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Abstract Document clustering is frequently used in applications of natural language processing, e.g. to classify news articles or cre-

ate topic models. In this paper, we study document clustering with the common clustering pipeline that includes vectorization with

BERT or Doc2Vec, dimension reduction with PCA or UMAP, and clustering with K-Means or HDBSCAN.We discuss the interactions

of the different components in the pipeline, parameter settings, and how to determine an appropriate number of dimensions. The

results suggest that BERT embeddings combined with UMAP dimension reduction to no less than 15 dimensions provides a good

basis for clustering, regardless of the specific clustering algorithm used. Moreover, while UMAP performed better than PCA in our

experiments, tuning the UMAP settings showed little impact on the overall performance. Hence, we recommend configuring UMAP

so as to optimize its time efficiency. According to our topic model evaluation, the combination of BERT and UMAP, also used in

BERTopic, performs best. A topic model based on this pipeline typically benefits from a large number of clusters.

1 Introduction

Clustering is an important technique for mining, clas-

sifying, and structuring unlabeled text data in an un-

supervised manner. Some use cases are the classifi-

cation of news articles (Iulia-Maria et al., 2020; Radu

et al., 2020), social media analysis (Curiskis et al., 2020;

Asyaky and Mandala, 2021), and topic modeling (Sia

et al., 2020; Churchill and Singh, 2022; Zhang et al.,

2022; Zhao et al., 2021). For topic modeling and doc-

ument classification, practitioners typically use a de-

facto standard document clustering pipeline: document

vectorization→ dimension reduction→ clustering; see

Figure 1. This pipeline is attractive since it is straight-

forward to understand and provides flexibility due to

its modularity. A popular application of this pipeline

is BERTopic (Grootendorst, 2022), which converts the

pipeline into a topic model by adding a topic keyword

extractor.

dataset pre-processing vectorization

dimension

reduction

clusteringevaluation

Figure 1: Clustering pipeline overview. The main parts

are vectorization, dimension reduction, and clustering.

Since the pipeline components can be chosen from

among many algorithms, and those usually depend on

multiple parameter settings, it is challenging to analyti-

cally determine the best choice of components and their

parameters, and the result depends on the concrete ap-

plication. Further, the effect of the number of dimen-

sions to reduce the vector space to is understudied in

research on document clustering. In this paper, we con-

duct a systematic empirical study of how common em-

bedding techniques, dimension reduction techniques,

and clustering algorithms interact. From this, we de-

rive recommendations that, as we hope, can guide prac-

titioners who need to find a suitable configuration for

clustering collections of unlabeled documents.

The first component of modern document cluster-

ing pipelines usually turns documents into numeric rep-

resentations, called embeddings. Statistical methods

such as Bag-of-Words or TF-IDF (Sammut and Webb,

2010) have been studied as part of topic models cre-

ated with such a pipeline (Truică et al., 2016), but

have nowadays become replaced by neural methods

such as Doc2Vec (Le and Mikolov, 2014) and Google’s

Transformer-based BERT (Devlin et al., 2019), which

outperform the older methods; see Curiskis et al. (2020)

and Radu et al. (2020) for the former, and Subakti et al.

(2022) for the latter.

The next step, dimension reduction, is added to
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avoid degrading performance of clustering algorithms

in high-dimensional vector spaces (Steinbach et al.,

2004; Zimek, 2014)
1
. We study how the reduction to

a range of different dimensions affects the quality of

the resulting clusterings. There are two major classes

of dimension reduction algorithms, those based on ma-

trix factorization, and those based on neighbor graphs.

Principle Component Analysis (PCA, by Pearson (1901);

Hotelling (1933)) is a well-known and widely used ex-

ample of the former. The latter, graph-based methods

such as UMAP, calculate neighbor relations between

points in the vector space, and then project them to a

lower dimension, trying to preserve the neighbor rela-

tion. UMAP, invented by McInnes et al. (2018), is based

on differential geometry and benefits from a solidmath-

ematical foundation. UMAP has many applications,

such as bioinformatics (Becht et al., 2019), material sci-

ences (Li et al., 2019) andmachine learning (Ordun et al.,

2020; Sainburg et al., 2021).

The final step is clustering in the dimension-

reduced vector space. In ourwork, we focus on distance-

based clustering algorithms, where the similarity of

objects is determined by their distance in the vector

space. The clustering literature is extensive (Aggar-

wal and Zhai, 2012). Among the most popular ap-

proaches are algorithms based on determining clus-

ter centroids (K-Means (Lloyd, 1982), K-Medoids (Kauf-

man and Rousseeuw, 1990)), calculating local density

(DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al.,

1999), HDBSCAN (Campello et al., 2013; McInnes and

Healy, 2017)), computing spectral distributions (SPEC-

TRAL (Ng et al., 2001)), or performing a hierarchical

analysis (BIRCH (Zhang et al., 1996), Affinity Propa-

gation (Frey and Dueck, 2007), Mean-Shift (Fukunaga

and Hostetler, 1975; Cheng, 1995)). Centroid-based al-

gorithms calculate the distances to cluster centroids to

determine which point a cluster should be assigned to.

In this work, we use K-means as a representative of

this family since it is a widely used algorithm in multi-

variate data analysis. Density-based algorithms group

data points that are in high-concentration areas of the

vector space into clusters, with sparser regions in be-

tween. DBSCAN is one widely used density-based al-

gorithm, with HDBSCAN being a hierarchical exten-

sion. In a comparison of DBSCAN and HDBSCAN for

clustering news articles represented by Doc2Vec vec-

tors, Radu et al. (2020) found both to be viable. We use

HDBSCAN in this work due to its popularity in text

clustering and because it is the default clustering al-

gorithm in BERTopic (Grootendorst, 2022), the popular

topic model based on the instance BERT → UMAP →
HDBSCAN of the pipeline studied here.

1
The term curse of dimensionality was coined by Bellman (2003),

originally published as (Bellman, 1957), to refer to the algorithmic

disadvantages of a high-dimensional vector space.

Looking at the literature on document clustering,

we observe the following in particular:

(a) Doc2Vec and BERT have been extensively com-

pared with TF-IDF as document representations

for clustering, but not with each other;

(b) the use of dimension reduction in combination

with document embeddings and clustering is an

understudied method despite its popularity in

practice;

(c) in particular, it is largely unknown how the per-

formance of a clustering system for documents is

affected by the number of dimensions of the em-

bedding space.

To shed some light onto these questions, we have

studied combinations of Doc2Vec, BERT, PCA, UMAP,

K-Means, and HDBSCAN. The choice of these specific

methods is motivated in Section 2.

We performed our experiments on collections of

news articles because we expect news articles to belong

to comparatively distinct topics and be grammatically

correct. Moreover, there is a considerable practical de-

mand for systems that can cluster collections of unla-

beled news articles because maintaining a consistent

tagging of articles even internally in a single publishing

house is a significant problem, not to speak of multiple

publishers.

We report on an extensive, systematic set of experi-

ments with the task to broadly cluster three different

labeled datasets of news articles using combinations

of the above-mentioned embeddings and techniques

with varying parameter settings, where the datasets are

treated as unlabeled datasets and the gold labels are

used for performance evaluation. To not only rely on

a single quality measure, the quality of a clustering is

assessed using both the Adjusted Rand Index (ARI, Hu-

bert and Arabie (1985)) and the Adjusted Mutual Infor-

mation Index (AMI, Vinh et al. (2010)). Additionally, to

assess the intrinsic quality of the resulting topic models

independently of the ground truth, a commonmeasure-

ment for topic coherence, 𝑐𝑣 (Röder et al., 2015), is used.

The performance of the pipeline as a topic model is

evaluated by adding a topic keyword extractor to each

pipeline setup, hence, converting them into BERTopic-

style topic models.

The structure of the paper is as follows. Section 2

explains our method. Sections 3 and 4 present and dis-

cuss the results of our experiments, respectively. Finally,

conclusions are presented in Section 5.

2 Method
To enable experiments with different configurations of

the clustering pipeline while keeping the components

Northern European Journal of Language Technology



separate and individually adjustable, a test suite was

designed and implemented. We use the following termi-

nology to separate individual instances of the pipeline

architecture of Figure 1 from its parameter settings:

Definition 1 A pipeline with specified vectorization,

dimension reduction, and clustering components, but

with unspecified parameter settings, is a setup. A setup

with specific parameter settings is a configuration.

The datasets used for training and evaluation are

presented in Section 2.1. In Section 2.2, the structure of

our test suite is discussed. Section 2.3 explains how we

compare and evaluate different configurations.

2.1 Datasets

Three datasets with different characteristics were used

as test data. All three consist of news articles written

in English. The datasets are fully labeled, meaning that

there are no unlabeled articles.

SNACK – Scraped News Articles Classified with
Keywords consists of publicly available news articles

scraped from the Internet in 2021. Topic-related key-

word lists were used for classifying the articles, us-

ing keywords extracted by a term-based method. Arti-

cles classified as Technology (3156), Food/Drink (2246),

Sports (2836), Stocks (2208), Conflicts (3086) and

Movies/TV-series (2859) of more than 500 characters

were used for our experiments. The classes were chosen

because they are largely unrelated. Articles occurring

in multiple classes were removed. Unfortunately, the

corpus cannot be made available as we do not own the

publication rights of the individual articles it consists

of. However, the URLs can be provided upon request.

AG News by Zhang et al. (2015) contains 1 000 000

categorized articles. For our study, a subset consist-

ing of 15 000 articles from each of the four categories

Sports,Business, Science/Technology andWorldwas

used. This dataset was included to get a perspective on

how configurations perform on a dataset consisting of

a large number of comparatively short documents.

Reuters is based on the Thomson Reuters Text

Research Collection (TRC2)
2
of 1 800 370 articles from

2008 and 2009. 578 712 of the articles are tagged with

keywords. Using the keywords Market Bonds (2738),

Environment (515), Natural disaster (777), Soccer

England (1974), Film (844), USA Politics (2559) and

Auto (1678) as selectors, a dataset of 11 085 articles was

extracted for our experiments.

Name Articles Classes Words

SNACK 16 391 6 7 509 853

AG News 60 000 4 4 520 259

REUTERS 11 085 7 3 148 736

Table 1: The datasets used in this study along with their

size statistics.

2.2 The Clustering Pipeline
The version of the clustering pipeline used in our test

suite is shown in Figure 1. Recall from Definition 1 that

every choice of specific components results in a setup,
and additionally fixing the parameters of these compo-

nents yields a configuration.
The documents to be clustered are loaded and en-

ter pre-processing. The pre-processing depends on

the embedding to be used. For Doc2vec, stopwords,

punctuation, and special characters are removed. The

WordNet Lemmatizer is used for lemmatizing as it has

been shown to be superior to stemming in clustering

tasks (Iulia-Maria et al., 2020). For BERT, we follow

the cleaning and tokenization steps described by Devlin

et al. (2019), using the HuggingFace
3
implementation.

Doc2Vec, in the Gensim implementation by Radim

Řehůřek
4
, was selected as a typical representative of

classical prediction-based neural embeddings. The

Doc2Vec training process was run for 15 epochs. BERT,

as implemented by HuggingFace
3
, was chosen as a

representative of the Transformer-based class of em-

beddings. The BERT model was fine-tuned twice on

all the sentences of the chosen dataset, using masked

language modeling. The texts went through the pre-

processing and vectorization only once to save time and

to fairly compare the configuration parameters of the

other modules.

For the vectorization phase of the pipeline, PCA

was chosen to represent the class of matrix factor-

ization techniques since it is widely applied in cases

where dimension reduction is needed. UMAP (McInnes

et al., 2018) represents the techniques based on neigh-

bor graphs. It was chosen because it outperforms the

popular t-SNE with respect to both efficiency and qual-

ity (see the original article). The numbers of dimensions

tested are shown in Table 2. It is valuable to include

reductions to as few as two or three dimensions since

those are easy to visualize. As we will see, the effect

of an increasing number of dimensions on the scores

is not large. Hence, we opted to include comparatively

few higher dimensions to reduce the computational re-

sources needed.

2https://trec.nist.gov/data/reuters/reuters.
html

3https://huggingface.co/
4https://radimrehurek.com/gensim/
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Component Technique Settings Value
Vectorization Doc2Vec dimensions 300

BERT dimensions 768

layers 12

attention heads 12

Dim. reduction both dimensions [2, 3, 5, 7, 10, 15, 25, 50]

PCA

principal

components

equal to number of dimensions

UMAP n_neighbors [5, 20, 80, 320, 1280, 2560]
Clustering K-Means 𝑘 [6, 12, 24, 48, 96, 192, 384]SNACK

[4, 8, 16, 32, 64, 128, 256]AG
[7, 14, 28, 56, 112, 224, 448]REUT

HDBSCAN min_cluster_size [5, 10, 20, 40, 80, 160, 320, 640, 1280]SNACK+REUT
[10, 20, 40, 80, 160, 320, 640, 1280, 2560]AG

Table 2: Major pipeline components and their explored setting configurations.

To investigate the effect of dimension reduction

with UMAP, the main setting we manipulate is the vari-

able n_neighbors, which determines how many points

in the vicinity of a given point should be used to mea-

sure local density. A low value makes UMAP focus on

the local structure of the vector space whereas a high

value emphasizes its global structure. The settings we

explored can be found in Table 2.

After dimension reduction, the vectors are L2-

normalized, a step which, for simplicity, is not shown

in Figure 1. For count-based methods, this normaliza-

tion is common practice, whereas for neural methods

there does not appear to be a clear recommendation

as to which approach to use. Initial experiments re-

vealed it to be advantageous for the overall scores to

normalize vectors and center them around the origin

after dimension reduction so that the clustering algo-

rithmworks on normalized vectors. This step could also

be performed prior to dimension reduction. Since our

initial experiments revealed no significant difference be-

tween these options, we chose the former as it will en-

sure that the norm of all vectors is 1 when the actual

clustering algorithm is invoked.

As clustering components, we selected the common

K-Means and the more recent HDBSCAN. K-Means is

mainly parameterized by the number 𝑘 of clusters to

partition the dataset into. HDBSCAN transforms the

vector space based on the local density of the set of

points to be clustered and then creates a minimum

spanning tree over these points. From that tree, a hi-

erarchy can be created and then converted to a flat

structure depending on a parameter min_cluster_size.
In the respective configurations, we consider a range

of settings for the parameters 𝑘 andmin_cluster_size of
K-Means and HDBSCAN, respectively, as specified in

Table 2. Using a number 𝑘 different from the number of

distinct labels of the dataset allows K-Means to identify

a high-quality clustering with a number of clusters that

differs from that of the ground truth. In fact, consider-

ing larger values of 𝑘 is essential when evaluating the

system as a topic modeling system.

In contrast to K-Means, which labels all points in

the vector space, HDBSCAN detects apparent noise

which it then leaves unlabeled. Since our datasets are

fully labeled and are thus considered to not contain any

noise, this difference makes HDBSCAN suffer in the

comparison. To avoid this effect, we use soft clustering

for HDBSCAN, meaning that all points get a similarity

score with respect to each cluster and are then assigned

to the cluster that results in the highest score.

This pipeline is often used to build topic models. To

be able to evaluate the pipeline as such, we need to con-

vert each configuration to a topic model. This is done

by adapting the c-TF-IDF of BERTopic (Grootendorst,

2022) and assigning top keywords for all clusters. The

top 10 keywords are used to represent a cluster as a

topic. Further mentions of topic modeling refer to con-

figurations that have the addition of c-TF-IDF, hence,

which are topic models in the style of BERTopic.

2.3 Evaluation
In our test suite, we ran the configurations shown in

Table 2 to cluster the datasets, and evaluated the qual-

ity of the resulting clusterings. For evaluation, we used

the gold labels of the datasets together with two differ-

ent methods of measuring clustering quality: the pair-

based measurement Adjusted Rand Index (ARI, Hubert

and Arabie (1985)) and the Shannon-based Adjusted

Mutual Information Index (AMI, Vinh et al. (2010)).

These were chosen because they are widely used in

practice and have complementary strengths (Romano

et al., 2016): ARI is considered to be advantageous if

the ground truth consists of big equal-sized clusters
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whereas AMI is preferable when the dataset is unbal-

anced, containing both large and small clusters.

Scores range from 0 to 1 where 0 marks a random

clustering and 1 a clustering that agrees perfectly with

the ground truth. We consider a higher score to indi-

cate better clustering even though scores are not com-

prehensive for all aspects of clustering quality.

In addition to measuring quality by means of com-

parison with the ground truth, we use the topic coher-

ence measure 𝑐𝑣 by Röder et al. (2015) to estimate the

intrinsic clustering quality by calculating a score be-

tween 0 and 1. The conclusion of Röder et al. (2015)

was that 𝑐𝑣 is the topic coherence measure most corre-

lated to human judgment. Our coherence calculations

employ the window size of 110 also used in Röder et al.

(2015). Since 𝑐𝑣 is computed by calculating a coherence

score for each individual cluster and aggregating the

scores, it may favor large numbers of small clusters (one

cluster with a low score does not impact the aggregated

score as much). However, we found that clusterings

with a large number of clusters are not assigned amuch

higher score than those with a smaller number of clus-

ters. Thus, one can also use 𝑐𝑣 to determine an appro-

priate number of clusters. Hence, we find 𝑐𝑣 adequate

for comparing the quality of clusterings resulting from

different configurations.

2.4 Limitations

While the components whose interactions we study

have been chosen to be both typical and representative

of a wide range of components that practical clustering

pipelines may be composed of, they can only be exam-

ple instances as there are many other options. We have

therefore made our test suite available for download
5
.

Some design choices, explained above, were made to

keep the project and in particular the number of exper-

iments manageable.

Another limitation of this study lies in the choice

of datasets used in the experiments. They all have rela-

tively few categories (at most seven) and are all reason-

ably balanced. The largest imbalance is found in the

Reuters dataset where the largest category, USA Pol-

itics (2559) is five times larger than the smallest cate-

gory, Environment (515). There could be many situa-

tions where the datasets contain many more categories

or have a more unbalanced ground truth. Thus, the re-

sults of this work provide approximate parameter val-

ues for practitioners to initiate configuring their own

system but should not be taken as universal truths.

3 Results
The results are presented as a qualitative analysis with

the 2D plots (Figures 2-5) in Section 3.1, and a quantita-

tive analysis presented in Sections 3.2 and 3.3. Details

on how the scores were attained and processed are de-

scribed below.

Combining all the possible configurations that can

be constructed from Table 2 yielded 1792 total combi-

nations distributed over 8 setups. The experiments, de-

scribed in Section 2, were conducted by running all con-

figurations on each dataset. Each configuration was

run three times to account for non-deterministic com-

ponents such as K-Means, UMAP, and the coherence

measure 𝑐𝑣 . The mean ARI, AMI, and 𝑐𝑣 of the three

runs on each configuration are considered to be the fi-

nal scores of the configuration in question. In the text,

performance refers to these scores and a better perfor-

mance is a higher score. Figure 6 shows aggregated re-

sults obtained by averaging the performance figures for

all configurations of each setup. Since the number of di-

mensions of the clustering space has a major influence

on the results, it is kept as the X-axis, thus giving rise to

trend plots that describe trends depending on the num-

ber of dimensions.

3.1 Visualization in 2D
The 2D plots in Figure 2–5 visualize the vectorized doc-

ument spaces reduced to two dimensions. While the

plots cannot be translated directly into higher dimen-

sions, one can qualitatively compare the vector spaces

with the corresponding results in the trend plots. There

are clear differences between the 2D vector spaces cre-

ated with UMAP and PCA. By adding the label color, it

is clearly visible that the UMAP reductions keep a more

defined geometry of the data corresponding to the orig-

inal labeling.

3.2 Aggregated Trends per Setup
The trend plots shown in Figure 6 are an attempt to pro-

vide a general view of how well the setups work and

how this depends on the number of dimensions. In or-

der to obtain a compact comparison of all setups we

illustrate their trends for each dataset-metric pair, i.e.,

there is one figure for each pair. Each figure contains

8 trend lines, one per setup. Each aggregated trend line

shows the mean score (vertical axis) over all parameter

settings for the given dataset and metric, depending on

the dimension setting (horizontal axis).

The aggregated trends in Figure 6 show that the

mean score is less in 2D than in 5D and higher. For most

setups, the score increases until somewhere between

5https://github.com/antoneklund/Systematic_
Parameter_Search_News_Article_Clustering
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Figure 2: 2D UMAP reductions of Doc2Vec vectors.

Figure 3: 2D UMAP reductions of BERT vectors.

Figure 4: 2D PCA reductions of Doc2Vec vectors.

Figure 5: 2D PCA reductions of BERT vectors.
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SNACK

AG News

REUTERS

Figure 6: Aggregated trends for the SNACK (top), AG News (middle), and Reuters datasets (bottom). The evaluation

metrics are ARI (left), AMI (middle), and 𝑐𝑣 (right).

10D and 15D, after which there is no significant change.

The exception is the setup bert_pca_hdbscan, which de-

creases after a peak in performance. (On SNACK, the

setup bert_pca_kmeans is another exception, showing

a similar behavior.)

The ARI and AMI scores for the setups does not in-

dicate that more than 50D are needed. However, when

looking at the 𝑐𝑣 scores in Figure 6, there are setups

(bert_pca_kmeans and doc2vec_pca_kmeans) that are

still on a rising trend at 50D.

Some patterns re-occur across the different datasets.

Setups that include BERT tend to perform better than

those using Doc2Vec. This is true for AG News and

Reuters but not for SNACK where the trends look sim-

ilar for both vectorization methods. Also, more often

than not setups that use UMAP seem to give rise to

higher scores than the ones using PCA when the other

two components are kept unchanged.
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Figure 7: Dimension reduction mean time comparison

over dimension for the Reuters dataset. UMAP with

n_neighbors = 20 is around 6𝑠 and PCA is around 0.5𝑠 .

Figure 8: Clustering time comparison over dimension

for the Reuters dataset.

Figure 9: The different scores of 𝑐𝑣 on the Reuters

dataset depending on the UMAP variable n_neighbors.

Figure 10: Comparison of time required to perform the

UMAP dimension reduction depending on the variable

n_neighbors.

3.3 Configurations

For the various configurations, there are large quanti-

ties of data that mostly tie into the individual datasets.

Hence, showing all of them is not meaningful. There-

fore, we present a sample of, as we hope, informative

configurations in Tables 3–5. We chose the best con-

figuration for each setup. Three tables are presented,

one for each of the evaluation metrics ARI, AMI, and

𝑐𝑣 . The best-performing configuration for a dataset is

highlighted. This is most often bert_umap_hdbscan

or bert_umap_kmeans but on the SNACK dataset,

doc2vec_umap_hdbscan also achieves a high score.

In addition to these, we chose the Reuters dataset

to show the relation between the number of clusters

and the final score in Figure 11. The plots report all

scores for ARI, AMI, and 𝑐𝑣 divided into the different

setups. For the Reuters dataset, the ground truth num-

ber of clusters is seven, and this is also where we find

the highest scores for ARI and AMI. The topic modeling

score 𝑐𝑣 attains a higher value for a number of clusters

larger than the ground truth.

The mean dimension reduction wall times for PCA

and UMAP with different settings of the parameter

n_neighbors are shown in Figure 7. PCA is faster than

UMAP by a large margin. UMAP computation time in-

creases significantly along with n_neighbors. However,
the computation time is rather unaffected by increasing

the number of dimensions from 2D to 50D.

The average 𝑐𝑣 score per UMAP n_neighbors set-

ting for the Reuters dataset is plotted in Figure 9. The

boxes are similar, which means that the parameter has

only a small impact on the score. The best-performing

setting is n_neighbors = 20 where the mean score is

slightly higher than for the other settings. Related to

this is the dimension reduction time reported for differ-

ent n_neighbors that are shown in Figure 10. It can be
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Figure 11: Relation between the number of clusters and the score for different metrics in the Reuters dataset.

Data Setup Dim

Alg.

setting

Nr of

clusters

Time ARI

S
N
A
C
K

bert_umap_kmeans 25 6 6 10.82 0.56
bert_umap_hdbscan 15 320 7 20.27 0.58
doc2vec_umap_kmeans 15 6 6 12.5 0.55
doc2vec_umap_hdbscan 50 640 6 21.05 0.58
bert_pca_kmeans 25 6 6 2.62 0.51
bert_pca_hdbscan 15 160 6 6.37 0.50
doc2vec_pca_kmeans 50 6 6 2.02 0.50
doc2vec_pca_hdbscan 15 160 6 7.26 0.45

A
G
N
E
W
S

bert_umap_kmeans 10 4 4 31.06 0.67
bert_umap_hdbscan 50 2560 4 1288.69 0.59
doc2vec_umap_kmeans 5 4 4 30.19 0.26
doc2vec_umap_hdbscan 15 160 5 75.11 0.28
bert_pca_kmeans 50 4 4 5.82 0.64
bert_pca_hdbscan 5 2560 4 16.79 0.57
doc2vec_pca_kmeans 50 4 4 3.73 0.17
doc2vec_pca_hdbscan 3 80 5 4.29 0.09

R
E
U
T
E
R
S

bert_umap_kmeans 50 7 7 14.62 0.69
bert_umap_hdbscan 25 160 10 14.47 0.70
doc2vec_umap_kmeans 15 7 7 5.09 0.12
doc2vec_umap_hdbscan 25 80 8 6.27 0.13
bert_pca_kmeans 15 7 7 1.61 0.50
bert_pca_hdbscan 15 20 16 2.33 0.69
doc2vec_pca_kmeans 50 14 14 2.68 0.09
doc2vec_pca_hdbscan 25 10 17 5.66 0.08

Table 3: A table of the best configuration according

to ARI for each setup on each dataset. The column

‘Alg. setting’ reports the number 𝑘 of clusters in K-

Means and min_cluster_size in HDBSCAN.

seen that the computation time increases with larger

n_neighbors as well as with the size of the dataset.

4 Discussion

The purpose of this study has been to help practitioners

limit the time spent on building a clustering system and

tuning its hyperparameters. The following discussion is

structured according to the three main degrees of free-

dom, namely the number of dimensions, the choice of

components, and the parameter tuning.

Data Setup Dim

Alg.

setting

Nr of

clusters

Time AMI

S
N
A
C
K

bert_umap_kmeans 25 6 6 10.81 0.54
bert_umap_hdbscan 15 320 7 20.27 0.55
doc2vec_umap_kmeans 15 6 6 11.33 0.54
doc2vec_umap_hdbscan 25 640 6 16.55 0.55
bert_pca_kmeans 25 6 6 2.62 0.51
bert_pca_hdbscan 15 160 6 6.37 0.49
doc2vec_pca_kmeans 50 6 6 2.02 0.49
doc2vec_pca_hdbscan 7 160 6 3.23 0.45

A
G
N
E
W
S

bert_umap_kmeans 10 4 4 31.06 0.64
bert_umap_hdbscan 25 2560 3 68.6 0.63
doc2vec_umap_kmeans 3 8 8 30.26 0.31
doc2vec_umap_hdbscan 15 160 5 75.11 0.31
bert_pca_kmeans 50 4 4 5.82 0.6
bert_pca_hdbscan 5 2560 4 16.79 0.54
doc2vec_pca_kmeans 50 16 16 11.09 0.24
doc2vec_pca_hdbscan 3 80 5 4.29 0.15

R
E
U
T
E
R
S

bert_umap_kmeans 50 7 7 14.62 0.69
bert_umap_hdbscan 25 160 10 14.47 0.71
doc2vec_umap_kmeans 10 56 56 8.1 0.24
doc2vec_umap_hdbscan 10 10 62 8.1 0.24
bert_pca_kmeans 25 14 14 2.18 0.6
bert_pca_hdbscan 15 20 16 2.33 0.66
doc2vec_pca_kmeans 50 224 224 10.27 0.24
doc2vec_pca_hdbscan 25 5 47 6.29 0.18

Table 4: A table of the best configuration according

to AMI for each setup on each dataset. The column

‘Alg. setting’ reports the number 𝑘 of clusters in K-

Means and min_cluster_size in HDBSCAN.

4.1 Dimension

The number of dimensions of the clustering vector

space is relevant for the clustering result. Too few di-

mensions will remove relevant information from the

vector space, and too many dimensions may make the

clustering drop in performance and become computa-

tionally inefficient. The difficulty lies in quantifying

too few and too many. The results of this study show

that performance typically increases from 2D to some-

where between 10D and 15D, where the increase stag-

nates. The expected performance drop in higher dimen-

sions due to the curse of dimensionality does not seem
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Data Setup Dim

Alg.

setting

Nr of

clusters

Time 𝑐𝑣

S
N
A
C
K

bert_umap_kmeans 50 96 96 13.01 0.67
bert_umap_hdbscan 5 20 41 19.56 0.73
doc2vec_umap_kmeans 15 12 12 7.00 0.68
doc2vec_umap_hdbscan 15 40 17 20.98 0.71
bert_pca_kmeans 50 96 96 11.31 0.65
bert_pca_hdbscan 50 20 12 16.98 0.64
doc2vec_pca_kmeans 50 96 96 9.63 0.68
doc2vec_pca_hdbscan 50 5 105 26.69 0.67

A
G
N
E
W
S

bert_umap_kmeans 50 246 256 82.13 0.67
bert_umap_hdbscan 50 20 140 116.43 0.73
doc2vec_umap_kmeans 25 128 128 87.21 0.57
doc2vec_umap_hdbscan 5 10 107 52.09 0.60
bert_pca_kmeans 50 64 64 31.78 0.67
bert_pca_hdbscan 50 40 14 369.37 0.63
doc2vec_pca_kmeans 50 128 128 62.03 0.61
doc2vec_pca_hdbscan 5 10 38 9.59 0.5

R
E
U
T
E
R
S

bert_umap_kmeans 25 224 224 11.21 0.78
bert_umap_hdbscan 15 20 63 8.74 0.79
doc2vec_umap_kmeans 50 112 112 10.81 0.58
doc2vec_umap_hdbscan 25 5 187 17.53 0.62
bert_pca_kmeans 50 224 224 11.08 0.72
bert_pca_hdbscan 50 5 147 12.44 0.75
doc2vec_pca_kmeans 50 448 448 16.02 0.63
doc2vec_pca_hdbscan 15 5 47 4.20 0.55

Table 5: A table of the best configuration according to

𝑐𝑣 for each setup on each dataset. The column ‘Alg. set-

ting’ reports the number 𝑘 of clusters in K-Means and

min_cluster_size in HDBSCAN.

to pose a significant problem for the range of dimen-

sions tested in this article. Hence, for a system that has

to perform well on unknown data, a reasonable initial

guess would be to use 15D or (moderately) higher.

While a higher-dimensional vector space (within

the range in this study) seems to ensure better perfor-

mance, it has to be weighed against the resulting in-

crease in computation time. As seen in Figure 7, the

cost of performing the dimension reduction itself does

not significantly depend on the number of dimensions.

Instead, the most significant factor affecting the effi-

ciency of the dimension reduction is the size of the

dataset and (in the case of UMAP) the n_neighbors pa-
rameter as shown in Figure 10. As seen in Figure 8, the

clustering times increase very slowly in higher dimen-

sions. Still, the increase in clustering time indicates that

the number of dimensions should be kept down if there

is no significant performance gain.

We recommend attempting to find a balance be-

tween efficiency and desired performance. As previ-

ously mentioned, the performance increase tends to

stagnate around 15D. Hence, as a rule of thumb, we rec-

ommend a reduction to a range from around 15D to 25D.

Future work will need to be conducted to study the im-

pact of a number of dimensions higher than 50D, which

was the limit in this study.

4.2 Choice of Components

The trend plots in Figures 6 give insights into the com-

ponent performance, and the 2D plots of the vector

spaces in Figures 2–5 add a geometrical view of the re-

sults. From this, we draw the following observations.

4.2.1 Vectorization Method

The performance of setups that include BERT is better

or similar to that of setups that include Doc2Vec when

all other components are the same. We can also see that

the highlighted best-performing configurations always

include BERT in Tables 3–5. At best, Doc2Vec achieves

on-par results with BERT on SNACK. Thismakes us con-

clude that BERT as a vectorization method is preferable

over Doc2Vec, and we recommend using it in a cluster-

ing pipeline.

4.2.2 Dimension Reduction

For dimension reduction, the setups using UMAP yield

more stable results, with the scores increasing until

they stabilize at around 10D. PCA sometimes shows

peaks in scores for configurations around 5D to 15D.

However, the performance decreases in higher dimen-

sions as seen in Figure 6. We note in Tables 3–5 that

setups with UMAP achieve the top scores. Therefore,

UMAP generally seems like a more stable recommen-

dation. However, in this context, it is worth recalling a

major advantage of PCA that is not highlighted in the

experiments of this article. Namely, that the axes of

its coordinate system correspond to the Eigenvectors

computed in the course of matrix decomposition. As

such, these axes carry a distinct mathematical mean-

ing, which is important for explainability. A common

application of this fact is to use the explained variance

of the axes for analysis (Raunak et al., 2019).

For visualization purposes, the choice of UMAP is

evident when comparing the 2D plots of UMAP in Fig-

ures 2 and 3, with PCA in Figures 4 and 5. The vec-

tor spaces for the UMAP-reduced datasets form clear

clusters without mixing the categories. This result is

expected as preserving cluster structure in lower dimen-

sions is something that neighbor graph methods were

designed to do.

Nevertheless, if explainability is not a major con-

cern, it seems safe to conclude that UMAP as a compo-

nent in the document clustering pipeline is preferable

over PCA because of both performance stability and vi-

sualization properties. This is also supported in the lit-

erature by Allaoui et al. (2020). However, PCA performs

well in certain configurations and is more efficient. PCA

could therefore be preferable in situations where strict

time constraints must be obeyed or it is important to

be able to interpret the vector space axes.
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4.2.3 Clustering Algorithm

Our results show that HDBSCAN generally performs

well in combination with UMAP. K-Means also dis-

plays good performance but achieves slightly lower

scores than HDBSCAN. First and foremost, perfor-

mance tends to be determined by the other components

and particularly the vectorization. It is therefore sensi-

ble to leave the choice of clustering algorithm to the

practitioner who can visualize the vector space (prefer-

ably with UMAP) to obtain information about its shape

and make an informed decision (Eklund and Forsman,

2022).

HDBSCAN combined with PCA is the only setup

that sometimes exhibits a downward trend after a peak

around 5D to 15D. This could signal that HDBSCAN is

inferior to K-Means at handling the shrinking variance

in distance that occurs in higher dimensions. However,

this phenomenon does not occur in all setups involv-

ing HDBSCAN, meaning that the behavior cannot be

caused by HDBSCAN alone. In fact, the peaks some-

times occur in the best-performing configuration for a

dataset. Therefore, we cannot discourage combining

PCA with HDBSCAN, but we do advise caution when

using this combination.

The rightmost plots (with the metric 𝑐𝑣) in Figure 6

show that a topic model could be successfully created

with any combination of UMAP or PCA, and HDB-

SCAN or K-Means. The performance is again mostly

dependent on the vectorization. Furthermore, while

the performance increase often seems to stagnate in

higher dimensions, setups with PCA and K-Means keep

improving. This indicates that increasing the number

of dimensions beyond what was done in this study

may eventually turn PCA and K-Means into the best-

performing combination.

4.3 Parameter Tuning

Parameter tuning is the task most dependent on the

dataset. However, being able to trust that the system

is well configured is especially important when facing

unseen data, and thus when tuning is most difficult. Ta-

bles 3–5 contain the best-performing configurations for

each setup. These tables give some ideas of what is im-

portant when choosing a parameter setting.

One central aspect appears to be the number of clus-

ters. For ARI (Table 3) and AMI (Table 4), it is clear that

if the clustering produces a number of clusters closer to

the number of gold labels, then the score will be higher.

Where this fails, such as setups involving Doc2Vec for

the Reuters dataset in Table 4, is when the score is so

low that the setup should be discarded no matter the

configuration. The recommendation that the number of

clusters should stay close to the number of gold labels

is also supported by Figure 11, where the highest scores

are obtained by values around seven for nr_clusters. In
a real-world environment, it could of course be difficult

to make practical use of this observation because the

“real” number of clusters may not a priori be known.

Strategies exist for finding an optimal number of clus-

ters for a dataset that can be used to set the parameter

𝑘 for K-Means (Kodinariya et al., 2013). In this regard,

an advantage of HDBSCAN is that min_cluster_size is
related to the dataset size, which is usually known.

The metric 𝑐𝑣 used to evaluate topic modeling sys-

tems favors pipeline configurations that result in a

larger number of clusters than the coarse categoriza-

tion of the annotated data; see Table 5. This is also indi-

cated by the large values for both 𝑐𝑣 and nr_clusters in
the rightmost plot in Figure 11. Some benefits of using

smaller values of min_cluster_size, which yield a larger

number of clusters, have been suggested for topic mod-

eling of short social media texts (Asyaky and Mandala,

2021). Our results let us agree with this recommenda-

tion for longer news article texts as well. Overall, the

clustering algorithms show comparative performances

when applied to the same vector space. Hence, there

does not seem to be any harm in choosing the algorithm

based on domain and application knowledge.

Computational efficiency is an aspect practitioners

may have to take into account. UMAP takes consider-

ably longer time to compute than PCA as shown in Fig-

ure 7 and supported by the benchmarking comparison

found in the UMAP documentation
6
. UMAP complex-

ity is bound by the calculation of n_neighbors and has

empirically been shown to be 𝑂 (𝑁 1.14) (McInnes et al.,

2018). Our results support this by showing a wall time

that essentially increases linearly, as shown in Figure 10.

From Figure 9 we can also see that n_neighbors in gen-

eral has a low impact on the overall scores. If there are

any patterns, it is that smaller values of n_neighbors are
more frequently present in the best-scoring configura-

tions. In UMAP, the parameter n_neighbors is supposed
to weigh retaining the local structure against retain-

ing the global structure of the data (smaller vs. larger

n_neighbors, respectively). Judging from the results in

this study, we presume that it is better to focus on pre-

serving the local structure, as also supported in Asyaky

and Mandala (2021).

In conclusion, the choice of parameters should

be based on how many clusters one expects to find,

weighed against any efficiency constraints the system

may have. There are indications that the UMAP param-

eter n_neighbors should be chosen with a lower value to
preserve the local structure of the data when working

with document embeddings.

6https://umap-learn.readthedocs.io/en/
latest/benchmarking.html
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5 Conclusions
After systematically studying different setups of vector-

ization, dimension reduction, and clustering together

with a large number of parameter settings, we conclude

that the vectorization component has the most signifi-

cant impact on the performance of the system and that

BERT usually results in a better embedding space for

clustering than Doc2Vec. When reducing the vector

space, vectors should not be reduced to less than 15D.

UMAPmost frequently exhibits better performance and

visualization capabilities than PCA. However, PCA can

be favored if computational efficiency or explainability

is required. The clustering algorithms perform roughly

on par with each other but with a slight advantage to

HDBSCAN over K-Means. The choice of a clustering

algorithm ultimately comes down to knowledge about

the dataset and application domain. Influencing that

choice, and all the parameters of the setup, are mainly

the computation time and the number of clusters that

the data shall be divided into.

The popularity of the practical pipeline for docu-

ment clustering and topic modeling studied in this pa-

per is unlikely to decrease in the near future. With this

in mind, we think that additional work aiming to eval-

uate and improve such systems is required. This study

used labeled data to assess the performance of differ-

ent setups and configurations. While we were able to

draw a number of general rule-of-thumb conclusions

that will hopefully benefit the practitioner, there is no

getting around the fact that, ultimately, a lot of domain

knowledge is required in concrete practical scenarios.

The use of automatic measurements, as done in this

study, can be one way of coming up with reasonable

settings. However, we believe that such methods have

intrinsic limitations in contexts whose end users are

humans, e.g., consumers of news articles or readers of

online advertisements. In such cases, we believe it to

be necessary to complement automatic assessments of

the quality of clusterings or topic models by systematic

methods based on human judgment. How this can be

done in a qualified manner with reasonable budgets ap-

pears to be an open question that deserves the focus of

future research.
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