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Abstract

Reproducibility in scientific work has been be-
coming increasingly important in research com-
munities such as machine learning, natural lan-
guage processing, and computer vision com-
munities due to the rapid development of the
research domains supported by recent advances
in deep learning. In this work, we present
a significantly upgraded version of torchdis-
till1, a modular-driven coding-free deep learn-
ing framework significantly upgraded from the
initial release, which supports only image clas-
sification and object detection tasks for repro-
ducible knowledge distillation experiments. To
demonstrate that the upgraded framework can
support more tasks with third-party libraries,
we reproduce the GLUE benchmark results of
BERT models using a script based on the up-
graded torchdistill, harmonizing with various
Hugging Face libraries. All the 27 fine-tuned
BERT models and configurations to reproduce
the results are published at Hugging Face2, and
the model weights have already been widely
used in research communities. We also reim-
plement popular small-sized models and new
knowledge distillation methods and perform ad-
ditional experiments for computer vision tasks.

1 Introduction

The rapid developments of various research do-
mains such as natural language procession (NLP),
computer vision, and speech recognition (He et al.,
2016; Ballé et al., 2017; Devlin et al., 2019; Doso-
vitskiy et al., 2020; Raffel et al., 2020; Rombach
et al., 2022; Radford et al., 2023) have been sup-
ported by advances in deep learning (Krizhevsky
et al., 2012; Mikolov et al., 2013; Kingma and
Welling, 2014; Sutskever et al., 2014; Kingma and
Ba, 2015; Sohl-Dickstein et al., 2015; Vaswani
et al., 2017; Brown et al., 2020). While it has been

∗This work was done prior to joining Amazon.
1https://github.com/yoshitomo-matsubara/

torchdistill/
2https://huggingface.co/yoshitomo-matsubara

developed rapidly, poor reproducibility of deep
learning-based studies is a severe problem that re-
search communities have been facing (Crane, 2018;
Yang et al., 2019; Daoudi et al., 2021; Matsubara,
2021), and the reproducibility has been attracting
significant attention from researchers (Gundersen
et al., 2018; Gundersen, 2019; Dodge et al., 2019;
Kamphuis et al., 2020; Lopresti and Nagy, 2021;
Pineau et al., 2021).

To address the serious problem, research com-
munities introduced reproducibility checklists. At
the time of writing, some venues require au-
thors to complete checklists when submitting their
work e.g., Responsible NLP Research Check-
list3 (Rogers et al., 2021) at NLP venues (ACL,
NAACL, ARR) and Paper Checklist at NeurIPS.4

Matsubara (2021) developed torchdistill, a mod-
ular, configuration-driven knowledge distillation
framework built on PyTorch (Paszke et al., 2019)
for reproducible deep learning research. Knowl-
edge distillation (Hinton et al., 2014) is a well
known model compression method usually to train
a small model (called student) leveraging outputs
from a more complex model (called teacher) as part
of loss functions to be minimized. Recent knowl-
edge distillation approaches are more complex e.g.,
using intermediate layers’ outputs (embeddings or
feature maps) besides the final output (logits) of
teacher models with auxiliary module branches
attached to teacher and/or student models during
training (Kim et al., 2018; Zhang et al., 2020; Chen
et al., 2021), using multiple teachers (Mirzadeh
et al., 2020; Matsubara et al., 2022b), and train-
ing multilingual or non-English models solely with
an English teacher model (Reimers and Gurevych,
2020; Li et al., 2022b; Gupta et al., 2023).

For implementing such approaches, researchers

3https://aclrollingreview.org/
responsibleNLPresearch/

4https://neurips.cc/public/guides/
PaperChecklist
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Figure 1: Initial design of torchdistill (Matsubara, 2021) vs. v1.0.0 in this work.

unpacked existing model implementations and
modified their input-output interfaces to extract
and/or hard-code new auxiliary modules (train-
able modules to be used only during train-
ing) (Zagoruyko and Komodakis, 2016; Passalis
and Tefas, 2018; Heo et al., 2019; Park et al., 2019;
Tian et al., 2019; Xu et al., 2020; Chen et al.,
2021). torchdistill (Matsubara, 2021) was initially
designed as a unified knowledge distillation frame-
work to enable users to design experiments by
declarative PyYAML configuration files without
such hardcoding effort and help researchers com-
plete the ML Code Completeness Checklist5 for
high-quality reproducible knowledge distillation
studies. One of its key concepts is that a declarative
PyYAML configuration file designs an experiment
and explains key hyperparameters and components
used in the experiment. While the initial framework
is well generalized and supports 18 different knowl-
edge distillation methods implemented in a unified
way, the implementation of the initial framework
is highly dependent on torchvision6, a package for
popular datasets, model architectures, and common
image transformations for computer vision tasks.

In this work, we significantly upgrade torchdis-
till from the initial framework (Matsubara, 2021)
to enable further generalized implementations, sup-
porting more flexible module abstractions and
enhance the advantage of decralative PyYAML
configuration files to design experiments with
third-party packages of user’s choice, as promised

5https://github.com/paperswithcode/
releasing-research-code

6https://github.com/pytorch/vision

in (Matsubara, 2021). Using GLUE tasks (Wang
et al., 2019) as an example, we demonstrate that
the upgraded torchdistill and a new script har-
monize with Hugging Face Transformers (Wolf
et al., 2020), Datasets (Lhoest et al., 2021), Acceler-
ate (Gugger et al., 2022), and Evaluate (Von Werra
et al., 2022) to reproduce the GLUE test results
reported in (Devlin et al., 2019) by fine-tuning pre-
trained BERT-Base and BERT-Large models with
the upgraded torchdistill. We also conduct knowl-
edge distillation experiments using the fine-tuned
BERT-Large models as teachers to train BERT-
Base models. All these experiments are performed
on Google Colaboratory.7 We also publish all the
code and configuration files at GitHub1 and trained
model weights and training logs at Hugging Face2

for reproducibility and helping researchers build
on this work. Our BERT models fine-tuned for
the GLUE tasks have already been downloaded
138,000 times in total and widely used in research
communities not only in research papers but also
in tutorials of deep learning frameworks and ACL
2022. Besides the NLP tasks, we reimplement pop-
ular small-sized computer vision models and a few
more recent knowledge distillation methods as part
of torchdistill, and perform additional experiments
to demonstrate that the upgraded torchdistill still
supports computer vision tasks.

2 Related Work

In this section, we briefly summarize related work
on open source software that supports end-to-end

7https://colab.google/
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research frameworks. Yang et al. (2018) propose
Anserini, an information retrieval toolkit built on
Lucene8 for reproducible information retrieval re-
search. Pyserini (Lin et al., 2021) is a Python
toolkit built on PyTorch (Paszke et al., 2019) and
Faiss (Johnson et al., 2019) for reproducible infor-
mation retrieval research with sparse and dense rep-
resentations, and the sparse representation-based
retrieval support comes from Lucene via Anserini.

AllenNLP (Gardner et al., 2018) is a toolkit
built on PyTorch for research on deep learning
methods in NLP and designed to lower barriers
to high quality NLP research e.g., useful NLP mod-
ule abstractions and defining experiments using
declarative configuration files. Highly inspired by
AllenNLP, Matsubara (2021) design torchdistill,
a module, configuration-driven framework built
on PyTorch for reproducible knowledge distilla-
tion studies. Similar to AllenNLP, torchdistill en-
ables users to design experiments by declarative
PyYAML configuration files and supports high-
level module abstractions. For image classification
and object detection tasks, its generalized starter
scripts and configurations help users implement
knowledge distillation methods without much cod-
ing cost. Matsubara (2021) also reimplement 18
knowledge distillation methods with torchdistill
and point out that the standard knowledge distil-
lation (Hinton et al., 2014) can outperform many
of the recent state of the art knowledge distilla-
tion methods for a popular teacher-student pair
(ResNet-34 and ResNet-18) with ILSVRC 2012
dataset (Russakovsky et al., 2015). In Section 3,
we describe major upgrades in torchdistill from the
initial release (Matsubara, 2021).

3 Major Upgrades from the Initial
Release

In this section, we summarize the major up-
grades from the initial release of torchdistill (Mat-
subara, 2021). Figure 1 highlights high-level differ-
ences between the initial design (Matsubara, 2021)
of torchdistill and a largely upgraded version in
this work. The initial torchdistill is dependent on
PyTorch and torchvision and contains key modules
and functionalities specifically designed to support
image classification and object detection tasks. For
example, dataset modules that the initial version
officially supports are only those in torchvision,
and some of dataset-relevant functionalities such as

8https://lucene.apache.org/

building a sequence of data transforms and dataset
loader are based on datasets in torchvision.

In this work, we make torchdistill less depen-
dent on torchvision and support more tasks with
third-party packages of users’ choice, by generaliz-
ing some of the key components in the framework
and exporting task-specific implementations to the
corresponding executable scripts and local pack-
ages. We also reimplement popular small-sized
models whose official PyTorch implementations
are not either available or maintained.

3.1 PyYAML-based Instantiation
A declarative PyYAML configuration file plays
an important role in torchdistill. Users can de-
sign experiments with the declarative PyYAML
configuration file, which defines various types of
abstracted modules with hyperparameters such as
dataset, model, optimizer, scheduler, and loss mod-
ules. To allow more flexibility in PyYAML con-
figurations, we add more useful constructors such
as importing arbitrary local packages to register
modules but without edits on an executable script,
and instantiating an arbitrary class with a log mes-
sage. Those can be done simply at the very begin-
ning of an experiment when loading the PyYAML
configuration file and make the configuration files
more self-explanatory since the configuration for-
mat used for the initial version does not explicitly
tell users whether the experiment needs specific
local packages. Those features also help us gener-
alize ways to define key module such as datasets
and their components (e.g., pre-processing trans-
forms, samplers).

Figure 2 shows an example that build a sequence
of image/tensor transforms with the initial version
and torchdistill in this work. While the former re-
quires both a Python function specifically designed
for torchvision modules (build_transform) and
a list of dict objects defined in a PyYAML
configuration to be given to the function as
(transform_params_config), the latter can build
exactly the same transform when loading the
PyYAML configuration and store the instantiated
object as part of a dict object with transform key.

3.2 Generalized Modules for Supporting
More Tasks

The PyYAML-based instantiation feature described
in Section 3.1 enables us to remove torchvision-
specific modules mentioned in Section 3 (e.g.,
build_transform in Fig. 2) so that we can reduce
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import torchvision
from torchdistill.datasets.transform import TRANSFORM_CLASS_DICT

TRANSFORM_CLASS_DICT.update(torchvision.transforms.__dict__)

def build_transform(transform_params_config , compose_cls=None):
if not isinstance(transform_params_config , (dict , list)) or len(transform_params_config) == 0:

return None

component_list = list()
if isinstance(transform_params_config , dict):

for component_key in sorted(transform_params_config.keys ()):
component_config = transform_params_config[component_key]
params_config = component_config.get('params ', dict ())
if params_config is None:

params_config = dict()

component = TRANSFORM_CLASS_DICT[component_config['type']](** params_config)
component_list.append(component)

else:
for component_config in transform_params_config:

params_config = component_config.get('params ', dict ())
if params_config is None:

params_config = dict()

component = TRANSFORM_CLASS_DICT[component_config['type']](** params_config)
component_list.append(component)

return transforms.Compose(component_list) if compose_cls is None else compose_cls(component_list)

transform_params:
− type: 'RandomCrop'

params:
size: 32
padding: 4

− type: 'RandomHorizontalFlip'
params:

p: 0.5
− type: 'ToTensor'

params:
− type: 'Normalize'

params:
mean: [0.49139968, 0.48215841, 0.44653091]
std: [0.24703223, 0.24348513, 0.26158784]

transform: !import_call
key: 'torchvision.transforms.Compose'
init:

kwargs:
transforms:

− !import_call
key: 'torchvision.transforms.RandomCrop'
init:

kwargs:
size: 32
padding: 4

− !import_call
key: 'torchvision.transforms.RandomHorizontalFlip'
init:

kwargs:
p: 0.5

− !import_call
key: 'torchvision.transforms.ToTensor'
init:

− !import_call
key: 'torchvision.transforms.Normalize'
init:

kwargs:
mean: [0.49139968, 0.48215841, 0.44653091]
std: [0.24703223, 0.24348513, 0.26158784]

Figure 2: Example of two different ways to build a sequence of transforms in torchvision (transform) for CIFAR-10
dataset. The initial version (top, left) defines a function for torchvision build_transform in torchdistill and
gives the function a list of dict objects in the left PyYAML as transform_params_config. torchdistill in this
work (right) can build exactly the same transform by instantiating each of the transform classes step-by-step with
!import_call, one of our pre-defined PyYAML constructors in the upgraded torchdistill.

torchdistill’s dependency on torchvision and gener-
alize its modules for supporting more tasks.

The initial version of torchdistill is designed to
support image classification and object detection
tasks based on torchvision, and torchvision models
for the tasks such as ResNet (He et al., 2016) and
Faster R-CNN (Ren et al., 2015) require an image
(tensor) and an annotation as part of the model in-

puts during training. However, this interface does
not generalize well to support other tasks. Tak-
ing a text classification task as an example, Trans-
former (Vaswani et al., 2017) models in Hugging
Face Transformers (Wolf et al., 2020) have much
more input data fields such as (not limited to) token
IDs, attention mask, token type IDs, position IDs,
and labels for BERT (Devlin et al., 2019), and dif-
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ferent models have different input data fields e.g.,
BART (Lewis et al., 2020) has additional input data
fields such as token IDs for its decoder.

In order to support diverse models and tasks, we
generalize interfaces of model input/output and the
subsequent processes in torchdistill such as com-
puting training losses. For demonstrating that the
upgraded torchdistill can support more tasks, we
provide starter scripts based on the upgraded frame-
work for GLUE (Wang et al., 2019) and seman-
tic segmentation tasks. For the GLUE tasks, we
harmonize popular Python libraries with torchdis-
till in the script such as Hugging Face Transform-
ers (Wolf et al., 2020), Datasets (Lhoest et al.,
2021), and Evaluate (Von Werra et al., 2022) for
model, dataset, and evaluation modules. We also
leverage Accelerate (Gugger et al., 2022) for ef-
ficient training and inference. In Section 4.1, we
demonstrate GLUE experiments with torchdistill
and the third-party libraries.

3.3 Reimplemented Models and Methods

We find in recent knowledge distillation stud-
ies (Tian et al., 2019; Xu et al., 2020; Chen et al.,
2021) that there is still a demand of small models
for relatively simple datasets such as ResNet (He
et al., 2016)9, WRN (Zagoruyko and Komodakis,
2016)10, and DenseNet (Huang et al., 2017)11

for image classification tasks with CIFAR-10 and
CIFAR-100 datasets (Krizhevsky, 2009) since the
official repositories are no longer maintained and/or
not implemented with PyTorch.

For helping the community conduct better bench-
marking, we reimplement the models for CIFAR-
10 and CIFAR-100 datasets as part of torchdistill
and attempt to reproduce the reported results fol-
lowing the original training recipes (See Section 4).
With the upgraded torchdistill, we also reimple-
ment and test a few more knowledge distillation
methods (He et al., 2019; Chen et al., 2021).

4 Google Colab Demos

In this section, we demonstrate that the upgraded
torchdistill can collaborate with third-party li-
braries for supporting more tasks. We also attempt
to reproduce the CIFAR-10 and CIFAR-100 results

9https://github.com/facebookarchive/fb.resnet.
torch

10https://github.com/szagoruyko/
wide-residual-networks

11https://github.com/liuzhuang13/DenseNet

reported in the original papers. To lower the bar-
rier to reusing and building on the scripts with
torchdistill, we conduct all the experiments on
Google Colaboratory7, which gives users access
to GPUs free of charge. We publish the Jupyter
Notebook12 files to run the experiments as part
of torchdistill repository1 so that researchers can
easily use them.

4.1 GLUE Tasks
The GLUE benchmark (Wang et al., 2019) uses
nine datasets in three different task categories.
The benchmark consists of 1) two single-sentence
tasks: CoLA (Warstadt et al., 2019) and SST-
2 (Socher et al., 2013), 2) three similarity and
paraphrase tasks: MRPC (Dolan and Brockett,
2005), QQP13, and STS-B (Cer et al., 2017), and
3) four inference tasks: MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016; Wang et al.,
2019), RTE (Dagan et al., 2005; Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al.), and
WNLI (Levesque et al., 2012).

We attempt to reproduce GLUE test results re-
ported in a popular study, BERT (Devlin et al.,
2019), using the upgraded torchdistill harmonizing
with Hugging Face libraries (transformers, datasets,
evaluate, and accelerate) (Wolf et al., 2020; Lhoest
et al., 2021; Von Werra et al., 2022; Gugger et al.,
2022). Following the experiments, we also conduct
knowledge distillation experiments that fine-tune
pretrained BERT-Base models for GLUE tasks, us-
ing the fine-tuned BERT-Large models as teachers
for the knowledge distillation method of Hinton
et al. (2014) minimizing

L = α ·LCE(ŷ,y)+(1−α) ·τ2 ·LKL (p,q) , (1)

where LCE is a standard cross entropy. ŷ indi-
cates the student model’s estimated class probabil-
ities, and y is the annotated category. LKL is the
Kullback-Leibler divergence, and α and τ are a
balancing factor and a temperature, respectively. p
and q represent the softened output distributions
from teacher and student models, respectively. p is
used as a target distribution for LKL. Specifically,
p = [p1, p2, . . . , p|C|] where C is a set of categories
in the target task. pi indicates the student model’s
softened output value (scalar) for the i-th category:

pi =
exp

(
vi
τ

)
∑

k∈C exp
(
vk
τ

) , (2)

12https://jupyter.org/
13https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs
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Model (Method, Reference) MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI
Acc./Acc. F1 Acc. Acc. M Corr. P-S Corr. F1 Acc. Acc.

BERT-Large (FT, Devlin et al. (2019)) 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 N/A
BERT-Large (FT, Ours) 86.4/85.7 72.2 92.4 94.6 61.5 85.0 89.2 68.9 65.1

BERT-Base (FT, Devlin et al. (2019)) 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 N/A
BERT-Base (FT, Ours) 84.2/83.3 71.4 91.0 94.1 51.1 84.4 86.8 66.7 65.8
BERT-Base (KD, Ours) 85.9/84.7 72.8 90.7 93.7 57.0 85.6 87.5 66.7 65.1

Table 1: GLUE test results. Our results are hyperlinked to our Hugging Face Model repositories. FT: Fine-Tuning,
KD: Knowledge Distillation using BERT-Large (FT, ours) as teacher.

where τ is one of the hyperparameters defined in
Eq. (1). vi denotes a logit value for the i-th cat-
egory. The same rules are applied to q for the
student model.

For reproducing the GLUE test results in (De-
vlin et al., 2019), we use pretrained BERT-Base14

and BERT-Large15 models in Hugging Face Trans-
formers (Wolf et al., 2020). Following (Devlin
et al., 2019) we minimize a standard cross-entropy
and the Adam optimizer (Kingma and Ba, 2015)
with slightly extended hyperparameter choices:
batch size of either 16 or 32 and 2-5 epochs
for fine-tuning and select a learning rate among
{2.0×10−5, 3.0×10−5, 4.0×10−5, 5.0×10−5} on
the dev set for each of the tasks. For knowledge dis-
tillation, we also choose learning rate from {1.0×
10−5, 2.0 × 10−5, 3.0 × 10−5, 4.0 × 10−5, 5.0 ×
10−5}, temperature τ ∈ {1, 3, 5, 7, 9, 11}, and
a balancing weight α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
based on the dev sets. Note that since STS-B is
not a classification task, we use the sum of 1) a
mean squared error between the annotation and the
student model’s output and 2) a mean squared error
between outputs of the teacher and student models
instead of Eq. (1) for the dataset.

Table 1 shows the GLUE test results reported
by Devlin et al. (2019) and those obtained from
GLUE Benchmark16 for our three configura-
tions: fine-tuning pretrained BERT-Base (FT, Ours)
and pretrained BERT-Large (FT, Ours) models
and knowledge distillation to fine-tune pretrained
BERT-Base (KD, Ours) as a student, using the fine-
tuned BERT-Large as the teacher. Note that Devlin
et al. (2019) do not report the results for the WNLI
test dataset.

Overall, our fine-tuned BERT-Base and BERT-
Large models achieved GLUE test results com-
parable to the official test results reported by De-

14https://huggingface.co/bert-base-uncased
15https://huggingface.co/bert-large-uncased
16https://gluebenchmark.com/

vlin et al. (2019). The knowledge distillation
method (Hinton et al., 2014) helped BERT-Base
models improve the performance for most of the
tasks, compared to those fine-tuned without the
teacher models. All the trained model weights and
training logs are published at Hugging Face2, and
the training configurations are published as part of
the torchdistill GitHub repository.1

The fine-tuned BERT models we published are
widely used in the research communities and have
already been downloaded about 138,000 times in
total at the time of writing. For instance, some
of the models are used for benchmarks, ensem-
bling, model quantization, token pruning (Matena
and Raffel, 2022; Church et al., 2022; Guo et al.,
2022; Lee et al., 2022), DeepSpeed Tutorials17,
Intel® Neural Compressor Examples18, and ACL
2022 Tutorial.19

4.2 CIFAR-10 and CIFAR-100

We also attempt to reproduce the CIFAR-10 and
CIFAR-100 results reported in (He et al., 2016;
Zagoruyko and Komodakis, 2016; Huang et al.,
2017) using the upgraded torchdistill with the reim-
plemented ResNet, WRN, and DenseNet models.
We follow the original papers and reuse the hy-
perparameter choices and training recipes such as
data augmentations. Note that we do not con-
fider models that can not fit to the GPU mem-
ory which Google Colab can offer e.g., ResNet-
1202 (He et al., 2016) for CIFAR-10 and DenseNet-
BC(k = 24 and k = 40) (Huang et al., 2017) for
CIFAR-10 and CIFAR-100.

Tables 2 and 3 compare the results reported in
the original papers (He et al., 2016; Zagoruyko
and Komodakis, 2016; Huang et al., 2017) with

17https://www.deepspeed.ai/tutorials/
model-compression/

18https://github.com/intel/neural-compressor/
tree/master/examples

19https://github.com/kwchurch/ACL2022_
deepnets_tutorial
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CIFAR-10 Model Test Accuracy
Original torchdistill

ResNet-20 91.25 91.92
ResNet-32 92.49 93.03
ResNet-44 92.83 93.20
ResNet-56 93.03 93.57
ResNet-110 93.57 93.50
WRN-40-4 95.47 95.24
WRN-28-10 96.00 95.53
WRN-16-8 95.73 94.76
DenseNet-BC (k=12, depth=100) 95.49 95.53

Table 2: CIFAR-10 results for ResNet (He et al.,
2016), WRN (Zagoruyko and Komodakis, 2016), and
DenseNet (Huang et al., 2017).

CIFAR-100 Model Test Accuracy
Original torchdistill

WRN-40-4 79.82 79.44
WRN-28-10 80.75 81.27
WRN-16-8 79.57 79.26
DenseNet-BC (k=12, depth=100) 77.73 77.14

Table 3: CIFAR-100 results for WRN (Zagoruyko and
Komodakis, 2016) and DenseNet (Huang et al., 2017).

those we reproduced for CIFAR-10 and CIFAR-
100 test datasets, respectively. We can confirm that
for most of the reimplemented models, our results
are comparable to those reported in the original
papers. Those model weights and training con-
figuration files are publicly available, and users
can automatically download the weights via the
upgraded torchdistill PyPI package.

5 ILSVRC 2012

As highlighted in Section 3, torchdistill was ini-
tially focused on supporting implementations of
diverse knowledge distillation in a unified way and
dependent on torchvision to specifically support im-
age classification and object detection tasks with its
relevant modules (see Fig. 1). To demonstrate that
the upgraded torchdistill still preserves the feature,
we reimplement a few more knowledge distillation
methods with the upgraded torchdistill: knowledge
review (KR) framework (Chen et al., 2021) and
knowledge translation and adaptation with affin-
ity distillation (KTAAD) (He et al., 2019). Note
that Matsubara (2021) present the results of vari-
ous knowledge distillation methods reimplemented
with the initial version of torchdistill for ILSVRC
2012 and COCO 2017 (Lin et al., 2014) datasets.
Those results are not included in this work, and we
refer interested readers to (Matsubara, 2021).

T: ResNet-34 S: ResNet-18
CE CE KR (Original) KR (Ours)

73.31 69.75 71.61 71.64

Table 4: ILSVRC 2012 top-1 accuracy of ResNet-18
(student) trained by KR (Chen et al., 2021) with pre-
trained ResNet-34 (teacher). CE: torchvision models
pretrained with cross-entropy.

Chen et al. (2021) demonstrate that the KR
method can outperform other knowledge distilla-
tion using ResNet-34 and ResNet-18 (He et al.,
2016), a popular pair of teacher and student models
for the ImageNet (ILSVRC 2012) dataset (Rus-
sakovsky et al., 2015). Using the reimplemented
KR method based on the upgraded torchdistill with
hyperparameters in (Chen et al., 2021), we success-
fully reproduce their reported result of ResNet-18
for the ImageNet dataset as shown in Table 4. The
trained model weights and configuration are pub-
lished as part of the torchdistill repository.1

6 PASCAL VOC 2012 & COCO 2017

The initial torchdistill (Matsubara, 2021) supports
image classification and object detection tasks. As
mentioned in Section 3.2, we also provide a starter
script for semantic segmentation tasks. Using two
popular datasets, PASCAL VOC 2012 (Evering-
ham et al., 2012) and COCO 2017 (Lin et al., 2014),
we demonstrate that the upgraded torchdistill sup-
ports semantic segmentation tasks as well.

In the experiments with PASCAL VOC 2012
dataset, we use DeepLabv3 (Chen et al., 2017)
with ResNet-50 and ResNet-101 backbones (He
et al., 2016), using torchvision’s pretrained model
weights for COCO 2017 dataset. We choose
hyperparameters such as learning rate policy
and crop size based on the original study of
DeepLabv3 (Chen et al., 2017). Our results are
shown in Table 5, and DeepLabv3 with ResNet-
101 achieved comparable mIoU (mean Intersection
over Union) to the best DeepLabv3 model for PAS-
CAL VOC 2012 dataset (val set) in the original
study (mIoU: 82.70). Following torchvision docu-
mentation20, we measure global pixelwise accuracy
as well. In terms of both the metrics, DeepLabv3
with ResNet-101 outperforms DeepLabv3 with
ResNet-50.

20https://pytorch.org/
vision/stable/models.html#
table-of-all-available-semantic-segmentation-weights
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Model mean IoU Pixelwise Acc.

DeepLabv3 w/ ResNet-50 80.6 95.7
DeepLabv3 w/ ResNet-101 82.4 96.2

Table 5: PASCAL VOC 2012 (Segmentation, val set)
validation results for DeepLabv3 with ResNet back-
bones (Chen et al., 2017) initialized with torchvision
pretrained model weights for COCO 2017 dataset.

Method mean IoU Pixelwise Acc.

CE (torchvision) 57.9 91.2
KTAAD (Ours) 58.2 92.1

Table 6: COCO 2017 (Segmentation, val set) results for
LRASPP with MobileNetV3-Large backbone (Howard
et al., 2019).

We also examine our reimplemented KTAAD
method (He et al., 2019) for the Lite R-ASPP
model (LRASPP in torchvision) (Howard et al.,
2019) as a student model, using the COCO 2017
dataset and the pretrained DeepLabv3 with ResNet-
50 in torchvision as a teacher model, whose mIoU
and global pixelwise accuracy are 66.4 and 92.4,
respectively. Since the KTAAD method is not
tested on COCO 2017 dataset for LRASPP with
MobileNetV3-Large backbone in the original paper
of KTAAD (He et al., 2019), our hyperparameter
choice is based on torchvision’s reference script.21

Table 6 presents the semantic segmentation re-
sults of LRASPP with MobileNetV3-Large back-
bone trained without the teacher model and by the
KTAAD method we reimplemented. We confirm
that the student model trained by KTAAD outper-
forms the same model trained on COCO 2017 avail-
able in torchvision in terms of mean IoU and global
pixelwise accuracy.

As with other experiments, the trained model
weights and configuration used in this section are
published as part of the torchdistill repository.1

7 Conclusion

In this work, we significantly upgraded torchdis-
till (Matsubara, 2021), a modular, configuration-
driven framework built on PyTorch (Paszke et al.,
2019) for reproducible deep learning and knowl-
edge distillation studies. We enhanced PyYAML-
based instantiation, generalized internal modules
for supporting more tasks, and reimplemented pop-
ular models and methods.

21https://github.com/pytorch/vision/tree/main/
references/segmentation

To demonstrate that the upgraded framework
can support more tasks as we claim, we provided
starter scripts for new tasks based on the upgraded
framework. One of the new starter scripts sup-
ports GLUE tasks (Wang et al., 2019) and har-
monizes with Hugging Face Transformers (Wolf
et al., 2020), Datasets (Lhoest et al., 2021), Acceler-
ate (Gugger et al., 2022), and Evaluate (Von Werra
et al., 2022). Using the script on Google Colab-
oratory, we reproduced the GLUE test results of
fine-tuned BERT models (Devlin et al., 2019) and
performed knowledge distillation experiments with
our fine-tuned BERT-Large models as teacher mod-
els. Similarly, we reproduced CIFAR-10 and -100
results of popular small-sized models we reimple-
mented, using Google Colaboratory. Furthermore,
we reproduced the result of ResNet-18 trained
with the reimplemented KR method (Chen et al.,
2021) for the ImageNet dataset. We also demon-
strated a new starter script for semantic segmenta-
tion tasks using PASCAL VOC 2012 and COCO
2017 datasets, and the reimplemented KTAAD
method (He et al., 2019) improves a pretrained
semantic segmentation model in torchvision.

In this study, we also published 27 trained mod-
els for NLP tasks2 and 14 trained models for com-
puter vision tasks.1 According to Hugging Face
Model repositories, the BERT models fine-tuned
for the GLUE tasks have already been downloaded
about 138,000 times in total at the time of writ-
ing. Research communities leverage torchdistill
not only for knowledge distillation studies (Liu
et al., 2021; Li et al., 2022a; Lin et al., 2022;
Dong et al., 2022; Miles and Mikolajczyk, 2023),
but also for machine learning reproducibility chal-
lenge (MLRC) (Lee and Lee, 2023) and repro-
ducible deep learning studies (Matsubara et al.,
2022a,c; Furutanpey et al., 2023b,a; Matsubara
et al., 2023). torchdistill is publicly available as
a pip-installable PyPI package and will be main-
tained and upgraded for encouraging coding-free
reproducible deep learning and knowledge distilla-
tion studies.
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