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Abstract

We present the Charles University system for
the MRL 2023 Shared Task on Multi-lingual
Multi-task Information Retrieval. The goal
of the shared task was to develop systems
for named entity recognition and question an-
swering in several under-represented languages.
Our solutions to both subtasks rely on the
translate-test approach. We first translate the
unlabeled examples into English using a mul-
tilingual machine translation model. Then, we
run inference on the translated data using a
strong task-specific model. Finally, we project
the labeled data back into the original language.
To keep the inferred tags on the correct posi-
tions in the original language, we propose a
method based on scoring the candidate posi-
tions using a label-sensitive translation model.
In both settings, we experiment with finetuning
the classification models on the translated data.
However, due to a domain mismatch between
the development data and the shared task vali-
dation and test sets, the finetuned models could
not outperform our baselines.

1 Introduction

Pre-trained language models reach state-of-the-art
results in most current natural language processing
(NLP) tasks. Whereas in high-resource languages
such as English, we observe in-context learning ca-
pabilities and emergent abilities (Wei et al., 2022),
in less-resourced languages, the results are more
modest (Lai et al., 2023a), mostly due to the lack of
necessary data needed to train really large models.
Moreover, there is usually not enough task-specific
data available in these languages. This leads to at-
tempts to reuse the (high-resource) language model
capabilities in other (low-resource) languages.

Most of the proposed methods are either based
on transfer learning (Lauscher et al., 2020; Yu and
Joty, 2021; Zheng et al., 2021; Schmidt et al., 2022)
or machine translation (MT), both during training

∗ The author order was determined by a coin toss.

and at test time (e.g. mentioned as a baseline by
Conneau et al., 2020, 2018).

The MRL 2023 Shared Task on Multi-lingual
Multi-task Information Retrieval aims to explore
these methods further, applied to many low-
resource languages. The participants were tasked
to build models for two subtasks: named entity
recognition (NER) and question answering (QA).

The shared task setup is inspired by the
XTREME-UP dataset (Ruder et al., 2023), which
focuses on the most needed tasks for under-
resourced languages: gathering data in a digital
form (speech recognition, optical character recog-
nition, transliteration) and making information in
these languages accessible (NER, QA, retrieval
for QA). This dataset contains a relatively small
amount of data for multiple tasks on low-resource
languages, featuring 88 languages in total, includ-
ing QA datasets for 4 languages and NER datasets
for 20 languages.

The shared task evaluation campaign focused
on Igbo, Indonesian (QA only), Alsatian,1 Turkish,
Uzbek (QA only), and Yoruba. Out of these lan-
guages, only Indonesian is among the XTREME-
UP QA datasets, and only Igbo and Yoruba have
available NER task data in the benchmark. Upon
releasing the validation data close to the end of
the campaign, Azerbaijani was added as a surprise
language for evaluation (with no data for QA or
NER in XTREME-UP).

This setting left the participants with a choice to
either collect external training data for languages
not present in the benchmark (which was implicitly
discouraged by the inclusion of the surprise lan-
guage) or to develop language-agnostic systems.

Even though a lot of research effort is invested
in developing systems that are inherently multi-
lingual, typically based on pre-trained massively
multilingual models (Artetxe and Schwenk, 2019;
Lauscher et al., 2020; Pfeiffer et al., 2020; Xue

1Mistakenly labeled as Swiss German on the task website.
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et al., 2021, inter alia), our submission is based on
the translate-test approach that was recently shown
to perform better than the community previously
thought (Artetxe et al., 2023). We rely on the trans-
lation quality of a multi-lingual machine transla-
tion (MT) system, combined with the strong perfor-
mance of pre-trained LLMs in English. The main
ideas that are common to our approaches to both
subtasks are described in Section 2. The particular-
ities of our models which are specific to the NER
and QA subtasks, are presented in Sections 3 and
4, respectively, including our results on those tasks.

Overall, we find that the translate-test approach
can be useful in a multilingual setting. Our results
do not outperform supervised, language-specific
models, but are considerably better than zero-shot
approaches.

To maximize reproducibility, we built our sys-
tems using an automated end-to-end development
pipeline implemented in Snakemake (Köster and
Rahmann, 2012); we release the code online.2

2 Main Ideas

In both tasks, we employ the translate-test ap-
proach, which can be summarized in the following
three steps: First, we translate unlabeled examples
from the task language into English using a multi-
lingual MT model. Second, we use a pre-trained
LLM to perform the task which assigns the labels
to the example. Third, we use a label-aware trans-
lation model to project the inferred labels back to
the target language.

Translation into English. In the first step, we
translate the unlabeled data into English. In both
subtasks, we use the NLLB-3.3B3 multilingual MT
model (Costa-jussà et al., 2022). We discuss the
task-specific data processing details further in Sec-
tions 3 and 4.

Task-specific models. In each subtask, we apply
a RoBERTa-large model, which has been finetuned
on the task (Liu et al., 2019). This predicts labels
for the English data. For NER, these are BIO-
encoded labels, marking the span and type of each
named entity in the example. Specifically, the out-
put is a sequence of labels of the same length as
the input sentence. For QA, the labels mark a span

2https://github.com/ufal/
mrl2023-multilingual-ir-shared-task

3https://huggingface.co/facebook/nllb-200-3.
3B-easyproject

in the context representing the answer. This is en-
coded using two numbers, which denote character
offsets in the detokenized version of the context
paragraph.

Translation into the target language. The
translate-test approach is less challenging when
the labels are language-independent, which is also
the case of both subtasks. However, span label-
ing tasks (such as NER and QA) require careful
handling of the projection of the spans, i.e., we
need to find the corresponding spans in the original
language.

Our systems adopt the label projection method
for cross-lingual transfer, originally meant for the
translate-train approach (Chen et al., 2023). The
authors of the paper finetune the NLLB model4 to
translate texts containing inserted tags so that the
tags generated in the translation mark equivalent
parts of the source sentence. In contrast to the
original use-case of generating the whole target
sentence with tags, we already know the target
sentence in the shared task scenario. Therefore, we
are only interested in the placement of the tags.

To find the best possible placement of the tags,
we propose to use the aforementioned finetuned
model as a scorer. We place the tags at all possi-
ble positions (subject to minimum/maximum span
length constraints) and select the highest-scoring
candidate. We then either reconstruct the label
sequence (in the case of NER) or extract the appro-
priate passage from the context (for QA).

3 Named Entity Recognition

The goal of the NER subtask was to classify words
and phrases into one of four categories: person
(PER), organization (ORG), location (LOC), and
date (DAT). Since most state-of-the-art NER classi-
fiers (including the one we used) use a richer set of
labels, we apply rule-based mapping to reduce the
label set to the four categories: geopolitical entities
(GPE) and facilities (FAC) are replaced with LOC,
time with DAT.

The XTREME-UP benchmark contains two
NER datasets, MasakhaNER (Adelani et al., 2021)
and MasakhaNER 2 (Adelani et al., 2022), both
using texts from local news stories and covering 10
and 20 African languages respectively.

The scheme of the translate-test pipeline for this
task is shown in Figure 1.

4https://huggingface.co/ychenNLP/nllb-200-3.
3B-easyproject
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Figure 1: A scheme of the NER translate-test pipeline.

English NER models. For experiments with En-
glish NER, we use the tNER toolkit (Ushio and
Camacho-Collados, 2021), which provides several
models for this task. We selected two RoBERTa-
based models for experiments, finetuned either
on Ontonotes5 (Hovy et al., 2006) or on the
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003) dataset. We found that using the model built
with Ontonotes55 leads to better results than the
one finetuned on the CoNLL data.6 Ontonotes5 con-
tains news stories, television and radio transcripts,
and web pages. The CoNLL 2003 data is interna-
tional news from 1996–1997. This means there
is a domain mismatch between the most available
named entity recognizers and the MasakhaNER
datasets.

Finetuning. To overcome the domain mis-
match, we finetuned the tNER models using
the MasakhaNER data. We translated the
MasakhaNER training data into English and per-
formed the span projection the same way as at
inference time. The finetuning step serves not only
as domain adaptation to news stories from the non-
English speaking world but also as an adaptation
to texts which have been automatically translated
from low-resource languages.

Results. Table 1 presents the results on the
MasakhaNER 1 dataset. Our translate-test ap-
proach significantly outperforms zero-shot transfer
from English using the XLM-R (Conneau et al.,
2020) and XLM-V (Liang et al., 2023) models;
however, there is still a large performance gap be-
tween the translate-test approach and supervised
in-language training.

The MasakhaNER 2 results are shown in Table 2.
Similarly to MasakhaNER 1, our results are strictly
worse than supervised training. The second line
of the table shows the results of a model trained
on MasakhaNER 1 but tested on MasakhaNER 2,
which contains ten more languages than the first

5https://huggingface.co/tner/
roberta-large-ontonotes5

6https://huggingface.co/tner/
roberta-large-conll2003

dataset. The results on these additional languages
(shown in boxes) mark zero-shot transfer between
African languages. Our translate-test approach via
English is better than zero-shot using African lan-
guages for 5 of the 10 languages.

When compared to related work, our results (av-
erage score 61.3%) without finetuning outperform
transfer from English using mDeBERTav3 (He
et al., 2023) (average score 55.5%). However, they
are worse when compared to the translate-train re-
sults reported by Chen et al. (2023) (average score
63.4%) that used additional parallel data with pro-
jected labels for training.

On both MasakhaNER benchmarks, the
Ontonotes5 model is slightly better than CoNLL
2003. Finetuning (which involves training data
of the respective datasets) leads to consistent
improvements. On MasakhaNER 2, the finetuned
model outperforms Chen et al. (2023); however,
the training data setups are not easily comparable.

The results on the shared task validation data are
in Table 3. Because of the domain mismatch (the
shared task validation data are not local news but
rather Wikipedia articles), the original Ontonotes5
model performs better. Based on this observation,
we decided to use the pipeline using the original
Ontonotes5 model without finetuning. We omit
Yoruba from calculating the average score because
most entities are left without annotation in the data.

4 Question Answering

The goal of this task is to find an answer to a given
question within a given context. In the genera-
tive version of this task, the answer may not be
taken from the context directly. Figure 2 shows the
question-answering processing pipeline we use in
our experiments.

Data Preprocessing. The XTREME-UP datasets
for QA consist of three fields: The question, the
context, and the answer. Since the context might be
several sentences long, we apply sentence splitting
using wtpsplit (Minixhofer et al., 2023). Since
the toolkit does not support Alsatian or Swahili,
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amh hau ibo kin lug luo pcm swa wol yor AVG

Best baseline (supervised) 78.0 91.5 87.7 77.8 84.7 75.3 90.0 89.5 86.3 83.7 84.4
XLM-R (zero-shot) 25.1 43.5 11.6 9.4 9.5 8.4 36.8 48.9 5.3 10.0 20.9
XLM-V (zero-shot) 20.6 35.9 45.9 25.0 48.7 10.4 38.2 44.0 16.7 35.8 32.1

Spacy 59.2 58.3 57.7 48.5 52.6 45.8 9.0 60.0 48.1 47.2 48.6
tNER: ConLL2003 57.3 66.7 72.8 57.0 69.4 49.7 65.8 69.4 53.7 59.3 62.1
tNER: Ontonotes5 60.8 62.8 73.3 60.2 69.9 52.5 74.2 70.1 51.4 57.5 63.3
+ finetuning 61.8 70.0 76.4 65.4 70.2 57.5 77.9 74.5 58.2 59.6 67.2

Table 1: F1 scores on the MasakhaNER 1 dataset.

bam bbj ewe fon hau ibo kin lug mos nya

Best supervised in paper 82.2 75.2 90.3 82.7 87.4 89.6 87.5 89.6 76.4 92.4
Trained on MasakhaNER 1 50.9 49.8 76.2 57.1 88.7 90.1 87.6 90.0 75.0 80.4

Spacy 38.1 16.8 57.0 39.9 48.1 52.0 55.3 65.7 31.5 53.0
tNER: ConLL2003 49.0 21.9 67.5 51.7 66.3 64.9 60.6 74.8 42.5 66.0
tNER: Ontonotes5 46.8 20.5 67.3 48.8 63.6 63.6 64.6 75.2 39.8 69.0
+ finetuning 60.9 25.9 73.7 53.0 67.0 75.3 65.7 75.2 44.7 72.1

pcm sna swa tsn twi wol xho yor zul AVG

Best supervised in paper 90.1 96.2 92.7 89.4 81.8 86.8 89.9 89.3 90.6 87.1
Trained on MasakhaNER 1 90.2 42.5 93.1 79.4 57.3 87.0 47.4 89.7 64.3 74.0

Spacy 52.5 60.6 67.4 63.4 53.7 46.5 47.7 42.3 56.2 49.9
tNER: ConLL2003 67.7 69.7 70.8 74.8 67.6 61.9 67.0 52.9 66.0 61.2
tNER: Ontonotes5 72.8 72.4 72.7 73.1 62.0 57.7 67.9 55.6 70.3 61.3
+ finetuning 79.2 81.7 75.1 76.2 68.4 65.6 75.8 60.5 70.4 66.7

Table 2: F1 scores on the MasakhaNER 2 dataset. The numbers in boxes denote zero-shot transfer between African
languages (i.e., languages that are in MasakhaNER 2 but not in MasakhaNER 1). Bold numbers are results where
our approach is better than the zero-shot transfer between African languages.

Question and

Context in the
source

language

MT into
English

Sentence split MT into
English

No-answer
classifier

QA in English
Project the

answer span
back

Merge

Figure 2: A scheme of the QA translate-test pipeline.
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als aze tur yor AVG

CoNLL 2003 38.4 54.6 48.0 4.4 47.0
Ontonotes5 40.3 62.8 54.7 3.1 52.4
+ finetuned 40.9 62.3 51.3 5.9 51.7

Table 3: Results on the shared task validation data. The
average does not include Yoruba.

we use the English variant instead. After sentence
splitting, we translate everything into English using
the NLLB model. Since NLLB does not support
Alsatian, we set the source language to German.

Answering Questions. For the extractive ques-
tion answering task, we use a RoBERTa-based
model7 finetuned for question answering to mark
the answer spans in the English context. Once the
spans are found, we insert tags into the English
sentence. To find the right spans in the original
language, we use the tag-preserving NLLB model
as a scorer and select the highest-scoring span ac-
cording to the model.

No Answer Classification. Since there are exam-
ples with no answer in XTREME-UP, we train a
classifier to detect such cases. We again use the QA-
tuned RoBERTa, which we finetune on 3 epochs of
the translated XTREME-UP data. We set the learn-
ing rate to 10−5, weight decay to 0.01, and keep the
default values of the rest of the hyper-parameters.
The classifier achieves 93% accuracy on the de-
velopment set. However, because the shared task
validation set contains only a very small amount of
examples with no answer, we decided not to use
this classifier in our submissions.

In-domain Finetuning. We also implemented
in-domain finetuning of the QA RoBERTa model
on the XTREME-UP dataset translated into En-
glish. Because the answers are represented as spans
within the context, we use the same technique to
project the spans onto the English translation of the
context as we use in span projecting to the original
language. Performing grid search and measuring
model performance on the development set, we
found a learning rate of 5 × 10−6, gradient norm
of 1, warmup ratio of 0.5, and weight decay of 0.1
are the most suitable hyper-parameters.

Using Generative Models. We noticed that the
shared task validation data did not actually con-
tain examples of extractive question answering.

7https://huggingface.co/deepset/
roberta-large-squad2

Instead, the answers were likely written by a hu-
man annotator. Therefore, we decided also to
submit a contrastive experiment using a gener-
ative model, namely Llama 2 (Touvron et al.,
2023).8 For the generation, we use the prompt
"Context: {context} Question: {question}
Short answer:". We apply rule-based post-
processing to remove potential continuations gen-
erated after the answer. Details can be found in the
corresponding Snakefile in the code repository.

Results. Table 4 shows the results of the shared
task validation set. Since there is a considerable do-
main mismatch between the XTREME-UP dataset
and the shared task validation and test sets, we
see that the in-domain finetuning does not improve
the performance – we, therefore, use the baseline
systems as our primary submission. Using the gen-
erative model, however, achieves a substantial im-
provement. Because the task was originally aimed
at extractive QA, we decided to submit the genera-
tive model as a contrastive experiment.

5 Conclusions and Discussion

The research community long overlooked the
translate-test approach until recently, when Artetxe
et al. (2023) showed that it might outperform both
translate-train and cross-lingual transfer with suffi-
ciently strong machine translation systems.

With the increasing number of attempts to use
large generative language models in cross-lingual
setups, we speculate that the translate-test approach
will become an important baseline that might not
be easy to cross. Methods that work well with
multilingual encoders enforce alignment of the in-
termediate representation (Wu and Dredze, 2020;
Hämmerl et al., 2022; Pfeiffer et al., 2022, inter
alia). However, in generative setups, this would
lead to undesirable language mixing (Li and Mur-
ray, 2023). Generative models are also known not
to be consistent across languages (Lai et al., 2023b;
Wang et al., 2023). Translate-test does not suffer
from either of these disadvantages.

We successfully tested the translate-test method
in the shared task setup involving span-labeling
tasks. We translated the input into English, per-
formed the task using state-of-the-art English mod-
els, and projected the results back to the original
language. The main technical challenge is that af-
ter labeling the spans in English, we need to find

8https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf
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als aze ind tur uzn yor AVG

Roberta-large 8.34 17.87 30.36 14.84 23.13 18.56 18.85
Finetuned 7.88 15.83 30.94 12.64 18.60 19.65 17.59

Llama 2 17.43 31.96 34.61 24.51 30.81 19.80 26.52

Table 4: Question answering results on the shared task validation data (chrF).

the corresponding span in the original text. For
that purpose, we used an MT model specifically
finetuned to preserve tags encoded as brackets. Fur-
thermore, we finetuned the task-specific models on
XTREME-UP data automatically translated into
English.

Although the shared task claimed to be based
on the XTREME-UP benchmark, the actual shared
task data have many different characteristics. In-
stead of local news outlets, the NER data used
Wikipedia text, often on generic topics rather than
local ones. The QA validation and test data were
abstractive, not extractive. Because of that, our
finetuned models performed worse than the orig-
inal ones. Also, generative QA using LlaMA 2
outperformed our original extractive system.

The final results show that building a translate-
test pipeline is a viable approach to both cross-
lingual NER and QA.

Limitations

Both validation and test datasets from the shared
task are considerably small, especially for QA,
where they contain only around 100 examples per
language. This might lead to an unreliable compar-
ison between the submitted systems.

The paper does not contain experimental results
that would sufficiently back stronger claims about
translate-test approaches. We made decisions that
appeared to lead to a good performance in the con-
text of the shared task. However, the paper misses
ablations that would reliably show that the span pro-
jection method is the best. More importantly, this
paper does not compare our results with a strong
system based on cross-lingual transfer.

None of the system authors speak the languages
in the shared task, and neither is particularly fa-
miliar with the culture of the respective language
communities. The authors did not check the sys-
tem outputs for harmful or otherwise inappropriate
content.
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