task type can be
heavily impacted by the different VEs, we probe
all combinations of the three VEs on six different
V+L tasks, covering retrieval, Q&A, and reasoning.

To investigate the VE complementarity and fea-
ture utilization, we analyze 1) the attention patterns
across modalities and VEs, and 2) the dependency
of specific VEs when performing VE-dropout dur-
ing training and inference. While multi-VE seems
to perform better than single-VE (which could par-
tially attribute to the increased parameter count),
we consistently observe performance gaps between
different multi-VE configurations (e.g. a gap as
large as 8.9 points for the same task) and no sin-
gle winning combination for all task types. Our
attention patterns analysis across the different VEs
reveals that the distinctive information encoded in
the VEs is important for different tasks, and the
model composes the representations by enriching a
dominant VE with complementary information of
the other VEs.

To sum up, our results and analysis suggest that
VEs trained on different objectives, architectures,
and data can have a high impact on the model’s
V+L task performance. We cannot rely on simple
ensemble effects to improve performance; select-
ing and repurposing off-the-shelf VEs is non-trivial,
which emphasizes the necessity to design VEs ex-
plicitly for V+L tasks in the future.

2 Related Work

Multimodal Transformer Architectures. Mul-
timodal Transformer architectures can be di-
vided into single-stream and dual-stream mod-
els (Bugliarello et al., 2021). The single-stream
Transformer takes the concatenated visual and
text tokens as input and processes them modality-
agnostic, i.e. the self-attention jointly attends over

the tokens of both modalities. Dual-stream models
use separate Transformers for each modality that
are connected through a co-attention mechanism
(Tan and Bansal, 2019; Lu et al., 2019), concate-
nated in a single-stream model on top (Singh et al.,
2022; Kamath et al., 2021), or the image model
output is used asymmetrically for cross-attention
in the text model (Li et al., 2021, 2022).

The Faster R-CNN (Ren et al., 2015) object de-
tector has been the dominant choice for multimodal
models as a Region VE, where most methods pro-
pose to use it as a static feature extractor (Tan and
Bansal, 2019; Lu et al., 2019; Su et al., 2020; Chen
et al., 2020; Gan et al., 2020; Li et al., 2020b; Zhang
et al., 2021; Cho et al., 2021), with the notable ex-
ception being Su et al. (2020) who backpropagate
through the Faster R-CNN model. Less popular
VEs are Grid (Huang et al., 2020; Kamath et al.,
2021; Yan et al., 2021a; Shen et al., 2022; Eichen-
berg et al., 2022), and Patch (Kim et al., 2021;
Wang et al., 2022; Eichenberg et al., 2022). In con-
trast to Region VEs, Grid and Patch VEs are com-
monly fine-tuned on the target V+L task, with the
notable exception being Yan et al. (2021a). Follow-
ing Bugliarello et al. (2021); Hendricks et al. (2021)
we focus on single-stream models as they have been
shown to perform on par with dual-stream models
while being easier to extend to multi-VE setups.
Comparing and Combining VEs. Recently, sev-
eral works aim to compare different VEs for V+L
tasks. Jiang et al. (2020) compare Region and Grid
for visual QA tasks, showing that training data, ob-
jectives and other factors all affect the downstream
task performance. Shen et al. (2022); Eichenberg
et al. (2022) compare different pre-trained Grid
and Patch VEs building on CLIP (Radford et al.,
2021). Zhang et al. (2021) compare different de-
sign choices for Region VEs with Grid VEs trained
on the same data. Dai et al. (2023) compares differ-
ent VEs in influence object hallucinations in cap-
tion generation. Closest to our work is the work by
Yan et al. (2021b). While they also experiment with
combining representations of Grid-, Patch-, and Re-
gion VEs, they only focus on the Visual Question
Answering (VQA; Goyal et al., 2017) dataset and
only use the combination of all three VEs. Our
work provides a more in-depth evaluation of dif-
ferent multi-VE setups while experimenting with
six diverse tasks, and shows that different combi-
nations work best for each task.
Analysis of Multimodal Transformers. Our anal-
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ysis methods draw inspiration from recent works
that probe and analyze pre-trained multimodal
Transformers for a better understanding of their
different components (Bugliarello et al., 2021; Cao
et al., 2020; Li et al., 2020a; Frank et al., 2021;
Hendricks et al., 2021). Cao et al. (2020) propose
a range of different probing tasks to understand
the inner workings of multimodal models. Li et al.
(2020a) analyze how accurate the attention heads of
pre-trained models can perform visual grounding.
Frank et al. (2021) mask parts of the text and image
input and measure how the prediction performance
changes for the respective other modality to test
how symmetric the learned cross-modal connection
is. Bugliarello et al. (2021); Hendricks et al. (2021)
evaluate and disentangle which components of mul-
timodal pre-training proposed in different works
are important for their success. While previous
work has only focused on models with a Region
VE, we also experiment with Grid and Patch VEs.

In summary, our work is the first in-depth study
of multimodal Transformers that use multiple VEs.

3 Multimodal Multi-VE Transformers

Recently, cross-modal attention is the dominant
strategy to learn multimodal representations with
V+L Transformers. In this work, we follow
Bugliarello et al. (2021) and focus on the single-
stream architecture, which shares the attention com-
ponents across all modalities, i.e. the concate-
nated visual and text tokens are processed modality-
agnostic. This architecture achieves state-of-the-art
results (Bugliarello et al., 2021) while being easily
extendable to multiple VEs, by concatenating all
vision tokens.2 Figure 1 illustrates our architecture.
Multimodal input representations. The raw
data for a V+L task consists of either discrete to-
kens/characters (text-modality) or high-resolution
pixel values (image-modality). To extract dense
representations of the respective modalities we fol-
low the standard pre-processing strategies: The text
modality is tokenized using word-piece tokeniza-
tion (Devlin et al., 2019) and mapped to their cor-
responding dense embedding representations. At
the input to the first Transformer layer, positional
embeddings are added to the respective token em-
beddings. For the vision modality, pre-trained VEs

2We concatenate all VE for analysis in §5. In practice,
concatenation increases the sequence length and incurs a
high computational cost. More efficient methods like resam-
pling (Alayrac et al., 2022) can be explored in future work.

Transformer

MLP

VE
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MLP

VE
Patch

MLP

VE
Region

Embedding

[CLS] What bi #rd ?

What bird?

Tokenizer

Figure 1: Our Multi-VE Architecture: Each VE pro-
duces a list of visual tokens, which are passed through
MLPs and concatenated with the text embeddings. The
Transformer is modality-agnostic and attends over all
tokens. We freeze the VEs during training and only
optimize the MLPs, embeddings, and the Transformer.

are utilized which encode the raw pixel values of
the respective image into dense high-dimensional
feature vectors. These VEs can either encode des-
ignated sections (e.g. Region), or an entire image
(e.g. Grid and Patch). The extracted feature vec-
tors are then passed through a multi-layer percep-
tron (MLP), and subsequently into the Transformer.
This procedure can be repeated for any number of
VEs of interest. In other words, the image features
(from multiple VEs) and the text embeddings are
concatenated and jointly passed through a shared
Transformer model which learns to attend over the
multimodal representations.
V+L task training. We place a classification head
on the output of the [CLS] token (following Devlin
et al. (2019)) and fine-tune the model with cross-
entropy loss on the training data of the target task.

4 Experiments

We evaluate the impact of three different VEs on six
downstream V+L tasks to assess the complemen-
tarity of different image representations. Here, we
experiment with all possible combinations of the
three VEs (i.e. single VE, 2-VE, and 3-VE setups).3

To fairly compare the information stored in the re-
spective VEs, we only fine-tune the multimodal
models on the target V+L task in order to circum-
vent potentially beneficial information leaking into
the multimodal model from auxiliary tasks. We
therefore initialize all models with BERT weights

3While we report the results of a single VE, we do not aim
to show that one VE outperforms others, as this would require
a more controlled experimental setup, e.g. training dataset and
training objectives amongst other factors (Jiang et al., 2020;
Zhang et al., 2021), which is outside the scope of this work.
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VE Model # Train Tasks # V. Tok. Dim.

Region VinVL (Zhang et al., 2021) 2.5M1 bounding box prediction, object & at-
tribute classification

36 2054

Grid CLIP RN50x4 (Radford et al., 2021) 400M2 image-text contrastive loss 36 2560
Patch CLIP ViT/B-32 (Radford et al., 2021) 400M2 image-text contrastive loss 49 768

Table 1: The three VE models used in our experiments with the number of pre-training images, training objectives,
the number of visual tokens (V.Tok.), and the output feature dimension. Train Datasets: 1: Combination of multiple
object detection datasets (see (Zhang et al., 2021)). 2: Web-crawled & cleaned image-caption pairs (proprietary).

(Devlin et al., 2019) (base-size). We note, how-
ever, that gains can be achieved when pre-training
the multimodal model on auxiliary data prior to
fine-tuning on the target V+L task (Tan and Bansal,
2019; Lu et al., 2019; Chen et al., 2020, inter alia).

4.1 Vision Encoders
We follow the standard approach and repurpose
three pre-trained vision models as VEs. In a best-
effort attempt for a fair setup, we use the current
best publicly available models of similar sizes.
Each VE has a designated, randomly initialized
2-layer perceptron (MLP) that maps the representa-
tions to the input of the Transformer and is trained
on the target V+L task along with the multimodal
Transformer weights. We keep the VE weights
frozen during training. For a full summary of the
VEs including pre-training data, the number of ex-
tracted tokens as well as dimensions, see Table 1.
Region VE. We utilize Faster R-CNN (Ren et al.,
2015), an object detection model that outputs a
list of bounding boxes and feature vectors for Re-
gions of Interest—salient parts of the image that
likely contain an object. Here we select the pre-
trained VinVL object detector (Zhang et al., 2021),4

which outperforms previous object detectors on
V+L tasks. We follow Li et al. (2020b); Zhang
et al. (2021) and concatenate each extracted feature
vector with the corresponding normalized box co-
ordinates and width / height. We extract the top-36
regions from the VinVL object detector.
Grid VE. Grid VEs linearize the grid feature map
of a CNN (before final pooling or classification
layers) to a list of visual tokens. Each visual token
corresponds to a specific part of the image with im-
age features on different scales (through different
pooling operations and convolution sizes through-
out the CNN) encoded in it. We use adaptive max
pooling5 on the feature map to reduce the number

4Not to be confused with their Transformer.
5torch.nn.AdaptiveMaxPool2d

of tokens to 36 per image. We use the CLIP CNN
(RN50x4) (Radford et al., 2021) as initialization,
given it’s recent success on V+L tasks (Shen et al.,
2022; Eichenberg et al., 2022; Alayrac et al., 2022).
Patch VE. Patch VEs use the contextualized out-
put representations of a Vision Transformer (ViT)
(Dosovitskiy et al., 2021) as visual tokens. The
ViT splits an image into uniform patches, which
are used as input tokens. Different from a CNN, the
ViT tokens are fixed in size throughout the model
but they have a global receptive field through the
ViT’s attention mechanism. We exclude the ViT’s
special classification token from the Transformer
input. We also utilize the CLIP-based ViT models
(ViT/B-32) (Radford et al., 2021) for our Patch-VE.
We extract all 49 tokens for the CLIP ViT due to
their smaller feature dimension size.

4.2 Tasks
We experiment with a set of six V+L tasks: Image-
text retrieval (Flickr30k (Young et al., 2014) and
MSCOCO (Lin et al., 2014)), visual question an-
swering (GQA (Hudson and Manning, 2019) and
VQA2.0 (Goyal et al., 2017)), visual entailment
(SNLI-VE (Xie et al., 2019)) and memes classifica-
tion (Hateful Memes (Kiela et al., 2020)). For all
experiments we report the mean and standard devi-
ations over three random seeds and present training
details and hyperparameters in Appendix A. We
train all models with a single Nvidia V100 GPU,
training a single model (all tasks, three seeds) takes
approximately 10 GPU days.

4.3 Results & Discussion
We report the results on the six tasks with all possi-
ble combinations of VEs in Table 2.
No “one encoder to rule them all". When com-
paring the results of the single-VE models, there
is no clear single winning VE that outperforms all
other VEs across all tasks. While for QA tasks
Region VE models perform best, for the other tasks
Grid VE outperforms the others. We hypothesize
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Retrieval Question Answering Reasoning

Flickr30k MSCOCO GQA VQA SNLI-VE Hateful M.
Vision Encoders R@1 R@1 Acc. Acc. Acc. AUROC

Region 57.46 ±2.74 50.79 ±3.28 55.32 ±0.33 65.73 ±0.54 76.57 ±0.10 74.83 ±0.73
Grid 66.93 ±3.59 58.30 ±3.56 51.51 ±0.17 62.99 ±1.25 77.32 ±0.11 79.03 ±0.27
Patch 54.99 ±6.00 46.30 ±2.07 51.56 ±0.44 62.96 ±0.71 76.32 ±0.09 75.78 ±1.57

Region+Grid 63.43 ±5.85 54.87 ±6.88 55.08 ±0.44 66.30 ±1.52 77.66 ±0.11 78.68 ±1.82
Region+Patch 58.60 ±4.44 58.73 ±4.02 55.58 ±0.09 67.05 ±0.42 76.60 ±0.19 75.87 ±0.63
Grid+Patch 67.53 ±2.07 56.44 ±3.80 51.55 ±0.16 62.64 ±0.30 77.39 ±0.35 79.88 ±0.95

Region+Grid+Patch 62.30 ±2.04 58.33 ±2.51 54.39 ±0.59 66.82 ±1.57 77.87 ±0.24 78.81 ±0.38

With VE-Dropout Training §5.5

Region+Grid 55.11 ±13.44 54.28 ±4.97 54.91 ±0.26 64.72 ±3.93 77.07 ±0.21 75.75 ±0.93
Region+Patch 51.53 ±7.75 52.07 ±4.44 54.46 ±0.70 65.07 ±0.63 76.42 ±0.15 73.57 ±0.69
Grid+Patch 63.13 ±4.16 55.56 ±3.92 51.80 ±0.25 60.62 ±1.38 77.41 ±0.16 77.30 ±0.43

Table 2: Mean and standard deviation over three seeds. Metrics: for retrieval the average recall at 1 between
image-text and text-image retrieval, for Hateful Memes AUROC, and accuracy otherwise. Best single- and multi-VE
setup is bolded and overall best score is underlined. We also report the results for VE-Dropout Training (see §5.5).

that the object-centric regions are useful for QA
tasks, which focus on specific elements, while the
uniform grid encoding might be useful for retrieval
and other tasks that look at the entire image. Iso-
lating why certain VEs are useful for specific tasks,
and the role of training objectives, data, and archi-
tecture, requires a controlled setup of training VEs
from scratch (Jiang et al., 2020), which we leave
to future work. Interestingly, the Patch VE never
achieves the best performance, which aligns with
previous findings by Shen et al. (2022); Eichenberg
et al. (2022). These single-VE results demonstrate
that each VE encodes different types of information
that impacts the downstream performance.
VEs can complement each other. When com-
bining the representations from different VEs, we
witness improvements across all V+L tasks. Inter-
estingly, MSCOCO benefits greatly from combin-
ing the two weakest VEs (i.e. Region and Patch),
surpassing their corresponding single VE results
by 7.94 and 12.43 points respectively, achieving
the best performance on this task. Although the
Patch VE never achieves the best performance in
single-VE setups, it provides complementary in-
formation in combination with the best perform-
ing VE, achieving the best overall performance for
many tasks.6 However, we see that simply using
more encoders does not guarantee improvements
as is evident by the 3-encoder model. While the
3-encoder model consistently achieves near-best

6Grid+Patch performs better than Grid for Flickr30k, Re-
gion+Patch performs better than Region for GQA, etc.

results, it is rarely the best model (only on 1 out
of 6 tasks). This result shows that simply using
more encoders does not guarantee improvement
(i.e. model performance is not monotonically im-
proving with more VEs.). Hence, it is unlikely that
the improvements are due to an ensemble effect.
One does not fit all. In summary, we see that
neither one VE alone nor a fixed combination of
VEs gives the best results for the entire breadth of
V+L tasks. This shows the current limitations of
repurposed vision encoders and highlights the need
for encoders designed specifically for V+L tasks.

5 Analysis

To better understand how the representations are
combined in different multi-VE setups, we analyze
the flow of attention, phrase-to-image grounding,
and the robustness to dropping VEs at test time. We
overload ‘cross-modality’ to include both VE-text
but also VE-VE interactions for simplicity. We
present the analysis for the best performing model
combinations in what follows but provide a full list
of results in Appendix B.

5.1 CLS Attention Flow
The CLS token can be seen as the fused represen-
tation of the modalities that are used for the final
classification (Cao et al., 2020). We can thus esti-
mate which VEs are important for classification by
considering which VEs the CLS token attends to.7

7This is only an estimation because the modalities combine
information through attention, too.
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Figure 2: CLS attention (in %) to each modality/ VE averaged over all heads. We add an outline to the VE with the
best single-VE results. Numbers do not add to 100% because of CLS self-attention. We present the best multi-VE
results here and all other results in Figure 8 in the Appendix.
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Figure 3: Cross-modal attention flow (in %) from each modality/ VEs (top) to all modalities/ VEs (bottom). Flow is
the sum of all attention weights between two modalities, averaged over all modality tokens and attention heads. We
present the best multi-VE results here and all other results in Figure 9 in the Appendix.

Following Cao et al. (2020), we compute the sum
of attention from the CLS token to each modality
and then average those scores over all heads.

We present the CLS attention for the best multi-
VE setups in Figure 2. We see that for most tasks,
the VE which performed best in the single-VE
setup receives the majority of VE-attention. This
suggests that one VE dominates in multi-VE setups
while the others are complementary.

5.2 Cross-Modal Attention Flow
The attention flow between the different modalities
can indicate which VEs are used by the model to
reason over the input. We assume that more atten-
tion to a modality suggests that it contains useful
information for others. We compute the average at-
tention flow between two modalities M and N for
an attention head as 1

|M |
∑

m∈M,n∈N am→n with
am→n as the attention weight from token m to n
(excluding CLS). We average over all heads.

We present the attention flow for the best multi-

VE setups in Figure 3. Similar to §5.1, the majority
of attention is paid to the VE that achieved better
results in the single-VE experiment for that task.

5.3 Overlapping Token Surplus Attention
The attention flow between different VEs’ visual
tokens that overlap—i.e. encode the same part
of the image—can tell us if the model combines
the VEs to complement the image representation.
For each attention head we therefore compute
the average per-token attention from a token t
of one VE to overlapping tokens I|t of another
VE, and compare this—i.e. compute the surplus—
to the non-overlapping tokens of that VE I\t as
( 1
|I|t|

∑
i∈I|t at→i)− ( 1

|I\t|
∑

i∈I\t at→i) with at→i

being the attention weight between the tokens. We
average over all tokens to get the surplus attention
of an attention head for a VE pair.

We present the results for the best performing
setups in Figure 4. For most VEs we can iden-
tify heads—indicated by larger dot sizes—which
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Figure 4: Surplus attention of attention heads from one VE’s tokens to another target VE’s overlapping tokens
compared to the other non-overlapping tokens of the target VE. Dot size represents the average total attention paid
to the target VE by the respective head. Positive values indicate that the respective head attributes more attention,
negative values that less attention is attributed to overlapping tokens. We present the best multi-VE results here and
all other results in Figure 10 in the Appendix. (Abbreviations: Region, Grid, Patch).
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Figure 5: Visual Entity Grounding accuracy of all atten-
tion heads. An entity is grounded correctly to a VE if the
attention weight from the phrase to the matching visual
tokens is the highest over all the VE’s tokens. Other
results can be found in Figure 11 in the Appendix.

attend particularly to another VE’s tokens. For
most settings, these heads are also those which at-
tend to the overlapping tokens of the respective
other VE. While we witness a large surplus in at-
tention for overlapping tokens between Region and
Grid/Patch, this is not the case for Grid-Patch. This
indicates that the complementarity of Region fea-
tures is higher for the respective other VEs, which
provides more evidence that training the VE on
different data and objectives is important.

5.4 Visual Entity Grounding
Visual grounding is the task of matching text
phrases to their corresponding parts in the image.
To analyze whether or not there are dominant VEs
which learn to ground, we follow Li et al. (2020a)
and count how often the highest attention weight
from a text phrase is assigned to the corresponding

visual token. We use the gold phrase-to-bounding
box annotations available for Flickr30k (Plummer
et al., 2015) and GQA. Formally, a head correctly
grounds a phrase to the gold box g if the maximum
attention from the last phrase token t to any of a
VE’s tokens I goes to any token I|g overlapping
with the gold box,8 i.e. if argmaxi∈Iat→i ∈ I|g.
We calculate the accuracy by counting the number
of correct groundings where I|g is not empty.

We report the results for all heads of the best
GQA and Flickr30k models in Figure 5. We can
see that the accuracy of the dominant VE (Grid and
Region, respectively) is generally higher than for
Patch. While there is a clear pattern of the dom-
inant VE achieving significantly higher accuracy,
the complementary VE also achieves accuracies
beyond 10%, indicating that the model learns to
reason over, and utilize both VE’s representations.

5.5 VE-Dropout
Our analyses in the previous sections suggest that
there are dominant and complementary encoders,
the former contributing the most to the model’s
performance on the target task. To further evaluate
the importance of the respective VEs we experi-
ment with dropping all VE-specific features during
test time. The results in Figure 6 show that drop-

8We consider all visual tokens with Intersection over Union
between the token box and the gold box over 0.5 for region
tokens (based on Li et al. (2020a)) and over 0.1 for grid and
patch tokens (because a single object can be distributed over
many tokens due to the uniform grid).
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Figure 6: Relative performance decrease of 2-encoder
models after dropping the entire first or second VE from
the input compared to evaluation with both encoders in
use. (Abbreviations: Region, Grid, Patch).

ping the dominant encoder results in a catastrophic
performance decrease, especially for the retrieval
tasks. While QA and reasoning tasks have a 20%
to 40% decrease in performance, for retrieval tasks
R@1 decreases by almost 100%.

However, the detrimental performance of drop-
ping out of the VE features at test time might be a
result of the multi-VE models never being trained
for this setting. Consequently, we train the 2-
encoder models with VE-wise dropout per batch.9

We hypothesize that this would force the model
to take the complementary VE into account while
being more robust during inference. As reported in
Figure 7, the robustness in terms of dropping VEs
improves, however, we see a slight drop in the final
task performance, as reported in Table 2.10

6 Discussion and Future Directions

Our analyses demonstrate that, while combining
multiple VEs consistently outperforms single VE
setups, there is not a single VE or a fixed strategy
on combining VEs that works best for all tasks.
In particular, simply ensembling all VEs is rarely
the optimal choice; consequently, best-performing
combinations of VEs need to be identified for each

9Uniformly dropping the first, second, or no VE.
10We notice no significant changes in the attention patterns

after VE-Dropout training (see Appendix C).

R+G R+P G+P
30

20

10

0

Pe
rf.

 D
ec

r. 
in

 %

Drop 1st
Drop 2nd

(a) MSCOCO VE Dropping

R+G R+P G+P
30

20

10

0

Pe
rf.

 D
ec

r. 
in

 %

Drop 1st
Drop 2nd

(b) GQA VE Dropping

Figure 7: Relative performance decrease of 2-encoder
models as in Figure 6 after VE-Dropout Training. Other
tasks in Figure 12 in the Appendix.

individual task (§ 4.3). By further analyzing the
attention patterns, we find a clear dominating VE
(§ 5.5, Figures 6 & 7) that both the [CLS] (§ 5.1,
Figure 2) and the multimodal tokens (§ 5.2, Fig-
ure 3) predominantly attend to, whereas the sec-
ondary VEs provide complementary information,
supporting the model’s overall performance. The
complementarity of VEs is highlighted by analyz-
ing the cross-modal attention patterns for overlap-
ping parts of the image (§ 5.3, Figure 4). VEs
trained on different data and objectives (e.g. Grid
and Region) cross-attend to the tokens of the re-
spective other VE that encode the same parts of the
image, aggregating their information. Further, the
model learns to visually ground the text representa-
tions to all VEs, as demonstrated by their attention
patterns (§ 5.4, Figure 5), and the text modality
aggregates information from different VEs.

In summary, our results indicate that VEs,
trained on different data and objectives, encode
complementary information, resulting in improve-
ments over approaches which only utilize a single
VE. This indicates that VEs, explicitly designed
for V+L tasks—e.g. by incorporating more diverse
training data and objectives during pre-training—
have the potential to significantly impact the per-
formance on the target V+L tasks.

7 Conclusion

In this work, we investigated whether differ-
ent VEs—based on repurposed pre-trained vi-
sion models—encode complementary information,
which improves the performance on downstream
V+L tasks. We experimented with three popular
VE classes Region, Grid, and Patch, and trained
models with all possible combinations on six differ-
ent V+L tasks. While combining VEs improve over
single-VE setups, our further analysis of attention
patterns reveals that diverse VEs encode comple-
mentary information, which motivates future work
on designing VEs explicitly for V+L tasks—e.g. by
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incorporating more diverse datasets, and training
objectives.

Limitations

The main limitation of our concatenation-based
multi-VE models is efficiency: The models are sig-
nificantly slower than single-VE models because
of the additional visual tokens in the input; the 3-
VE model requires almost twice the time to train
(in real time, not training steps) compared to the
single-VE models. Also, in cases where images are
not pre-encoded, multi-VE setups are significantly
slower at inference time. However, as mentioned
before, we concatenate the tokens for analysis pur-
poses only (§5) and leave more efficient alterna-
tives like resampling (Alayrac et al., 2022) to the
future.

Several limitations could be investigated in the
future, assuming access to a larger computational
budget:

1. We focused on single-stream Transformers
and did not take into account dual-stream or
other multimodal Transformer architectures.

2. We only experimented with three popular VEs
(one version per VE class). There are many
other VEs we could investigate in the future.

3. We do not pre-train our multimodal models on
intermediate, auxiliary multimodal tasks (Tan
and Bansal, 2019; Lu et al., 2019; Chen et al.,
2020, inter alia) as achieving state-of-the-art
is not our goal.

Acknowledgements

This work has been funded by the German Federal
Ministry of Education and Research (BMBF) under
the promotional reference 13N15897 (MISRIK)
and by the LOEWE initiative (Hesse, Germany)
within the emergenCITY center.

We thank Mert Tiftikci, Pooneh Mousavi, and
Neha Warikoo for insightful feedback and sugges-
tions on a draft of this paper.

References
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,

Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Mal-
colm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Saman-
gooei, Marianne Monteiro, Jacob Menick, Sebastian

Borgeaud, Andrew Brock, Aida Nematzadeh, Sa-
hand Sharifzadeh, Mikolaj Binkowski, Ricardo Bar-
reira, Oriol Vinyals, Andrew Zisserman, and Karen
Simonyan. 2022. Flamingo: a visual language model
for few-shot learning. In Advances in Neural In-
formation Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022.

P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson,
S. Gould, and L. Zhang. 2018. Bottom-Up and Top-
Down Attention for Image Captioning and Visual
Question Answering. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
6077–6086.

Emanuele Bugliarello, Ryan Cotterell, Naoaki Okazaki,
and Desmond Elliott. 2021. Multimodal Pretraining
Unmasked: A Meta-Analysis and a Unified Frame-
work of Vision-and-Language BERTs. Transactions
of the Association for Computational Linguistics,
9:978–994.

Jize Cao, Zhe Gan, Yu Cheng, Licheng Yu, Yen-Chun
Chen, and Jingjing Liu. 2020. Behind the Scene:
Revealing the Secrets of Pre-trained Vision-and-
Language Models. In Computer Vision - ECCV 2020
- 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part VI, volume 12351 of
Lecture Notes in Computer Science, pages 565–580.
Springer.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. UNITER: UNiversal Image-
TExt Representation Learning. In Computer Vision -
ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, volume 12375
of Lecture Notes in Computer Science, pages 104–
120. Springer.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. 2021.
Unifying vision-and-language tasks via text genera-
tion. In Proceedings of the 38th International Con-
ference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 1931–1942.
PMLR.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an Efficient
Tokenization-Free Encoder for Language Represen-
tation. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Wenliang Dai, Zihan Liu, Ziwei Ji, Dan Su, and Pascale
Fung. 2023. Plausible may not be faithful: Probing
object hallucination in vision-language pre-training.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 2136–2148, Dubrovnik, Croatia.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

105

https://openreview.net/forum?id=EbMuimAbPbs
https://openreview.net/forum?id=EbMuimAbPbs
https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1162/tacl_a_00408
https://doi.org/10.1162/tacl_a_00408
https://doi.org/10.1162/tacl_a_00408
https://doi.org/10.1007/978-3-030-58539-6_34
https://doi.org/10.1007/978-3-030-58539-6_34
https://doi.org/10.1007/978-3-030-58539-6_34
https://doi.org/10.1007/978-3-030-58577-8_7
https://doi.org/10.1007/978-3-030-58577-8_7
http://proceedings.mlr.press/v139/cho21a.html
http://proceedings.mlr.press/v139/cho21a.html
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://aclanthology.org/2023.eacl-main.156
https://aclanthology.org/2023.eacl-main.156
https://doi.org/10.18653/v1/n19-1423


Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net.

Constantin Eichenberg, Sidney Black, Samuel Wein-
bach, Letitia Parcalabescu, and Anette Frank. 2022.
MAGMA – multimodal augmentation of generative
models through adapter-based finetuning. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 2416–2428, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Stella Frank, Emanuele Bugliarello, and Desmond El-
liott. 2021. Vision-and-Language or Vision-for-
Language? On Cross-Modal Influence in Multimodal
Transformers. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages
9847–9857. Association for Computational Linguis-
tics.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu,
Yu Cheng, and Jingjing Liu. 2020. Large-Scale
Adversarial Training for Vision-and-Language Rep-
resentation Learning. In Advances in Neural In-
formation Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and
D. Parikh. 2017. Making the V in VQA Matter:
Elevating the Role of Image Understanding in Visual
Question Answering. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 6325–6334.

Lisa Anne Hendricks, John Mellor, Rosalia Schneider,
Jean-Baptiste Alayrac, and Aida Nematzadeh. 2021.
Decoupling the role of data, attention, and losses in
multimodal transformers. Transactions of the Associ-
ation for Computational Linguistics, 9:570–585.

Zhicheng Huang, Zhaoyang Zeng, Bei Liu, Dongmei Fu,
and Jianlong Fu. 2020. Pixel-BERT: Aligning Image
Pixels with Text by Deep Multi-Modal Transformers.
arXiv preprint.

Drew A. Hudson and Christopher D. Manning. 2019.
GQA: A New Dataset for Real-World Visual Rea-
soning and Compositional Question Answering. In
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 6700–6709. Computer Vi-
sion Foundation / IEEE.

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik G.
Learned-Miller, and Xinlei Chen. 2020. In Defense
of Grid Features for Visual Question Answering. In
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pages 10264–10273. Computer
Vision Foundation / IEEE.

Aishwarya Kamath, Mannat Singh, Yann LeCun,
Gabriel Synnaeve, Ishan Misra, and Nicolas Carion.
2021. MDETR - modulated detection for end-to-end
multi-modal understanding. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17, 2021,
pages 1760–1770. IEEE.

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj
Goswami, Amanpreet Singh, Pratik Ringshia, and
Davide Testuggine. 2020. The Hateful Memes Chal-
lenge: Detecting Hate Speech in Multimodal Memes.
In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt:
Vision-and-language transformer without convolu-
tion or region supervision. In Proceedings of the
38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research,
pages 5583–5594. PMLR.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H.
Hoi. 2022. BLIP: bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International Conference on Ma-
chine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 12888–12900.
PMLR.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh
Gotmare, Shafiq R. Joty, Caiming Xiong, and
Steven Chu-Hong Hoi. 2021. Align before fuse:
Vision and language representation learning with
momentum distillation. In Advances in Neural In-
formation Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
9694–9705.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2020a. What Does
BERT with Vision Look At? In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,

106

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://aclanthology.org/2022.findings-emnlp.179
https://aclanthology.org/2022.findings-emnlp.179
https://doi.org/10.18653/v1/2021.emnlp-main.775
https://doi.org/10.18653/v1/2021.emnlp-main.775
https://doi.org/10.18653/v1/2021.emnlp-main.775
https://proceedings.neurips.cc/paper/2020/hash/49562478de4c54fafd4ec46fdb297de5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/49562478de4c54fafd4ec46fdb297de5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/49562478de4c54fafd4ec46fdb297de5-Abstract.html
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://transacl.org/ojs/index.php/tacl/article/view/2677
https://transacl.org/ojs/index.php/tacl/article/view/2677
https://arxiv.org/abs/2004.00849
https://arxiv.org/abs/2004.00849
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/CVPR42600.2020.01028
https://doi.org/10.1109/CVPR42600.2020.01028
https://doi.org/10.1109/ICCV48922.2021.00180
https://doi.org/10.1109/ICCV48922.2021.00180
https://proceedings.neurips.cc/paper/2020/hash/1b84c4cee2b8b3d823b30e2d604b1878-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1b84c4cee2b8b3d823b30e2d604b1878-Abstract.html
http://proceedings.mlr.press/v139/kim21k.html
http://proceedings.mlr.press/v139/kim21k.html
http://proceedings.mlr.press/v139/kim21k.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.neurips.cc/paper/2021/hash/505259756244493872b7709a8a01b536-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/505259756244493872b7709a8a01b536-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/505259756244493872b7709a8a01b536-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.469
https://doi.org/10.18653/v1/2020.acl-main.469


2020, pages 5265–5275. Association for Computa-
tional Linguistics.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, Yejin Choi, and Jianfeng
Gao. 2020b. Oscar: Object-Semantics Aligned Pre-
training for Vision-Language Tasks. In Computer
Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part
XXX, volume 12375 of Lecture Notes in Computer
Science, pages 121–137. Springer.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. Microsoft COCO:
Common Objects in Context. In Computer Vision -
ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V, volume 8693 of Lecture Notes in Computer
Science, pages 740–755. Springer.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining Task-Agnostic Visi-
olinguistic Representations for Vision-and-Language
Tasks. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
13–23.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k Entities: Collecting
Region-to-Phrase Correspondences for Richer Image-
to-Sentence Models. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santi-
ago, Chile, December 7-13, 2015, pages 2641–2649.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8748–8763.
PMLR.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian
Sun. 2015. Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks. In
Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, pages 91–99.

Phillip Rust, Jonas Pfeiffer, Ivan Vulic, Sebastian Ruder,
and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 3118–3135. Association for
Computational Linguistics.

Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal,
Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and
Kurt Keutzer. 2022. How much can CLIP bene-
fit vision-and-language tasks? In The Tenth Inter-
national Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2022. FLAVA: A foun-
dational language and vision alignment model. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2022, New Orleans, LA,
USA, June 18-24, 2022, pages 15617–15629. IEEE.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2020. VL-BERT: Pre-
training of Generic Visual-Linguistic Representa-
tions. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
Cross-Modality Encoder Representations from Trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 5099–
5110. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yu-
lia Tsvetkov, and Yuan Cao. 2022. SimVLM: Simple
visual language model pretraining with weak supervi-
sion. In 11th International Conference on Learning
Representations, ICLR 2022,.

Ning Xie, Farley Lai, Derek Doran, and Asim Kadav.
2019. Visual Entailment: A Novel Task for Fine-
Grained Image Understanding. arXiv preprint.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. Byt5: Towards a token-free

107

https://doi.org/10.1007/978-3-030-58577-8_8
https://doi.org/10.1007/978-3-030-58577-8_8
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://doi.org/10.1109/ICCV.2015.303
https://doi.org/10.1109/ICCV.2015.303
https://doi.org/10.1109/ICCV.2015.303
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://openreview.net/forum?id=zf_Ll3HZWgy
https://openreview.net/forum?id=zf_Ll3HZWgy
https://doi.org/10.1109/CVPR52688.2022.01519
https://doi.org/10.1109/CVPR52688.2022.01519
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=GUrhfTuf_3
https://openreview.net/forum?id=GUrhfTuf_3
https://openreview.net/forum?id=GUrhfTuf_3
http://arxiv.org/abs/1901.06706
http://arxiv.org/abs/1901.06706
https://transacl.org/ojs/index.php/tacl/article/view/3351


future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10(0):291–306.

Ming Yan, Haiyang Xu, Chenliang Li, Bin Bi, Junfeng
Tian, Min Gui, and Wei Wang. 2021a. Grid-VLP:
Revisiting Grid Features for Vision-Language Pre-
training. arXiv preprint.

Ming Yan, Haiyang Xu, Chenliang Li, Junfeng Tian,
Bin Bi, Wei Wang, Weihua Chen, Xianzhe Xu, Fan
Wang, Zheng Cao, Zhicheng Zhang, Qiyu Zhang,
Ji Zhang, Songfang Huang, Fei Huang, Luo Si, and
Rong Jin. 2021b. Achieving Human Parity on Visual
Question Answering. arXiv preprint.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67–78.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. VinVL: Revisiting Visual Represen-
tations in Vision-Language Models. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5579–5588.

A Training and Hyperparameters

We report the hyperparameters along with the task-
specific training details.

A.1 Hyperparameters
We report our hyperparameters in Table 3,4. For
each task, we select the learning rate in {2e −
5, 3e− 5, 5e− 5} with the best validation perfor-
mance for the model trained with all three VEs.
We train all VE combinations for one task with
the same hyperparameters. We use the training
checkpoint with the best validation performance
(computed each epoch) for testing.

Name Value

Optimizer AdamW
(Loshchilov and Hutter, 2019)

Schedule linear
Warmup steps 5%
Weight decay 0.05
Batch size 64
Max. text sequence 96

Table 3: Shared hyperparameters used during training
for the different tasks.

Task Learning Rate Epochs

Flickr30k 2e-5 10
MSCOCO 2e-5 3
GQA 5e-5 6
VQA 5e-5 10
SNLI-VE 5e-5 10
Hateful Memes 3e-5 50

Table 4: The per-task hyperparameters used during train-
ing.

A.2 Task Details
We describe the training details for each task. Un-
less noted otherwise, we use the standard splits of
all tasks as described in Li et al. (2020b); Zhang
et al. (2021).

Flickr30k, MSCOCO: We use a cross-encoder
following Li et al. (2020b); Zhang et al. (2021).
The model either receives the caption and the
paired image or a random image (each with 50%
chance). The task is to predict if the caption and
image match. We use cross entropy as loss as the
training objective.

During evaluation, we compute the logits for all
possible image-caption pairs and use these scores
as ranking to compute the recall at k. We evaluate
MSCOCO on the 1k image test set.

108

https://transacl.org/ojs/index.php/tacl/article/view/3351
https://arxiv.org/abs/2108.09479
https://arxiv.org/abs/2108.09479
https://arxiv.org/abs/2108.09479
http://arxiv.org/abs/2111.08896
http://arxiv.org/abs/2111.08896
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229
https://openaccess.thecvf.com/content/CVPR2021/papers/Zhang_VinVL_Revisiting_Visual_Representations_in_Vision-Language_Models_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Zhang_VinVL_Revisiting_Visual_Representations_in_Vision-Language_Models_CVPR_2021_paper.pdf


GQA, VQA, SNLI-VE, Hateful Memes: We
train all three tasks as standard classification task
with cross entropy loss. For GQA, each class cor-
responds to a label appearing in the train, test, or
validation set. We also use the balanced training
data for GQA as it produces similar results to the
much larger unbalanced training set with a frac-
tion of the training time. For VQA, we follow Li
et al. (2020b) and use the top-3000 labels for clas-
sification and we train the model with a multilabel
objective using the relevance scores as soft proba-
bilities. For testing, we use the maximum logit as
the single predicted class.

B Full Analysis Results

We present the full results for all VE combinations
from the analysis of §5. Figure 8 shows the CLS
attention, Figure 9 the attention flow, Figure 10
the surplus attention for overlapping tokens, and
Figure 11 the visual grounding.

C Analysis Results after VE-Dropout
Training

We present the full results for all VE combinations
from the analysis of §5 after VE-Dropout train-
ing. Figure 12 show the results for VE-Dropout at
test time, Figure 14 the CLS attention, Figure 15
the attention flow, Figure 16 the surplus attention
for overlapping tokens, and Figure 13 the visual
grounding.

109



[CLS]

Text Region Grid Patch

56%19%10%
3%

[CLS]

Text Region Grid

60% 6% 23%

[CLS]

Text Region Patch

65% 7% 13%

[CLS]

Text Grid Patch

60% 27% 1%

(a) CLS Attention Flickr30k

[CLS]

Text Region Grid Patch

57%10% 4%
21%

[CLS]

Text Region Grid

59% 11% 20%

[CLS]

Text Region Patch

58% 11% 20%

[CLS]

Text Grid Patch

61% 26% 1%

(b) CLS Attention MSCOCO

[CLS]

Text Region Grid Patch

70%7% 7%
1%

[CLS]

Text Region Grid

59% 12% 14%

[CLS]

Text Region Patch

67% 14% 3%

[CLS]

Text Grid Patch

61% 18% 5%

(c) CLS Attention GQA

[CLS]

Text Region Grid Patch

71%9% 8%
1%

[CLS]

Text Region Grid

75% 4% 10%

[CLS]

Text Region Patch

72% 12% 1%

[CLS]

Text Grid Patch

65% 15% 7%

(d) CLS Attention VQA

[CLS]

Text Region Grid Patch

74%3% 8%
2%

[CLS]

Text Region Grid

75% 1% 9%

[CLS]

Text Region Patch

74% 8% 2%

[CLS]

Text Grid Patch

75% 10% 1%

(e) CLS Attention SNLI-VE

[CLS]

Text Region Grid Patch

59%9% 8%
6%

[CLS]

Text Region Grid

47% 11% 30%

[CLS]

Text Region Patch

65% 12% 11%

[CLS]

Text Grid Patch

54% 27% 4%

(f) CLS Attention Hateful Memes

Figure 8: CLS attention weights (in %) averaged over all heads to the modalities. Numbers do not add to 100%
because of CLS self-attention.
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Figure 9: Attention flow (in %) from each modality (top) to all modalities (bottom). Flow is the sum of all attention
weights between the modalities, averaged over all modality tokens and all attention heads.
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Figure 10: Surplus attention of attention heads from one VE’s tokens to another target VE’s overlapping tokens
compared to the other non-overlapping tokens of the target VE. Dot size represents the average total attention paid
to the target VE by each head. (Abbreviations: Region, Grid, Patch).
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(a) Visual Grounding of attention heads on Flickr30k
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(b) Visual Grounding of attention heads on GQA

Figure 11: Visual Entity Grounding accuracy of all attention heads. An entity is grounded correctly to a VE if the
attention weight from the phrase to the matching visual tokens is the highest over all the VE’s tokens.
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Figure 12: (After VE-Dropout Training) Relative performance decrease of 2-encoder models after dropping the
entire first or second VE from the input compared to evaluation with both encoders in use. (Abbreviations: Region,
Grid, Patch).
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(a) Visual Grounding of attention heads on Flickr30k
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(b) Visual Grounding of attention heads on GQA

Figure 13: (After VE-Dropout Training) Visual Entity Grounding accuracy of all attention heads. An entity is
grounded correctly to a VE if the attention weight from the phrase to the matching visual tokens is the highest over
all the VE’s tokens.
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Figure 14: (After VE-Dropout Training) CLS attention weights (in %) averaged over all heads to the modalities.
Numbers do not add to 100% because of CLS self-attention.
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Figure 15: (After VE-Dropout Training) Attention flow (in %) from each modality (top) to all modalities (bottom).
Flow is the sum of all attention weights between the modalities, averaged over all modality tokens and all attention
heads.
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Figure 16: (After VE-Dropout Training) Surplus attention of attention heads from one VE’s tokens to another target
VE’s overlapping tokens compared to the other non-overlapping tokens of the target VE. Dot size represents the
average total attention paid to the target VE by each head. (Abbreviations: Region, Grid, Patch).
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