
Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023), pages 153–164
December 6, 2023 ©2023 Association for Computational Linguistics

torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free
Deep Learning Studies: A Case Study on NLP

Yoshitomo Matsubara ∗

University of California, Irvine
yoshitom@uci.edu

Abstract

Reproducibility in scientific work has been be-
coming increasingly important in research com-
munities such as machine learning, natural lan-
guage processing, and computer vision com-
munities due to the rapid development of the
research domains supported by recent advances
in deep learning. In this work, we present
a significantly upgraded version of torchdis-
till1, a modular-driven coding-free deep learn-
ing framework significantly upgraded from the
initial release, which supports only image clas-
sification and object detection tasks for repro-
ducible knowledge distillation experiments. To
demonstrate that the upgraded framework can
support more tasks with third-party libraries,
we reproduce the GLUE benchmark results of
BERT models using a script based on the up-
graded torchdistill, harmonizing with various
Hugging Face libraries. All the 27 fine-tuned
BERT models and configurations to reproduce
the results are published at Hugging Face2, and
the model weights have already been widely
used in research communities. We also reim-
plement popular small-sized models and new
knowledge distillation methods and perform ad-
ditional experiments for computer vision tasks.

1 Introduction

The rapid developments of various research do-
mains such as natural language procession (NLP),
computer vision, and speech recognition (He et al.,
2016; Ballé et al., 2017; Devlin et al., 2019; Doso-
vitskiy et al., 2020; Raffel et al., 2020; Rombach
et al., 2022; Radford et al., 2023) have been sup-
ported by advances in deep learning (Krizhevsky
et al., 2012; Mikolov et al., 2013; Kingma and
Welling, 2014; Sutskever et al., 2014; Kingma and
Ba, 2015; Sohl-Dickstein et al., 2015; Vaswani
et al., 2017; Brown et al., 2020). While it has been

∗This work was done prior to joining Amazon.
1https://github.com/yoshitomo-matsubara/

torchdistill/
2https://huggingface.co/yoshitomo-matsubara

developed rapidly, poor reproducibility of deep
learning-based studies is a severe problem that re-
search communities have been facing (Crane, 2018;
Yang et al., 2019; Daoudi et al., 2021; Matsubara,
2021), and the reproducibility has been attracting
significant attention from researchers (Gundersen
et al., 2018; Gundersen, 2019; Dodge et al., 2019;
Kamphuis et al., 2020; Lopresti and Nagy, 2021;
Pineau et al., 2021).

To address the serious problem, research com-
munities introduced reproducibility checklists. At
the time of writing, some venues require au-
thors to complete checklists when submitting their
work e.g., Responsible NLP Research Check-
list3 (Rogers et al., 2021) at NLP venues (ACL,
NAACL, ARR) and Paper Checklist at NeurIPS.4

Matsubara (2021) developed torchdistill, a mod-
ular, configuration-driven knowledge distillation
framework built on PyTorch (Paszke et al., 2019)
for reproducible deep learning research. Knowl-
edge distillation (Hinton et al., 2014) is a well
known model compression method usually to train
a small model (called student) leveraging outputs
from a more complex model (called teacher) as part
of loss functions to be minimized. Recent knowl-
edge distillation approaches are more complex e.g.,
using intermediate layers’ outputs (embeddings or
feature maps) besides the final output (logits) of
teacher models with auxiliary module branches
attached to teacher and/or student models during
training (Kim et al., 2018; Zhang et al., 2020; Chen
et al., 2021), using multiple teachers (Mirzadeh
et al., 2020; Matsubara et al., 2022b), and train-
ing multilingual or non-English models solely with
an English teacher model (Reimers and Gurevych,
2020; Li et al., 2022b; Gupta et al., 2023).

For implementing such approaches, researchers

3https://aclrollingreview.org/
responsibleNLPresearch/

4https://neurips.cc/public/guides/
PaperChecklist

153

https://github.com/yoshitomo-matsubara/torchdistill/
https://github.com/yoshitomo-matsubara/torchdistill/
https://huggingface.co/yoshitomo-matsubara
https://aclrollingreview.org/responsibleNLPresearch/
https://aclrollingreview.org/responsibleNLPresearch/
https://neurips.cc/public/guides/PaperChecklist
https://neurips.cc/public/guides/PaperChecklist

torchvision

torchdistill

Image
Classification

Object
Detection

Base Frameworks

Core Engine

torchvision

Tasks transformers datasets
 evaluate accelerate timm

Packages of Your Choice e.g.,
ML Tasks with

Initial Design torchdistill v1.0.0

Figure 1: Initial design of torchdistill (Matsubara, 2021) vs. v1.0.0 in this work.

unpacked existing model implementations and
modified their input-output interfaces to extract
and/or hard-code new auxiliary modules (train-
able modules to be used only during train-
ing) (Zagoruyko and Komodakis, 2016; Passalis
and Tefas, 2018; Heo et al., 2019; Park et al., 2019;
Tian et al., 2019; Xu et al., 2020; Chen et al.,
2021). torchdistill (Matsubara, 2021) was initially
designed as a unified knowledge distillation frame-
work to enable users to design experiments by
declarative PyYAML configuration files without
such hardcoding effort and help researchers com-
plete the ML Code Completeness Checklist5 for
high-quality reproducible knowledge distillation
studies. One of its key concepts is that a declarative
PyYAML configuration file designs an experiment
and explains key hyperparameters and components
used in the experiment. While the initial framework
is well generalized and supports 18 different knowl-
edge distillation methods implemented in a unified
way, the implementation of the initial framework
is highly dependent on torchvision6, a package for
popular datasets, model architectures, and common
image transformations for computer vision tasks.

In this work, we significantly upgrade torchdis-
till from the initial framework (Matsubara, 2021)
to enable further generalized implementations, sup-
porting more flexible module abstractions and
enhance the advantage of decralative PyYAML
configuration files to design experiments with
third-party packages of user’s choice, as promised

5https://github.com/paperswithcode/
releasing-research-code

6https://github.com/pytorch/vision

in (Matsubara, 2021). Using GLUE tasks (Wang
et al., 2019) as an example, we demonstrate that
the upgraded torchdistill and a new script har-
monize with Hugging Face Transformers (Wolf
et al., 2020), Datasets (Lhoest et al., 2021), Acceler-
ate (Gugger et al., 2022), and Evaluate (Von Werra
et al., 2022) to reproduce the GLUE test results
reported in (Devlin et al., 2019) by fine-tuning pre-
trained BERT-Base and BERT-Large models with
the upgraded torchdistill. We also conduct knowl-
edge distillation experiments using the fine-tuned
BERT-Large models as teachers to train BERT-
Base models. All these experiments are performed
on Google Colaboratory.7 We also publish all the
code and configuration files at GitHub1 and trained
model weights and training logs at Hugging Face2

for reproducibility and helping researchers build
on this work. Our BERT models fine-tuned for
the GLUE tasks have already been downloaded
138,000 times in total and widely used in research
communities not only in research papers but also
in tutorials of deep learning frameworks and ACL
2022. Besides the NLP tasks, we reimplement pop-
ular small-sized computer vision models and a few
more recent knowledge distillation methods as part
of torchdistill, and perform additional experiments
to demonstrate that the upgraded torchdistill still
supports computer vision tasks.

2 Related Work

In this section, we briefly summarize related work
on open source software that supports end-to-end

7https://colab.google/

154

https://github.com/paperswithcode/releasing-research-code
https://github.com/paperswithcode/releasing-research-code
https://github.com/pytorch/vision
https://colab.google/

research frameworks. Yang et al. (2018) propose
Anserini, an information retrieval toolkit built on
Lucene8 for reproducible information retrieval re-
search. Pyserini (Lin et al., 2021) is a Python
toolkit built on PyTorch (Paszke et al., 2019) and
Faiss (Johnson et al., 2019) for reproducible infor-
mation retrieval research with sparse and dense rep-
resentations, and the sparse representation-based
retrieval support comes from Lucene via Anserini.

AllenNLP (Gardner et al., 2018) is a toolkit
built on PyTorch for research on deep learning
methods in NLP and designed to lower barriers
to high quality NLP research e.g., useful NLP mod-
ule abstractions and defining experiments using
declarative configuration files. Highly inspired by
AllenNLP, Matsubara (2021) design torchdistill,
a module, configuration-driven framework built
on PyTorch for reproducible knowledge distilla-
tion studies. Similar to AllenNLP, torchdistill en-
ables users to design experiments by declarative
PyYAML configuration files and supports high-
level module abstractions. For image classification
and object detection tasks, its generalized starter
scripts and configurations help users implement
knowledge distillation methods without much cod-
ing cost. Matsubara (2021) also reimplement 18
knowledge distillation methods with torchdistill
and point out that the standard knowledge distil-
lation (Hinton et al., 2014) can outperform many
of the recent state of the art knowledge distilla-
tion methods for a popular teacher-student pair
(ResNet-34 and ResNet-18) with ILSVRC 2012
dataset (Russakovsky et al., 2015). In Section 3,
we describe major upgrades in torchdistill from the
initial release (Matsubara, 2021).

3 Major Upgrades from the Initial
Release

In this section, we summarize the major up-
grades from the initial release of torchdistill (Mat-
subara, 2021). Figure 1 highlights high-level differ-
ences between the initial design (Matsubara, 2021)
of torchdistill and a largely upgraded version in
this work. The initial torchdistill is dependent on
PyTorch and torchvision and contains key modules
and functionalities specifically designed to support
image classification and object detection tasks. For
example, dataset modules that the initial version
officially supports are only those in torchvision,
and some of dataset-relevant functionalities such as

8https://lucene.apache.org/

building a sequence of data transforms and dataset
loader are based on datasets in torchvision.

In this work, we make torchdistill less depen-
dent on torchvision and support more tasks with
third-party packages of users’ choice, by generaliz-
ing some of the key components in the framework
and exporting task-specific implementations to the
corresponding executable scripts and local pack-
ages. We also reimplement popular small-sized
models whose official PyTorch implementations
are not either available or maintained.

3.1 PyYAML-based Instantiation
A declarative PyYAML configuration file plays
an important role in torchdistill. Users can de-
sign experiments with the declarative PyYAML
configuration file, which defines various types of
abstracted modules with hyperparameters such as
dataset, model, optimizer, scheduler, and loss mod-
ules. To allow more flexibility in PyYAML con-
figurations, we add more useful constructors such
as importing arbitrary local packages to register
modules but without edits on an executable script,
and instantiating an arbitrary class with a log mes-
sage. Those can be done simply at the very begin-
ning of an experiment when loading the PyYAML
configuration file and make the configuration files
more self-explanatory since the configuration for-
mat used for the initial version does not explicitly
tell users whether the experiment needs specific
local packages. Those features also help us gener-
alize ways to define key module such as datasets
and their components (e.g., pre-processing trans-
forms, samplers).

Figure 2 shows an example that build a sequence
of image/tensor transforms with the initial version
and torchdistill in this work. While the former re-
quires both a Python function specifically designed
for torchvision modules (build_transform) and
a list of dict objects defined in a PyYAML
configuration to be given to the function as
(transform_params_config), the latter can build
exactly the same transform when loading the
PyYAML configuration and store the instantiated
object as part of a dict object with transform key.

3.2 Generalized Modules for Supporting
More Tasks

The PyYAML-based instantiation feature described
in Section 3.1 enables us to remove torchvision-
specific modules mentioned in Section 3 (e.g.,
build_transform in Fig. 2) so that we can reduce

155

https://lucene.apache.org/

import torchvision
from torchdistill.datasets.transform import TRANSFORM_CLASS_DICT

TRANSFORM_CLASS_DICT.update(torchvision.transforms.__dict__)

def build_transform(transform_params_config , compose_cls=None):
if not isinstance(transform_params_config , (dict , list)) or len(transform_params_config) == 0:

return None

component_list = list()
if isinstance(transform_params_config , dict):

for component_key in sorted(transform_params_config.keys ()):
component_config = transform_params_config[component_key]
params_config = component_config.get('params ', dict ())
if params_config is None:

params_config = dict()

component = TRANSFORM_CLASS_DICT[component_config['type']](** params_config)
component_list.append(component)

else:
for component_config in transform_params_config:

params_config = component_config.get('params ', dict ())
if params_config is None:

params_config = dict()

component = TRANSFORM_CLASS_DICT[component_config['type']](** params_config)
component_list.append(component)

return transforms.Compose(component_list) if compose_cls is None else compose_cls(component_list)

transform_params:
− type: 'RandomCrop'

params:
size: 32
padding: 4

− type: 'RandomHorizontalFlip'
params:

p: 0.5
− type: 'ToTensor'

params:
− type: 'Normalize'

params:
mean: [0.49139968, 0.48215841, 0.44653091]
std: [0.24703223, 0.24348513, 0.26158784]

transform: !import_call
key: 'torchvision.transforms.Compose'
init:

kwargs:
transforms:

− !import_call
key: 'torchvision.transforms.RandomCrop'
init:

kwargs:
size: 32
padding: 4

− !import_call
key: 'torchvision.transforms.RandomHorizontalFlip'
init:

kwargs:
p: 0.5

− !import_call
key: 'torchvision.transforms.ToTensor'
init:

− !import_call
key: 'torchvision.transforms.Normalize'
init:

kwargs:
mean: [0.49139968, 0.48215841, 0.44653091]
std: [0.24703223, 0.24348513, 0.26158784]

Figure 2: Example of two different ways to build a sequence of transforms in torchvision (transform) for CIFAR-10
dataset. The initial version (top, left) defines a function for torchvision build_transform in torchdistill and
gives the function a list of dict objects in the left PyYAML as transform_params_config. torchdistill in this
work (right) can build exactly the same transform by instantiating each of the transform classes step-by-step with
!import_call, one of our pre-defined PyYAML constructors in the upgraded torchdistill.

torchdistill’s dependency on torchvision and gener-
alize its modules for supporting more tasks.

The initial version of torchdistill is designed to
support image classification and object detection
tasks based on torchvision, and torchvision models
for the tasks such as ResNet (He et al., 2016) and
Faster R-CNN (Ren et al., 2015) require an image
(tensor) and an annotation as part of the model in-

puts during training. However, this interface does
not generalize well to support other tasks. Tak-
ing a text classification task as an example, Trans-
former (Vaswani et al., 2017) models in Hugging
Face Transformers (Wolf et al., 2020) have much
more input data fields such as (not limited to) token
IDs, attention mask, token type IDs, position IDs,
and labels for BERT (Devlin et al., 2019), and dif-

156

ferent models have different input data fields e.g.,
BART (Lewis et al., 2020) has additional input data
fields such as token IDs for its decoder.

In order to support diverse models and tasks, we
generalize interfaces of model input/output and the
subsequent processes in torchdistill such as com-
puting training losses. For demonstrating that the
upgraded torchdistill can support more tasks, we
provide starter scripts based on the upgraded frame-
work for GLUE (Wang et al., 2019) and seman-
tic segmentation tasks. For the GLUE tasks, we
harmonize popular Python libraries with torchdis-
till in the script such as Hugging Face Transform-
ers (Wolf et al., 2020), Datasets (Lhoest et al.,
2021), and Evaluate (Von Werra et al., 2022) for
model, dataset, and evaluation modules. We also
leverage Accelerate (Gugger et al., 2022) for ef-
ficient training and inference. In Section 4.1, we
demonstrate GLUE experiments with torchdistill
and the third-party libraries.

3.3 Reimplemented Models and Methods

We find in recent knowledge distillation stud-
ies (Tian et al., 2019; Xu et al., 2020; Chen et al.,
2021) that there is still a demand of small models
for relatively simple datasets such as ResNet (He
et al., 2016)9, WRN (Zagoruyko and Komodakis,
2016)10, and DenseNet (Huang et al., 2017)11

for image classification tasks with CIFAR-10 and
CIFAR-100 datasets (Krizhevsky, 2009) since the
official repositories are no longer maintained and/or
not implemented with PyTorch.

For helping the community conduct better bench-
marking, we reimplement the models for CIFAR-
10 and CIFAR-100 datasets as part of torchdistill
and attempt to reproduce the reported results fol-
lowing the original training recipes (See Section 4).
With the upgraded torchdistill, we also reimple-
ment and test a few more knowledge distillation
methods (He et al., 2019; Chen et al., 2021).

4 Google Colab Demos

In this section, we demonstrate that the upgraded
torchdistill can collaborate with third-party li-
braries for supporting more tasks. We also attempt
to reproduce the CIFAR-10 and CIFAR-100 results

9https://github.com/facebookarchive/fb.resnet.
torch

10https://github.com/szagoruyko/
wide-residual-networks

11https://github.com/liuzhuang13/DenseNet

reported in the original papers. To lower the bar-
rier to reusing and building on the scripts with
torchdistill, we conduct all the experiments on
Google Colaboratory7, which gives users access
to GPUs free of charge. We publish the Jupyter
Notebook12 files to run the experiments as part
of torchdistill repository1 so that researchers can
easily use them.

4.1 GLUE Tasks
The GLUE benchmark (Wang et al., 2019) uses
nine datasets in three different task categories.
The benchmark consists of 1) two single-sentence
tasks: CoLA (Warstadt et al., 2019) and SST-
2 (Socher et al., 2013), 2) three similarity and
paraphrase tasks: MRPC (Dolan and Brockett,
2005), QQP13, and STS-B (Cer et al., 2017), and
3) four inference tasks: MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016; Wang et al.,
2019), RTE (Dagan et al., 2005; Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al.), and
WNLI (Levesque et al., 2012).

We attempt to reproduce GLUE test results re-
ported in a popular study, BERT (Devlin et al.,
2019), using the upgraded torchdistill harmonizing
with Hugging Face libraries (transformers, datasets,
evaluate, and accelerate) (Wolf et al., 2020; Lhoest
et al., 2021; Von Werra et al., 2022; Gugger et al.,
2022). Following the experiments, we also conduct
knowledge distillation experiments that fine-tune
pretrained BERT-Base models for GLUE tasks, us-
ing the fine-tuned BERT-Large models as teachers
for the knowledge distillation method of Hinton
et al. (2014) minimizing

L = α ·LCE(ŷ,y)+(1−α) ·τ2 ·LKL (p,q) , (1)

where LCE is a standard cross entropy. ŷ indi-
cates the student model’s estimated class probabil-
ities, and y is the annotated category. LKL is the
Kullback-Leibler divergence, and α and τ are a
balancing factor and a temperature, respectively. p
and q represent the softened output distributions
from teacher and student models, respectively. p is
used as a target distribution for LKL. Specifically,
p = [p1, p2, . . . , p|C|] where C is a set of categories
in the target task. pi indicates the student model’s
softened output value (scalar) for the i-th category:

pi =
exp

(
vi
τ

)
∑

k∈C exp
(
vk
τ

) , (2)

12https://jupyter.org/
13https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs

157

https://github.com/facebookarchive/fb.resnet.torch
https://github.com/facebookarchive/fb.resnet.torch
https://github.com/szagoruyko/wide-residual-networks
https://github.com/szagoruyko/wide-residual-networks
https://github.com/liuzhuang13/DenseNet
https://jupyter.org/
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

Model (Method, Reference) MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI
Acc./Acc. F1 Acc. Acc. M Corr. P-S Corr. F1 Acc. Acc.

BERT-Large (FT, Devlin et al. (2019)) 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 N/A
BERT-Large (FT, Ours) 86.4/85.7 72.2 92.4 94.6 61.5 85.0 89.2 68.9 65.1

BERT-Base (FT, Devlin et al. (2019)) 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 N/A
BERT-Base (FT, Ours) 84.2/83.3 71.4 91.0 94.1 51.1 84.4 86.8 66.7 65.8
BERT-Base (KD, Ours) 85.9/84.7 72.8 90.7 93.7 57.0 85.6 87.5 66.7 65.1

Table 1: GLUE test results. Our results are hyperlinked to our Hugging Face Model repositories. FT: Fine-Tuning,
KD: Knowledge Distillation using BERT-Large (FT, ours) as teacher.

where τ is one of the hyperparameters defined in
Eq. (1). vi denotes a logit value for the i-th cat-
egory. The same rules are applied to q for the
student model.

For reproducing the GLUE test results in (De-
vlin et al., 2019), we use pretrained BERT-Base14

and BERT-Large15 models in Hugging Face Trans-
formers (Wolf et al., 2020). Following (Devlin
et al., 2019) we minimize a standard cross-entropy
and the Adam optimizer (Kingma and Ba, 2015)
with slightly extended hyperparameter choices:
batch size of either 16 or 32 and 2-5 epochs
for fine-tuning and select a learning rate among
{2.0×10−5, 3.0×10−5, 4.0×10−5, 5.0×10−5} on
the dev set for each of the tasks. For knowledge dis-
tillation, we also choose learning rate from {1.0×
10−5, 2.0 × 10−5, 3.0 × 10−5, 4.0 × 10−5, 5.0 ×
10−5}, temperature τ ∈ {1, 3, 5, 7, 9, 11}, and
a balancing weight α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
based on the dev sets. Note that since STS-B is
not a classification task, we use the sum of 1) a
mean squared error between the annotation and the
student model’s output and 2) a mean squared error
between outputs of the teacher and student models
instead of Eq. (1) for the dataset.

Table 1 shows the GLUE test results reported
by Devlin et al. (2019) and those obtained from
GLUE Benchmark16 for our three configura-
tions: fine-tuning pretrained BERT-Base (FT, Ours)
and pretrained BERT-Large (FT, Ours) models
and knowledge distillation to fine-tune pretrained
BERT-Base (KD, Ours) as a student, using the fine-
tuned BERT-Large as the teacher. Note that Devlin
et al. (2019) do not report the results for the WNLI
test dataset.

Overall, our fine-tuned BERT-Base and BERT-
Large models achieved GLUE test results com-
parable to the official test results reported by De-

14https://huggingface.co/bert-base-uncased
15https://huggingface.co/bert-large-uncased
16https://gluebenchmark.com/

vlin et al. (2019). The knowledge distillation
method (Hinton et al., 2014) helped BERT-Base
models improve the performance for most of the
tasks, compared to those fine-tuned without the
teacher models. All the trained model weights and
training logs are published at Hugging Face2, and
the training configurations are published as part of
the torchdistill GitHub repository.1

The fine-tuned BERT models we published are
widely used in the research communities and have
already been downloaded about 138,000 times in
total at the time of writing. For instance, some
of the models are used for benchmarks, ensem-
bling, model quantization, token pruning (Matena
and Raffel, 2022; Church et al., 2022; Guo et al.,
2022; Lee et al., 2022), DeepSpeed Tutorials17,
Intel® Neural Compressor Examples18, and ACL
2022 Tutorial.19

4.2 CIFAR-10 and CIFAR-100

We also attempt to reproduce the CIFAR-10 and
CIFAR-100 results reported in (He et al., 2016;
Zagoruyko and Komodakis, 2016; Huang et al.,
2017) using the upgraded torchdistill with the reim-
plemented ResNet, WRN, and DenseNet models.
We follow the original papers and reuse the hy-
perparameter choices and training recipes such as
data augmentations. Note that we do not con-
fider models that can not fit to the GPU mem-
ory which Google Colab can offer e.g., ResNet-
1202 (He et al., 2016) for CIFAR-10 and DenseNet-
BC(k = 24 and k = 40) (Huang et al., 2017) for
CIFAR-10 and CIFAR-100.

Tables 2 and 3 compare the results reported in
the original papers (He et al., 2016; Zagoruyko
and Komodakis, 2016; Huang et al., 2017) with

17https://www.deepspeed.ai/tutorials/
model-compression/

18https://github.com/intel/neural-compressor/
tree/master/examples

19https://github.com/kwchurch/ACL2022_
deepnets_tutorial

158

https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-mnli
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-qqp
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-qnli
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-sst2
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-cola
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-stsb
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-mrpc
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-rte
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-wnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-mnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-qqp
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-qnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-sst2
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-cola
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-stsb
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-mrpc
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-rte
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-wnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-mnli_from_bert-large-uncased-mnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-qqp_from_bert-large-uncased-qqp
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-qnli_from_bert-large-uncased-qnli
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-sst2_from_bert-large-uncased-sst2
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-cola_from_bert-large-uncased-cola
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-stsb_from_bert-large-uncased-stsb
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-mrpc_from_bert-large-uncased-mrpc
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-rte_from_bert-large-uncased-rte
https://huggingface.co/yoshitomo-matsubara/bert-base-uncased-wnli_from_bert-large-uncased-wnli
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-large-uncased
https://gluebenchmark.com/
https://www.deepspeed.ai/tutorials/model-compression/
https://www.deepspeed.ai/tutorials/model-compression/
https://github.com/intel/neural-compressor/tree/master/examples
https://github.com/intel/neural-compressor/tree/master/examples
https://github.com/kwchurch/ACL2022_deepnets_tutorial
https://github.com/kwchurch/ACL2022_deepnets_tutorial

CIFAR-10 Model Test Accuracy
Original torchdistill

ResNet-20 91.25 91.92
ResNet-32 92.49 93.03
ResNet-44 92.83 93.20
ResNet-56 93.03 93.57
ResNet-110 93.57 93.50
WRN-40-4 95.47 95.24
WRN-28-10 96.00 95.53
WRN-16-8 95.73 94.76
DenseNet-BC (k=12, depth=100) 95.49 95.53

Table 2: CIFAR-10 results for ResNet (He et al.,
2016), WRN (Zagoruyko and Komodakis, 2016), and
DenseNet (Huang et al., 2017).

CIFAR-100 Model Test Accuracy
Original torchdistill

WRN-40-4 79.82 79.44
WRN-28-10 80.75 81.27
WRN-16-8 79.57 79.26
DenseNet-BC (k=12, depth=100) 77.73 77.14

Table 3: CIFAR-100 results for WRN (Zagoruyko and
Komodakis, 2016) and DenseNet (Huang et al., 2017).

those we reproduced for CIFAR-10 and CIFAR-
100 test datasets, respectively. We can confirm that
for most of the reimplemented models, our results
are comparable to those reported in the original
papers. Those model weights and training con-
figuration files are publicly available, and users
can automatically download the weights via the
upgraded torchdistill PyPI package.

5 ILSVRC 2012

As highlighted in Section 3, torchdistill was ini-
tially focused on supporting implementations of
diverse knowledge distillation in a unified way and
dependent on torchvision to specifically support im-
age classification and object detection tasks with its
relevant modules (see Fig. 1). To demonstrate that
the upgraded torchdistill still preserves the feature,
we reimplement a few more knowledge distillation
methods with the upgraded torchdistill: knowledge
review (KR) framework (Chen et al., 2021) and
knowledge translation and adaptation with affin-
ity distillation (KTAAD) (He et al., 2019). Note
that Matsubara (2021) present the results of vari-
ous knowledge distillation methods reimplemented
with the initial version of torchdistill for ILSVRC
2012 and COCO 2017 (Lin et al., 2014) datasets.
Those results are not included in this work, and we
refer interested readers to (Matsubara, 2021).

T: ResNet-34 S: ResNet-18
CE CE KR (Original) KR (Ours)

73.31 69.75 71.61 71.64

Table 4: ILSVRC 2012 top-1 accuracy of ResNet-18
(student) trained by KR (Chen et al., 2021) with pre-
trained ResNet-34 (teacher). CE: torchvision models
pretrained with cross-entropy.

Chen et al. (2021) demonstrate that the KR
method can outperform other knowledge distilla-
tion using ResNet-34 and ResNet-18 (He et al.,
2016), a popular pair of teacher and student models
for the ImageNet (ILSVRC 2012) dataset (Rus-
sakovsky et al., 2015). Using the reimplemented
KR method based on the upgraded torchdistill with
hyperparameters in (Chen et al., 2021), we success-
fully reproduce their reported result of ResNet-18
for the ImageNet dataset as shown in Table 4. The
trained model weights and configuration are pub-
lished as part of the torchdistill repository.1

6 PASCAL VOC 2012 & COCO 2017

The initial torchdistill (Matsubara, 2021) supports
image classification and object detection tasks. As
mentioned in Section 3.2, we also provide a starter
script for semantic segmentation tasks. Using two
popular datasets, PASCAL VOC 2012 (Evering-
ham et al., 2012) and COCO 2017 (Lin et al., 2014),
we demonstrate that the upgraded torchdistill sup-
ports semantic segmentation tasks as well.

In the experiments with PASCAL VOC 2012
dataset, we use DeepLabv3 (Chen et al., 2017)
with ResNet-50 and ResNet-101 backbones (He
et al., 2016), using torchvision’s pretrained model
weights for COCO 2017 dataset. We choose
hyperparameters such as learning rate policy
and crop size based on the original study of
DeepLabv3 (Chen et al., 2017). Our results are
shown in Table 5, and DeepLabv3 with ResNet-
101 achieved comparable mIoU (mean Intersection
over Union) to the best DeepLabv3 model for PAS-
CAL VOC 2012 dataset (val set) in the original
study (mIoU: 82.70). Following torchvision docu-
mentation20, we measure global pixelwise accuracy
as well. In terms of both the metrics, DeepLabv3
with ResNet-101 outperforms DeepLabv3 with
ResNet-50.

20https://pytorch.org/
vision/stable/models.html#
table-of-all-available-semantic-segmentation-weights

159

https://pytorch.org/vision/stable/models.html#table-of-all-available-semantic-segmentation-weights
https://pytorch.org/vision/stable/models.html#table-of-all-available-semantic-segmentation-weights
https://pytorch.org/vision/stable/models.html#table-of-all-available-semantic-segmentation-weights

Model mean IoU Pixelwise Acc.

DeepLabv3 w/ ResNet-50 80.6 95.7
DeepLabv3 w/ ResNet-101 82.4 96.2

Table 5: PASCAL VOC 2012 (Segmentation, val set)
validation results for DeepLabv3 with ResNet back-
bones (Chen et al., 2017) initialized with torchvision
pretrained model weights for COCO 2017 dataset.

Method mean IoU Pixelwise Acc.

CE (torchvision) 57.9 91.2
KTAAD (Ours) 58.2 92.1

Table 6: COCO 2017 (Segmentation, val set) results for
LRASPP with MobileNetV3-Large backbone (Howard
et al., 2019).

We also examine our reimplemented KTAAD
method (He et al., 2019) for the Lite R-ASPP
model (LRASPP in torchvision) (Howard et al.,
2019) as a student model, using the COCO 2017
dataset and the pretrained DeepLabv3 with ResNet-
50 in torchvision as a teacher model, whose mIoU
and global pixelwise accuracy are 66.4 and 92.4,
respectively. Since the KTAAD method is not
tested on COCO 2017 dataset for LRASPP with
MobileNetV3-Large backbone in the original paper
of KTAAD (He et al., 2019), our hyperparameter
choice is based on torchvision’s reference script.21

Table 6 presents the semantic segmentation re-
sults of LRASPP with MobileNetV3-Large back-
bone trained without the teacher model and by the
KTAAD method we reimplemented. We confirm
that the student model trained by KTAAD outper-
forms the same model trained on COCO 2017 avail-
able in torchvision in terms of mean IoU and global
pixelwise accuracy.

As with other experiments, the trained model
weights and configuration used in this section are
published as part of the torchdistill repository.1

7 Conclusion

In this work, we significantly upgraded torchdis-
till (Matsubara, 2021), a modular, configuration-
driven framework built on PyTorch (Paszke et al.,
2019) for reproducible deep learning and knowl-
edge distillation studies. We enhanced PyYAML-
based instantiation, generalized internal modules
for supporting more tasks, and reimplemented pop-
ular models and methods.

21https://github.com/pytorch/vision/tree/main/
references/segmentation

To demonstrate that the upgraded framework
can support more tasks as we claim, we provided
starter scripts for new tasks based on the upgraded
framework. One of the new starter scripts sup-
ports GLUE tasks (Wang et al., 2019) and har-
monizes with Hugging Face Transformers (Wolf
et al., 2020), Datasets (Lhoest et al., 2021), Acceler-
ate (Gugger et al., 2022), and Evaluate (Von Werra
et al., 2022). Using the script on Google Colab-
oratory, we reproduced the GLUE test results of
fine-tuned BERT models (Devlin et al., 2019) and
performed knowledge distillation experiments with
our fine-tuned BERT-Large models as teacher mod-
els. Similarly, we reproduced CIFAR-10 and -100
results of popular small-sized models we reimple-
mented, using Google Colaboratory. Furthermore,
we reproduced the result of ResNet-18 trained
with the reimplemented KR method (Chen et al.,
2021) for the ImageNet dataset. We also demon-
strated a new starter script for semantic segmenta-
tion tasks using PASCAL VOC 2012 and COCO
2017 datasets, and the reimplemented KTAAD
method (He et al., 2019) improves a pretrained
semantic segmentation model in torchvision.

In this study, we also published 27 trained mod-
els for NLP tasks2 and 14 trained models for com-
puter vision tasks.1 According to Hugging Face
Model repositories, the BERT models fine-tuned
for the GLUE tasks have already been downloaded
about 138,000 times in total at the time of writ-
ing. Research communities leverage torchdistill
not only for knowledge distillation studies (Liu
et al., 2021; Li et al., 2022a; Lin et al., 2022;
Dong et al., 2022; Miles and Mikolajczyk, 2023),
but also for machine learning reproducibility chal-
lenge (MLRC) (Lee and Lee, 2023) and repro-
ducible deep learning studies (Matsubara et al.,
2022a,c; Furutanpey et al., 2023b,a; Matsubara
et al., 2023). torchdistill is publicly available as
a pip-installable PyPI package and will be main-
tained and upgraded for encouraging coding-free
reproducible deep learning and knowledge distilla-
tion studies.

Acknowledgements

We thank the anonymous reviewers for their com-
ments. This project has been supported by Travis
CI’s OSS credits and JetBrain’s Free License Pro-
grams (Open Source) since November 2021 and
June 2022, respectively.

160

https://github.com/pytorch/vision/tree/main/references/segmentation
https://github.com/pytorch/vision/tree/main/references/segmentation

References
Johannes Ballé, Valero Laparra, and Eero P Simoncelli.

2017. End-to-end Optimized Image Compression.
In International Conference on Learning Representa-
tions.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Gi-
ampiccolo. The Sixth PASCAL Recognizing Textual
Entailment Challenge.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-Shot
Learners. Advances in neural information processing
systems, 33:1877–1901.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
Task 1: Semantic Textual Similarity Multilingual
and Crosslingual Focused Evaluation. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14.

Liang-Chieh Chen, George Papandreou, Florian Schroff,
and Hartwig Adam. 2017. Rethinking Atrous Con-
volution for Semantic Image Segmentation. arXiv
preprint arXiv:1706.05587.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya
Jia. 2021. Distilling Knowledge via Knowledge Re-
view. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5008–5017.

Kenneth Church, Valia Kordoni, Gary Marcus, Ernest
Davis, Yanjun Ma, and Zeyu Chen. 2022. A Gen-
tle Introduction to Deep Nets and Opportunities for
the Future. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
Tutorial Abstracts, pages 1–6.

Matt Crane. 2018. Questionable Answers in Question
Answering Research: Reproducibility and Variability
of Published Results. Transactions of the Association
for Computational Linguistics, 6:241–252.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL Recognising Textual Entail-
ment Challenge. In Machine learning challenges
workshop, pages 177–190. Springer.

Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé,
and Jacques Klein. 2021. Lessons Learnt on Re-
producibility in Machine Learning Based Android
Malware Detection. Empirical Software Engineering,
26(4):74.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A Smith. 2019. Show Your
Work: Improved Reporting of Experimental Results,
author=Dodge, Jesse and Gururangan, Suchin and
Card, Dallas and Schwartz, Roy and Smith, Noah A.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2185–
2194. Association for Computational Linguistics.

William B Dolan and Chris Brockett. 2005. Auto-
matically Constructing a Corpus of Sentential Para-
phrases. In Proceedings of the Third International
Workshop on Paraphrasing (IWP2005).

Chengyu Dong, Liyuan Liu, and Jingbo Shang. 2022.
SoTeacher: Toward Student-oriented Teacher Net-
work Training for Knowledge Distillation.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. In International
Conference on Learning Representations.

Mark Everingham, Luc Van Gool, CKI Williams, John
Winn, and Andrew Zisserman. 2012. The PASCAL
Visual Object Classes Challenge 2012 (VOC2012).

Alireza Furutanpey, Johanna Barzen, Marvin Bechtold,
Schahram Dustdar, Frank Leymann, Philipp Raith,
and Felix Truger. 2023a. Architectural Vision for
Quantum Computing in the Edge-Cloud Continuum.
arXiv preprint arXiv:2305.05238.

Alireza Furutanpey, Philipp Raith, and Schahram Dust-
dar. 2023b. FrankenSplit: Saliency Guided Neural
Feature Compression with Shallow Variational Bot-
tleneck Injection. arXiv preprint arXiv:2302.10681.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew E Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A Deep Semantic Natural Language Pro-
cessing Platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and William B Dolan. 2007. The Third PASCAL
Recognising Textual Entailment Challenge. In Pro-
ceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pages 1–9.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, and Sourab Mangrulkar.
2022. Accelerate: Training and inference at scale
made simple, efficient and adaptable. https://
github.com/huggingface/accelerate.

Odd Erik Gundersen. 2019. Standing on the Feet of
Giants - Reproducibility in AI. AI Magazine, 40(4):9–
23.

161

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://doi.org/10.1609/aimag.v40i4.5185
https://doi.org/10.1609/aimag.v40i4.5185

Odd Erik Gundersen, Yolanda Gil, and David W. Aha.
2018. On Reproducible AI: Towards Reproducible
Research, Open Science, and Digital Scholarship in
AI Publications. AI Magazine, 39(3):56–68.

Cong Guo, Chen Zhang, Jingwen Leng, Zihan Liu,
Fan Yang, Yunxin Liu, Minyi Guo, and Yuhao Zhu.
2022. ANT: Exploiting Adaptive Numerical Data
Type for Low-bit Deep Neural Network Quantization.
In 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1414–1433.
IEEE.

Shivanshu Gupta, Yoshitomo Matsubara, Ankit Chadha,
and Alessandro Moschitti. 2023. Cross-lingual
knowledge distillation for answer sentence selection
in low-resource languages. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 7259–7272.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The Second PASCAL Recognising Textual
Entailment Challenge. In Proceedings of the Sec-
ond PASCAL Challenges Workshop on Recognising
Textual Entailment, volume 7, pages 785–794.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–
778.

Tong He, Chunhua Shen, Zhi Tian, Dong Gong, Chang-
ming Sun, and Youliang Yan. 2019. Knowledge
Adaptation for Efficient Semantic Segmentation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 578–
587.

Byeongho Heo, Minsik Lee, Sangdoo Yun, and
Jin Young Choi. 2019. Knowledge Transfer via Dis-
tillation of Activation Boundaries Formed by Hidden
Neurons. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 3779–3787.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014.
Distilling the Knowledge in a Neural Network. In
Deep Learning and Representation Learning Work-
shop: NIPS 2014.

Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.
2019. Searching for MobileNetV3. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 1314–1324.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. 2017. Densely connected con-
volutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4700–4708.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-Scale Similarity Search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Chris Kamphuis, Arjen P de Vries, Leonid Boytsov, and
Jimmy Lin. 2020. Which BM25 Do You Mean? A
Large-Scale Reproducibility Study of Scoring Vari-
ants. In Advances in Information Retrieval: 42nd
European Conference on IR Research, ECIR 2020,
Lisbon, Portugal, April 14–17, 2020, Proceedings,
Part II 42, pages 28–34. Springer.

Jangho Kim, SeongUk Park, and Nojun Kwak. 2018.
Paraphrasing Complex Network: Network Compres-
sion via Factor Transfer. In Advances in Neural In-
formation Processing Systems, pages 2760–2769.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Third Inter-
national Conference on Learning Representations.

Diederik P Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In International Con-
ference on Learning Representations.

Alex Krizhevsky. 2009. Learning Multiple Layers of
Features from Tiny Images.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. ImageNet Classification with Deep Convolu-
tional Neural Networks. In Advances in Neural In-
formation Processing Systems 25, pages 1097–1105.

Heejun Lee, Minki Kang, Youngwan Lee, and Sung Ju
Hwang. 2022. Sparse Token Transformer with Atten-
tion Back Tracking. In The Eleventh International
Conference on Learning Representations.

Seungjae Ryan Lee and Seungmin Lee. 2023. [Re]
Pure Noise to the Rescue of Insufficient Data. In ML
Reproducibility Challenge 2022.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The Winograd Schema Challenge. In Proceed-
ings of the Thirteenth International Conference on
Principles of Knowledge Representation and Reason-
ing, pages 552–561.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A Commu-
nity Library for Natural Language Processing. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 175–184.

Wei Li, Shitong Shao, Weiyan Liu, Ziming Qiu, Zhihao
Zhu, and Wei Huan. 2022a. What Role Does Data
Augmentation Play in Knowledge Distillation? In
Proceedings of the Asian Conference on Computer
Vision, pages 2204–2220.

162

https://doi.org/10.1609/aimag.v39i3.2816
https://doi.org/10.1609/aimag.v39i3.2816
https://doi.org/10.1609/aimag.v39i3.2816
https://openreview.net/forum?id=ErBe4MnsVD
https://openreview.net/forum?id=ErBe4MnsVD

Yulong Li, Martin Franz, Md Arafat Sultan, Bhavani
Iyer, Young-Suk Lee, and Avirup Sil. 2022b. Learn-
ing Cross-Lingual IR from an English Retriever. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4428–4436.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python Toolkit for Reproducible
Information Retrieval Research with Sparse and
Dense Representations. In Proceedings of the 44th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
2356–2362.

Sihao Lin, Hongwei Xie, Bing Wang, Kaicheng Yu, Xi-
aojun Chang, Xiaodan Liang, and Gang Wang. 2022.
Knowledge Distillation via the Target-aware Trans-
former. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10915–10924.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Li Liu, Qingle Huang, Sihao Lin, Hongwei Xie, Bing
Wang, Xiaojun Chang, and Xiaodan Liang. 2021.
Exploring Inter-Channel Correlation for Diversity-
preserved Knowledge Distillation. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 8271–8280.

Daniel Lopresti and George Nagy. 2021. Repro-
ducibility: Evaluating the Evaluations. In Interna-
tional Workshop on Reproducible Research in Pattern
Recognition, pages 12–23. Springer.

Michael S Matena and Colin A Raffel. 2022. Merging
Models with Fisher-Weighted Averaging. Advances
in Neural Information Processing Systems, 35:17703–
17716.

Yoshitomo Matsubara. 2021. torchdistill: A Modu-
lar, Configuration-Driven Framework for Knowledge
Distillation. In International Workshop on Repro-
ducible Research in Pattern Recognition, pages 24–
44. Springer.

Yoshitomo Matsubara, Davide Callegaro, Sameer Singh,
Marco Levorato, and Francesco Restuccia. 2022a.
BottleFit: Learning Compressed Representations in
Deep Neural Networks for Effective and Efficient
Split Computing. arXiv preprint arXiv:2201.02693.

Yoshitomo Matsubara, Luca Soldaini, Eric Lind, and
Alessandro Moschitti. 2022b. Ensemble Transformer
for Efficient and Accurate Ranking Tasks: an Ap-
plication to Question Answering Systems. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 7259–7272.

Yoshitomo Matsubara, Ruihan Yang, Marco Levorato,
and Stephan Mandt. 2022c. Supervised Compression
for Resource-Constrained Edge Computing Systems.
In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2685–
2695.

Yoshitomo Matsubara, Ruihan Yang, Marco Levorato,
and Stephan Mandt. 2023. SC2 Benchmark: Super-
vised Compression for Split Computing. Transac-
tions on Machine Learning Research.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and Their Composition-
ality. Advances in Neural Information Processing
Systems, 26.

Roy Miles and Krystian Mikolajczyk. 2023. A closer
look at the training dynamics of knowledge distilla-
tion. arXiv preprint arXiv:2303.11098.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved Knowledge Dis-
tillation via Teacher Assistant. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 5191–5198.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho.
2019. Relational Knowledge Distillation. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3967–3976.

Nikolaos Passalis and Anastasios Tefas. 2018. Learning
Deep Representations with Probabilistic Knowledge
Transfer. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 268–284.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. PyTorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems, pages
8024–8035.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv
Sinha, Vincent Larivière, Alina Beygelzimer, Flo-
rence d’Alché Buc, Emily Fox, and Hugo Larochelle.
2021. Improving Reproducibility in Machine Learn-
ing Research(A Report from the NeurIPS 2019 Re-
producibility Program). The Journal of Machine
Learning Research, 22(1):7459–7478.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. The Journal of Machine Learning Re-
search, 21(1):5485–5551.

163

https://openreview.net/forum?id=p28wv4G65d
https://openreview.net/forum?id=p28wv4G65d

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383–2392.

Nils Reimers and Iryna Gurevych. 2020. Making Mono-
lingual Sentence Embeddings Multilingual using
Knowledge Distillation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4512–4525.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks. In
Advances in neural information processing systems,
pages 91–99.

Anna Rogers, Timothy Baldwin, and Kobi Leins. 2021.
‘Just What do You Think You’re Doing, Dave?’A
Checklist for Responsible Data Use in NLP. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, pages 4821–4833.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
Resolution Image Synthesis with Latent Diffusion
Models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 10684–10695.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115(3):211–252.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep Un-
supervised Learning using Nonequilibrium Thermo-
dynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to Sequence Learning with Neural Networks.
Advances in Neural Information Processing Systems,
27.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2019.
Contrastive Representation Distillation. In Interna-
tional Conference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Advances in neural information process-
ing systems, 30.

Leandro Von Werra, Lewis Tunstall, Abhishek Thakur,
Sasha Luccioni, Tristan Thrush, Aleksandra Piktus,
Felix Marty, Nazneen Rajani, Victor Mustar, and He-
len Ngo. 2022. Evaluate & Evaluation on the Hub:
Better Best Practices for Data and Model Measure-
ments. In Proceedings of the The 2022 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 128–136.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. In Inter-
national Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A Broad-Coverage Challenge Corpus for Sen-
tence Understanding through Inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change
Loy. 2020. Knowledge Distillation Meets Self-
supervision. In European Conference on Computer
Vision, pages 588–604. Springer.

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini:
Reproducible Ranking Baselines Using Lucene.
Journal of Data and Information Quality (JDIQ),
10(4):1–20.

Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. 2019.
Critically Examining the "Neural Hype": Weak Base-
lines and the Additivity of Effectiveness Gains from
Neural Ranking Models. In Proceedings of the 42nd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
1129–1132.

Sergey Zagoruyko and Nikos Komodakis. 2016. Wide
residual networks. In Proceedings of the British Ma-
chine Vision Conference (BMVC), pages 87.1–87.12.
BMVA Press.

Youcai Zhang, Zhonghao Lan, Yuchen Dai, Fangao
Zeng, Yan Bai, Jie Chang, and Yichen Wei. 2020.
Prime-Aware Adaptive Distillation. In The European
Conference on Computer Vision (ECCV).

164

