Using Captum to Explain Generative Language Models

Vivek Miglani*, Aobo Yang*, Aram H. Markosyan, Diego Garcia-Olano, Narine Kokhlikyan

Meta Al
{vivekm, aoboyang, amarkos, diegoolano, narine } @meta.com

Abstract

Captum is a comprehensive library for model
explainability in PyTorch, offering a range of
methods from the interpretability literature to
enhance users’ understanding of PyTorch mod-
els. In this paper, we introduce new features
in Captum' that are specifically designed to
analyze the behavior of generative language
models. We provide an overview of the avail-
able functionalities and example applications
of their potential for understanding learned as-
sociations within generative language models.

1 Introduction

Model interpretability and explainability have be-
come significantly more important as machine
learning models are used in critical domains such
as healthcare and law. It is insufficient to simply
make a prediction through a black-box model and
important to better understand why the model made
a particular decision.

Interest in Large Language Models (LLMs) has
also grown exponentially in the past few years with
the release of increasingly large and more powerful
models such as GPT-4 (OpenAl, 2023). A lack of
explainability continues to exist despite larger mod-
els, and with the use of these models expanding
to more and more use-cases, it is increasingly im-
portant to have access to tooling providing model
explanations.

Captum is an open-source model explainability
library for PyTorch providing a variety of generic
interpretability methods proposed in recent litera-
ture such as Integrated Gradients, LIME, DeepL.ift,
Tracln, TCAV and more (Kokhlikyan et al., 2020).

In this work, we discuss newly open-sourced
functionalities in Captum v0.7 to easily apply ex-
plainability methods to large generative language
models, such as GPT-3.

"Denotes equal contribution
! https://captum.ai

2 Attribution Methods

One important class of explainability methods is
attribution or feature importance methods, which
output a score corresponding to each input feature’s
contribution or impact to a model’s final output.

Formally, given a function f : RY — R, where
f € Fand X € R%is a single input vector con-
sisting of d dimensions or features, an attribution
method is defined as a function ¢ : F x RY — R<.
Each element in the attribution output corresponds
to a score of the contribution of corresponding fea-
ture ¢ € D, where D denotes the set of all feature
indices D = {1,2,...,d}.

Many attribution methods also require a baseline
or reference input B € R defining a comparison
input point to measure feature importance with
respect to.

We utilize the notation Xg to denote selecting
the feature values with indices from the set S C D
and the remaining indices from B. Formally, the
value of feature 7 in Xg is (Xg); = LiesX; +
I;¢sBi, where I is the indicator function.

In this section, we provide background con-
text on attribution methods available in Captum.
These methods can be categorized broadly into
(i) perturbation-based methods, which utilize re-
peated evaluations of a black-box model on per-
turbed inputs to estimate attribution scores, and
(ii) gradient-based methods, which utilize back-
propagated gradient information to estimate attri-
bution scores. Perturbation-based methods do not
require access to model weights, while gradient-
based models do.

2.1 Perturbation-Based Methods
2.1.1 Feature Ablation

The most straightforward attribution is feature ab-
lation, where each feature is substituted with the
corresponding element of the baseline feature vec-
tor to estimate the corresponding importance.

165

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 165-173
December 6, 2023 ©2023 Association for Computational Linguistics

https://captum.ai

Formally, this method is defined as

oi(f, X) = [(X) — f(XD\(iy) (1)

Feature Ablation has clear advantages as a sim-
ple and straightforward method, but the resulting
attributions may not fully capture the impacts of
feature interactions since features are ablated indi-
vidually.

2.1.2 Shapley Value Sampling

Shapley Values originated from cooperative game
theory as an approach to distribute payouts fairly
among players in a cooperative game. Analogously,
in the attribution setting, Shapley Values assign
scores to input features, with payouts correspond-
ing to a feature’s contribution to the model output.
Shapley Values satisfy a variety of theoretical prop-
erties including efficiency, symmetry and linearity.
Formally, this method is defined as

S|\(|D| — |S] — 1)!
s(fX)= 3 [! 'l \‘D"!)
SCD\{i} ' 2

F(Xsupy) — f(Xs)]

While computing this quantity exactly requires
an exponential number of evaluations in the num-
ber of features, we can estimate this quantity using
a sampling approach (Castro et al., 2009). The
approach involves selecting a permutation of the
d features and adding the features one-by-one to
the original baseline. The output change as a result
of adding each feature accounts for its contribu-
tion, and averaging this over sampled perturbations
results in an unbiased estimate of Shapley Values.

2.1.3 LIME

LIME or Locally Interpretable Model Explanations
proposes a generic approach to sample points in
the neighborhood of the input point X and train an
interpretable model (such as a linear model) based
on the results of the local evaluations (Ribeiro et al.,
2016).

This method proposes reparametrizing the in-
put space to construct interpretable features such
as super-pixels in images and then evaluating the
original model on a variety of perturbations of the
interpretable features. The method can be utilized
with any perturbation sampling and weighting ap-
proaches and interpretable model / regularization
parameters. The interpretable model can then be
used as an explanation of the model’s behavior in

the local region surrounding the target input point.
For a linear model, the coefficients of this model
can be considered as attribution scores for the cor-
responding feature.

2.1.4 Kernel SHAP

Kernel SHAP is a special case of the LIME
framework, which sets the sampling approach, in-
tepretable model, and regularization in a specific
way such that the results theoretically approximate
Shapley Values (Lundberg and Lee, 2017).

2.2 Gradient Based Methods
2.2.1 Saliency

Saliency is a simple gradient-based approach, uti-
lizing the model’s gradient at the input point as the
corresponding feature attribution (Simonyan et al.,
2013). This method can be understood as taking a
first order approximation of the function, in which
the gradients would serve as the coefficients of each
feature in the model.

¢i(f, X) = f'(X) 3)

2.2.2 Integrated Gradients

Integrated Gradients estimates attribution by com-
puting the path integral of model gradients between
the baseline point and input point (Sundararajan
et al., 2017). This approach has been shown to sat-
isfy desirable theoretical properties including sen-
sitivity and implementation invariance. Formally,
the method can be defined as

¢i(f, X) = (X; — By)

1 !
) / fB+(X-Ba) @
a=0 awl

2.2.3 Other Gradient-Based Methods

Other popular gradient-based attribution methods
include DeepLift and Layerwise Relevance Pro-
pogation (LRP) (Shrikumar et al., 2017; Bach et al.,
2015). These methods both require a backward
pass of the model on the original inputs but cus-
tomize the backward propagation of specific func-
tions, instead of using their default gradient func-
tions.

3 Language Model Attribution

In Captum v0.7, we propose new functionalities
to apply the attribution methods within Captum to
analyze the behaviors of LLMs. Users can choose
any interested tokens or segments from the input

166

Case 1 OUTPUT 1: attribution for most likely

Prompt: David lives in Palm LLM + decoded sequence

Coast, FL and is a lawyer. His CAPTUM David lives in Palm Coast, FL and ...

; ; — | ATTRIBUTION |~ — ¥ A NS

personal interests include METHOD layin olf, hiking, and cookin

Target: None playing gofi, hiking, and cooxin g-
-.204 1.081 -0.8918 -0.0498 -.2699
Feature Importance Scores Relative to Selected Input

Case 2) id li . | OUTPUT 2: attribution for user provided

Promp;:'._ Dac\jn. |v|es in Pal_l]h LLM + target string

Coast, ‘an IS a gwyer. IS —_ CAPTUM David lives in Palm Coast, FL and ..

personal interests include ATTRIBUTION | —> 7 o\ —

Target: open sourcing METHOD Open sourcing explainable tech..

explainable techniques for = 7051 T 23z ~ -185T -~ -2834

generatlve LLMs and gOIf. Feature Importance Scores Relative to Selected Input

Figure 1: Example of applying Captum attribution methods to analyze the input prompt’s effect on the output of
LLMs, showing two types of target strings accepted by Captum attribution API and token level attribution outputs
for both with respect to the input "Palm Coast". In Case 1, no Target string is provided, so attributions are provided
for the most likely decoded sequence. In Case 2, attributions are provided for the chosen target output.

prompt as features, e.g., "Palm Coast" in the exam-
ple shown in Figure 1, and use attribution methods
to quantify their impacts to the generation targets,
which can be either a specified output sequence or
a likely generation from the model.

3.1 Perturbation-Based Methods

We introduce simple APIs to experiment with
perturbation-based attribution methods including
Feature Ablation, Lime, Kernel SHAP and Shapley
Value Sampling.

We prioritize ease-of-use and flexibility, allow-
ing users to customize the chosen features for attri-
bution, mask features into groups as necessary, and
define appropriate baselines to ensure perturbed
inputs remain within the natural data distribution.

In Figure 2, we demonstrate an example usage
of the LLMAttribution API for the simple prompt
"Dave lives in Palm Coast, FL and is a lawyer. His
personal interests include”. Providing this input
prompt to a language model to generate the most
likely subsequent tokens, we can apply Captum
to understand the impact of different parts of the
prompt string on the model generation. Figure 3
presents a more customized usage where we use
the same function to understand a specific output
we are interested in ("playing golf, hiking, and
cooking.").

3.1.1 Defining Features

Users are able to define and customize ’features’
for attribution in the prompt text. The simplest ap-
proach would be defining the features as individual

tokens.

Unfortunately, in many cases, it doesn’t make
sense to perturb individual tokens, since this may
no longer form a valid sentence in the natural distri-
bution of potential input sequences. For example,
perturbing the token "Palm" in the above sentence
would result in a city name that is not in the natu-
ral distribution of potential cities in Florida, which
may lead to unexpected impacts on the perturbed
model output. Moreover, tokenizers used in mod-
ern LLMs may further break a single word in many
cases. For example, the tokenizer can break the
word "spending” into "_sp" and "ending".

The API provides flexibility to define units of
attribution as custom interpretable features which
could be individual words, tokens, phrases, or even
full sentences. For example, in Figure 2, we select
the relevant features to be the name, city, state,
occupation, and pronoun in the sentence prompt
and desire to determine the relative contribution of
these contextual features on the model’s predicted
sentence completion.

Users can define the units for attribution as a list
or dictionary of features and provide a format string
or function to define a mapping from the attribution
units to the full input prompt as shown in Figure 3.

3.1.2 Baselines

The baseline choice is particularly important for
computing attribution for text features, as it serves
as the reference value used when perturbing the
chosen feature. The perturbation-based feature API
allows defining custom baselines corresponding to

167

from captum.attr import FeatureAblation,

fa =
Ilm_attr =

FeatureAblation(model)
LLMAttribution(fa, tokenizer)
inp = TextTemplateFeature(

the text template

"{} lives in {3}, {} and is a {}.
the values of the features

["Dave”", "Palm Coast"”, "FL", "lawyer",

LLMAttribution,

{} personal

TextTemplateFeature

interests include”,

”HiS"],

the reference baseline values of the features

baselines=["Sarah"”, "Seattle”, "WA",

)
Ilm_attr.attribute(inp)

"doctor”,

"Her"] ,

Figure 2: Example of applying Captum with a list of features in a text template

inp = TextTemplateFeature(
"{name} lives in {city},

{state} and is a {occupation}.

{pronoun} personal

interests include”,
{"name"” :"Dave"”, "city": "Palm Coast”, "state”: "FL", "occupation”:"lawyer”, "
pronoun”:"His"},
baselines={"name":"Sarah"”, "city": "Seattle"”, "state”: "WA", "occupation":"doctor
", "pronoun":"Her"}
)
attr_result = llm_attr.attribute(inp, target="playing golf, hiking, and cooking.")

attr_result.plot_token_attr ()

Figure 3: Example of applying Captum with a dictionary of features in a text template and a specific target, and

visualize the token attribution

each input feature.

It is recommended to select a baseline which fits
the context of the original text and remains within
the natural data distribution. For example, replac-
ing the name of a city with another city ensures
the sentence remains naturally coherent, but allows
measuring the contribution of the particular city
selected.

In addition to a single baseline, the Captum API
also supports providing a distribution of baselines,
provided as either a list or function to sample a
replacement option. For example, in the example
above, the name "Dave" could be replaced with
a sample from the distribution of common first
names to measure any impact of the name "Dave"
in comparison to the chosen random distribution as
shown in Figure 6.

3.1.3 Masking Features

Similar to the underlying Captum attribution meth-
ods, we support feature masking, which enables
grouping features together to perturb as a single
unit and obtain a combined, single attribution score.
This functionality may be utilized for highly corre-
lated features in the text input, where it often makes
sense to ablate these features together, rather than

independently.

For example, in Figure 2, the feature pairs (city,
state) and (name, pronoun) are often highly corre-
lated, and thus it may make sense to group them
and consider them as a single feature.

3.1.4 Target Selection

For any attribution method, it is also necessary to
select the target function output for which attribu-
tion outputs are computed. Since language models
typically output a probability distribution over the
space of tokens for each subsequently generated to-
ken, there are numerous choices for the appropriate
target.

By default, when no target is provided, the target
function behavior is for the attribution method to
return attributions with respect to the most likely
decoded token sequence.

When a target string is provided, the target func-
tion is the log probability of the output sequence
from the language model, given the input prompt.
For a sequence with multiple tokens, this is numer-
ically computed through the sum of the log proba-
bilities of each token in the target string. Figure 1
shows these two input use cases and shows token
level attribution relative to an input subsequence

168

for both.

We also support providing a custom function on
the output logit distribution, which allows attribu-
tion with respect to an alternate quantity such as
the entropy of the output token distribution.

3.2 Gradient-Based Methods

Captum 0.7 also provides a simple API to apply
gradient-based methods to LLMs. Applying these
methods to language models is typically more chal-
lenging than for models with dense feature inputs,
since embedding lookups in LLMs are typically
non-differentiable functions, and gradient-based
attributions need to be obtained with respect to
embedding outputs. Captum allows these attribu-
tions to be aggregated across embedding dimen-
sions to obtain per-token attribution scores. Figure
4 demonstrates an example of applying Integrated
Gradients on a sample input prompt.

3.3 Visualization

We also open source utilities for easily visualizing
the attribution outputs from language models. Fig-
ure 3 shows how to use the utilities to visualize the
attribution result, and Figure 5 demonstrates the
heatmap plotted with the prompt along the top, the
target string along the left side and feature impor-
tance scores in each cell.

(Feature) Value Golfing Hiking Cooking
(Name) Dave 0.4660 -0.2640 -0.4515
(City) Palm Coast 1.0810 -0.8762 -0.2699
(State) FL 0.6070 -0.3620 -0.3513
(Occupation) lawyer 0.7584 -0.1966 0.0331
(Pronoun) His 0.2217 -0.0650 -0.2577

Table 1: Associations between input and generated text
features

4 Applications

In this section, we discuss two applications of the
attribution methods described above in different
contexts. These applications provide additional
transparency as well as contribute to a better un-
derstanding of a model’s learned associations and
robustness.

4.1 Understanding Model Associations

This perturbation-based tooling can be particularly
useful for improved understanding of learned asso-
ciations in LLMs.

Consider the example prompt:

“David lives in Palm Coast, FL and is a lawyer.
His personal interests include ”

We can define features including gender, city,
state and occupation. Obtaining attributions on
these features against the subsequent target

“playing golf, hiking, and cooking. ”

allows us to better understand why the model pre-
dicted these personal interests and how each feature
correlates with each of these interests. The model
might be associating this activity as a common
hobby for residents in the specific city or as an ac-
tivity common to lawyers. Through this choice of
features, we can obtain a better understanding of
why the model predicted these particular hobbies
and how this associates with the context provided
in the prompt.

We apply Shapley Value Sampling to better un-
derstand how each of the features contributed to
the prediction. The corresponding code snippet
is shown in the Appendix in Figure 6. Table 1
presents the effects of each feature on the LLM’s
probability of outputting the corresponding inter-
est, with positive and negative values indicating
increases and decreases of the probability respec-
tively. We can therefore identify some interesting
and even potentially biased associations. For ex-
ample, the male name and pronoun, i.e., "Dave"
and "His", have positive attribution to "golfing" but
negative attribution to "cooking".

4.2 Evaluating Effectiveness of Few-Shot
Prompts

Significant prior literature has demonstrated the
ability of LLMs to serve as few-shot learners
(Brown et al., 2020). We utilize Captum’s attri-
bution functionality to better understand the impact
and contributions of few-shot examples to model
predictions. Table 2 demonstrates four example
few shot prompts and corresponding attribution
scores when predicting positive sentiment for "I
really liked the movie, it had a captivating plot!"
movie review.

Here we aim to understand the impact of each ex-
ample prompt on the Positive sentiment prediction.
The LLM is asked to predict positive or negative
sentiment using the following prompt:

“Decide if the following movie review enclosed
in quotes is Positive or Negative. Output only
either Positive or Negative:

169

from captum.attr import LayerIntegratedGradients,

ig = LayerIntegratedGradients(model,
Ilm_attr = LLMGradientAttribution(ig,

inp = TextTokenFeature(”"Dave lives in Palm Coast,
interests

Ilm_attr.attribute(inp)

TextTokenFeature

"model.embed_tokens")
tokenizer)

FL and is a lawyer. His personal
include”, tokenizer)

Figure 4: Example of applying Captum with a gradient-based approach

»‘Jq,//b

C; ‘b
Ve Oagy] "’er, s

L
0.0010 1.2539

0.0467 0.6064

_playing{ 0.5933 01976 0.1418

_golf{ 0.7550 1.2044 0.0959

l 15
rlo
1 0.2246 0.0640 0.1369 0.0457 0.0189

h-{ -0.5353 EEEIEP] -0.5090 -0.3594 -0.1962 os

ik { -0.0040 -0.0172 0.0000 -0.0141 0.0042

ing4{ 0.0000 0.0000 0.0000 -0.0000 0.0000 Fo.0

1 0.0762 0.0552 0.2341 -0.0440 0.0363

ueNNqUIIY US> oL

|
=4
wn

_andq -0.0781 -0.0621 -0.0325 -0.0515 0.0746

cook { 0:9326 | -0.4274 -0.2482 -0.1397 -0.5486

ing { 0.0000 0.0000 0.0000 -0.0000 0.0000

1 -0.0033 0.0155 0.0094 -0.0046 0.0138

Figure 5: Text Attribution Visualization Example

‘I really liked the movie, it had a captivating plot!’

»

We consider each of the provided example
prompts as features and we utilize zero-shot prompt
as a baseline in the attribution algorithm. The de-
tailed implementation can be found in Appendix in
Figure 7.

We obtain results as shown in Table 2 by ap-
plying Shapley Values. Surprisingly, the results
suggest that all the provided examples actually re-
duced confidence in the prediction of "Positive".

Example Shapley
Value

’The movie was ok, the actors weren’t -0.0413

great’ -> Negative

’I loved it, it was an amazing story!” -0.2751

-> Positive

"Total waste of time!!” -> Negative -0.2085

"Won’t recommend’ -> Negative -0.0399

Table 2: Example prompts’ contribution to model re-
sponse "Positive."

5 Related Work

Numerous prior works have developed and inves-
tigated attribution methods with a variety of prop-
erties, but few efforts have been made to develop
open-source interpretability tools providing a vari-
ety of available methods, particularly for the text
domain. Captum was initially developed to fill
this gap and provide a centralized resource for re-
cent interpretability methods proposed in literature
(Kokhlikyan et al., 2020).

Ecco and inseq are two libraries that have pro-
vided attribution functionalities for text / language
models (Sarti et al., 2023; Alammar, 2021), and
both libraries are built on top of the attribution
methods available in Captum. These libraries pri-
marily focus on gradient-based attribution methods,
which provide token-level attribution based on gra-
dient information.

In contrast, our main contribution in this work
has been a focus on perturbation-based methods
and providing flexibility on aspects such as feature
definition, baseline choice and masking. We do not
necessarily expect that these attribution methods
provide a score for each token individually, which
is typically the case for gradient-based methods.
This shift in structure allows us to generalize to
a variety of cases and allows the users to define
features for attribution as it fits best.

Some prior work on attribution methods have
also demonstrated limitations and counterexamples
of these methods in explaining a model’s reliance
on input features, particularly with gradient-based
attribution methods (Adebayo et al., 2018).

Perturbation-based methods generally have an
advantage of being justifiable through the model’s
output on counterfactual perturbed inputs. But per-
turbing features by removing individual tokens or
replacing them with pad or other baseline tokens
may result in inputs outside of the natural data dis-
tribution, and thus, model outputs in this region
may not be accurate. The tools developed have

170

been designed to make it easier for developers to
select features, baselines, and masks which can en-
sure perturbations remain within the natural data
distribution in order to obtain more reliable feature
attribution results.

Recent advances in data augmentation (Pluscec
and Snajder, 2023) for natural language processing
have led to the development of a number of open-
source libraries (Wang et al., 2021; Papakipos and
Bitton, 2022; Zeng et al., 2021; Morris et al., 2020;
Ma, 2019; Dhole et al., 2022; Wu et al., 2021).
Among many functionalities, these libraries pro-
vide a rich set of text perturbations. Some libraries
have specific focus, e.g. perturbing demographic
references (Qian et al., 2022). An interesting di-
rection of future work will be the extension of our
present API to provide fully automated feature and
baseline selections, allowing users to simply pro-
vide an input string and automatically identify ap-
propriate text features and corresponding baselines
for attribution.

6 Conclusion

In this work, we introduce new features in the
open source library Captum that are specifically de-
signed to analyze the behavior of generative LLM:s.
We provide an overview of the available functional-
ities and example applications of their potential in
understanding learned associations and evaluating
effectiveness of few-shot prompts within generative
LLMs. We demonstrate examples for using pertur-
bation and gradient-based attribution methods with
Captum which highlight the APT’s flexibility on
aspects such as feature definition, baseline choice
and masking. This flexibility in structure allows
users to generalize to a variety of cases, simplifying
their ability to conduct explainability experiments
on generative LLMs.

In the future, we plan to expand our API for
additional automation in baseline and feature selec-
tion as well as incorporate other categories of inter-
pretability techniques for language models. Run-
time performance optimization of attribution algo-
rithms is another area of research that could be
beneficial for the OSS community.

References

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian
Goodfellow, Moritz Hardt, and Been Kim. 2018. San-
ity checks for saliency maps.

171

J Alammar. 2021. Ecco: An open source library for the
explainability of transformer language models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations. Association for
Computational Linguistics.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Miiller, and Wo-
jciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation. PloS one, 10(7):e0130140.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Javier Castro, Daniel Gémez, and Juan Tejada. 2009.
Polynomial calculation of the shapley value based
on sampling. Computers & Operations Research,
36(5):1726-1730.

Kaustubh D. Dhole, Varun Gangal, Sebastian
Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Ma-
hamood, Abinaya Mahendiran, Simon Mille, Ashish
Shrivastava, Samson Tan, Tongshuang Wu, Jascha
Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, On-
drej Dusek, Sebastian Ruder, Sajant Anand, Na-
gender Aneja, Rabin Banjade, Lisa Barthe, Hanna
Behnke, Ian Berlot-Attwell, Connor Boyle, Car-
oline Brun, Marco Antonio Sobrevilla Cabezudo,
Samuel Cahyawijaya, Emile Chapuis, Wanxiang
Che, Mukund Choudhary, Christian Clauss, Pierre
Colombo, Filip Cornell, Gautier Dagan, Mayukh
Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis
Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di
Giovanni, Tanya Goyal, Rishabh Gupta, Rishabh
Gupta, Louanes Hamla, Sang Han, Fabrice Harel-
Canada, Antoine Honore, Ishan Jindal, Przemys-
law K. Joniak, Denis Kleyko, Venelin Kovatchev,
Kalpesh Krishna, Ashutosh Kumar, Stefan Langer,
Seungjae Ryan Lee, Corey James Levinson, Hualou
Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukya-
nenko, Vukosi Marivate, Gerard de Melo, Simon
Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat
Moosavi, Niklas Muennighoff, Timothy Sum Hon
Mun, Kenton Murray, Marcin Namysl, Maria Obed-
kova, Priti Oli, Nivranshu Pasricha, Jan Pfister,
Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin,
Shahab Raji, Pawan Kumar Rajpoot, Vikas Rau-
nak, Roy Rinberg, Nicolas Roberts, Juan Diego
Rodriguez, Claude Roux, Vasconcellos P. H. S.,
Ananya B. Sai, Robin M. Schmidt, Thomas Scialom,
Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen,
Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel,
Damien Sileo, Jamie Simon, Chandan Singh, Ro-
man Sitelew, Priyank Soni, Taylor Sorensen, William
Soto, Aman Srivastava, KV Aditya Srivatsa, Tony
Sun, Mukund Varma T, A Tabassum, Fiona Anting
Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn,

http://arxiv.org/abs/arXiv:1810.03292
http://arxiv.org/abs/arXiv:1810.03292

Athena Wang, Zijian Wang, Gloria Wang, Zijie J.
Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata,
Xinyi Wu, Witold Wydmanski, Tianbao Xie, Usama
Yaseen, Michael A. Yee, Jing Zhang, and Yue Zhang.
2022. Nl-augmenter: A framework for task-sensitive
natural language augmentation.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,
Alexander Melnikov, Natalia Kliushkina, Carlos
Araya, Siqi Yan, and Orion Reblitz-Richardson. 2020.
Captum: A unified and generic model interpretability
library for pytorch.

Scott Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions.

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp.

OpenAl. 2023. Gpt-4 technical report.

Zoe Papakipos and Joanna Bitton. 2022. Augly: Data
augmentations for robustness.

Domagoj Pluiéec and Jan Snajder. 2023. Data augmen-
tation for neural nlp.

Rebecca Qian, Candace Ross, Jude Fernandes,
Eric Michael Smith, Douwe Kiela, and Adina
Williams. 2022. Perturbation augmentation for fairer
NLP. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9496-9521, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should i trust you?": Explain-
ing the predictions of any classifier.

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, Oskar
van der Wal, Malvina Nissim, and Arianna Bisazza.
2023. Inseq: An interpretability toolkit for sequence
generation models. ArXiv, abs/2302.13942.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International

conference on machine learning, pages 3145-3153.
PMLR.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2013. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-

tional conference on machine learning, pages 3319-
3328. PMLR.

172

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, Yicheng
Zou, Xin Zhou, Jiacheng Ye, Yongxin Zhang, Rui
Zheng, Zexiong Pang, Qinzhuo Wu, Zhengyan Li,
Chong Zhang, Ruotian Ma, Zichu Fei, Ruijian Cai,
Jun Zhao, Xingwu Hu, Zhiheng Yan, Yiding Tan,
Yuan Hu, Qiyuan Bian, Zhihua Liu, Shan Qin, Bolin
Zhu, Xiaoyu Xing, Jinlan Fu, Yue Zhang, Minlong
Peng, Xiaoqing Zheng, Yaqian Zhou, Zhongyu Wei,
Xipeng Qiu, and Xuanjing Huang. 2021. TextFlint:
Unified multilingual robustness evaluation toolkit for
natural language processing. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing: System
Demonstrations, pages 347-355, Online. Association
for Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel S Weld. 2021. Polyjuice: Generating coun-
terfactuals for explaining, evaluating, and improving
models. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 6707-6723.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Zixian Ma, Bairu Hou, Yuan Zang, Zhiyuan
Liu, and Maosong Sun. 2021. OpenAttack: An open-
source textual adversarial attack toolkit. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing:
System Demonstrations. Association for Computa-
tional Linguistics.

A Appendix

http://arxiv.org/abs/2112.02721
http://arxiv.org/abs/2112.02721
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/arXiv:1705.07874
http://arxiv.org/abs/arXiv:1705.07874
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2201.06494
http://arxiv.org/abs/2201.06494
http://arxiv.org/abs/2302.11412
http://arxiv.org/abs/2302.11412
https://doi.org/10.18653/v1/2022.emnlp-main.646
https://doi.org/10.18653/v1/2022.emnlp-main.646
http://arxiv.org/abs/arXiv:1602.04938
http://arxiv.org/abs/arXiv:1602.04938
https://arxiv.org/abs/2302.13942
https://arxiv.org/abs/2302.13942
https://doi.org/10.18653/v1/2021.acl-demo.41
https://doi.org/10.18653/v1/2021.acl-demo.41
https://doi.org/10.18653/v1/2021.acl-demo.41
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.18653/v1/2021.acl-demo.43

from captum.attr import ShapleyValueSampling, LLMAttribution, TextTemplateFeature,
ProductBaselines

svs = ShapleyValueSampling(model)

baselines = ProductBaselines(
{
("name"”, "pronoun"): [("Sarah”, "Her"), ("John", "His")],
"city"”: ["Seattle”, "Boston"],
"state”: ["WA", "MA"T],
"occupation”: ["doctor”, "engineer"”, "teacher", "technician”, "plumber”],
}
)

1lm_attr = LLMAttribution(svs, tokenizer)

inp = TextTemplateFeature(
"{name} lives in {city}, {state} and is a {occupation}. {pronoun} personal
interests include”,
{"name":"Dave"”, "city"”: "Palm Coast"”, "state”: "FL", "occupation”:"lawyer",
pronoun”:"His"},

n

baselines=baselines,

)

attr_result = llm_attr.attribute(inp, target="playing golf, hiking, and cooking.")

Figure 6: Applying Captum for the model associations example

from captum.attr import ShapleyValues, LLMAttribution, TextTemplateFeature

sv = ShapleyValues (model)
llm_attr = LLMAttribution(sv, tokenizer)

def prompt_fn(xexamples):
main_prompt = "Decide if the following movie review enclosed in quotes is
Positive or Negative:\n'I really liked
the Avengers, it had a captivating
plot!'\nReply only Positive or

Negative."”
subset = [elem for elem in examples if elem]
if not subset:
prompt = main_prompt
else:
prefix = "Here are some examples of movie reviews and classification of

whether they were Positive or
Negative:\n"
prompt = prefix + "\n".join(subset) + "\n" + main_prompt
return "[INST] " + prompt + "[/INST]"

input_examples = [
"'The movie was ok, the actors weren't great' -> Negative”,
"'T loved it, it was an amazing story!' -> Positive”,
"'Total waste of time!!' -> Negative”,
"'"Won't recommend' -> Negative",

]

inp = TextTemplateFeature(prompt_fn, input_examples)

attr_result = llm_attr.attribute(inp)

Figure 7: Applying Captum for the few-shot prompt example

173

