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Abstract

This paper presents Huawei Translation Ser-
vice Center (HW-TSC)’s submission on the
IWSLT 2023 formality control task, which pro-
vides two training scenarios: supervised and
zero-shot, each containing two language pairs,
and sets constrained and unconstrained condi-
tions. We train the formality control models
for these four language pairs under these two
conditions respectively, and submit the corre-
sponding translation results. Our efforts are di-
vided into two fronts: enhancing general trans-
lation quality and improving formality control
capability. According to the different require-
ments of the formality control task, we use a
multi-stage pre-training method to train a bilin-
gual or multilingual neural machine translation
(NMT) model as the basic model, which can im-
prove the general translation quality of the base
model to a relatively high level. Then, under
the premise of affecting the general translation
quality of the basic model as little as possi-
ble, we adopt domain adaptation and reranking-
based transductive learning methods to improve
the formality control capability of the model.

1 Introduction

Machine translation (MT) (Lopez, 2008; Vaswani
et al., 2017) models typically return one single
translation for each input sentence. This means
that when the input sentence is ambiguous, the MT
model must choose a translation from among var-
ious valid options, without regard to the intended
use case or target audience. Therefore, there is a
need to control certain attributes (Schioppa et al.,
2021) of the text generated in a target language
such as politeness (Sennrich et al., 2016a; Feely
et al., 2019) or formality (Niu et al., 2017, 2018;
Viswanathan et al., 2020).

The lack of gold translation with alternate for-
mality for supervised training and evaluation has
lead researchers to rely on synthetic supervision
training and manual evaluation in past work (Niu

and Carpuat, 2020). Fortunately, the IWSLT for-
mality control task now provides a new benchmark1

(Nădejde et al., 2022; Agarwal et al., 2023) by
contributing high-quality training datasets and test
datasets for multiple language pairs.

This paper presents HW-TSC’s submission on
the IWSLT 2023 formality control task. How for-
mality distinctions are expressed grammatically
and lexically can vary widely by language. Thus,
we participate in the formality control task of all
these four language pairs to investigate a general
formality control method that can be applied to
different language pair. In addition, we also inves-
tigate the difference in formality control between
constrained and unconstrained conditions by intro-
ducing the mBART model (Liu et al., 2020) under
unconstrained condition.

2 Data

2.1 Pre-training Data
We use the CCMatrix2 and OpenSubtitles3 bilin-
gual data given by the organizers to train a NMT
model from scratch or fine-tune the mBART model
as the general basic model. The bilingual data size
of each language pair is shown in Table 1:

Language pair CCMatrix OpenSubtitles
EN-KO 19.4M 1.4M
EN-VI 50.1M 3.5M
EN-PT 173.7M 33.2M
EN-RU 139.9M 25.9M

Table 1: The bilingual data size of each language pair.

In order to achieve a better training effect, we
also use some data pre-processing methods to clean
bilingual data, such as: remove duplicate data, use

1https://github.com/amazon-science/
contrastive-controlled-mt

2https://opus.nlpl.eu/CCMatrix.php
3https://opus.nlpl.eu/

OpenSubtitles-v2018.php
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Moses4 to normalize punctuation, filter extremely
long sentences, use langid5 (Lui and Baldwin, 2011,
2012) to filter sentences that do not meet the lan-
guage requirements, use fast-align6 (Dyer et al.,
2013) to filter unaligned sentence pairs.

2.2 Formality-annotated Data
The formality-annotated data is provided by the
organizers, and the data size of each language pair
is shown in Table 2:

Setting Language pair Train Test
Supervised EN-KO 400 597
Supervised EN-VI 400 598
Zero-shot EN-PT 0 599
Zero-shot EN-RU 0 600

Table 2: The formality-annotated data size of each lan-
guage pair.

For supervised language pairs, we split the
formality-annotated train data into a train set and
a dev set with a ratio of 3:1, and use the formality-
annotated train set and a small amount of bilingual
data for formality control training, while for zero-
shot language pairs, we use formality-annotated
train set from the other two supervised language
pairs for formality control training.

3 Model

3.1 Constrained Model
Transformer (Vaswani et al., 2017) is the state-of-
the-art model in recent machine translation evalua-
tions. There are two parts of research to improve
this kind: the first part uses wide networks (eg:
Transformer-Big (Vaswani et al., 2017)), and the
other part uses deeper language representations (eg:
Deep Transformer (Wang et al., 2019; Wu et al.,
2022; Wei et al., 2022)). Under the constrained
conditions, we combine these two improvements,
adopt the Deep Transformer-Big model structure,
and train a one-to-many multilingual NMT model
(Johnson et al., 2017; Zhang et al., 2020) from
scratch using bilingual data of four language pairs
provided by the organizers. The main structure
of Deep Transformer-Big is that it features pre-
layer-normalization and 25-layer encoder, 6-layer

4https://github.com/moses-smt/
mosesdecoder

5https://github.com/saffsd/langid.py
6https://github.com/clab/fast_align

decoder, 16-head self-attention, 1024-dimensional
embedding and 4096-dimensional FFN embedding.

3.2 Unconstrained Model
Recently, multilingual denoising pre-training
method (Liu et al., 2020; Tang et al., 2021) pro-
duces significant performance gains across a wide
variety of machine translation tasks. As the ear-
liest sequence-to-sequence model using multilin-
gual denoising pre-training method, mBART (Liu
et al., 2020) has also achieved good results in var-
ious machine translation-related tasks. Under un-
constrained conditions, we use the mBART50 1n
model7 as the initial model of the unconstrained
formality control task. The mBART50 1n model
adopts Transformer structure, which features 12-
layer encoder, 12-layer decoder, 16-head self-
attention, 1024-dimensional embedding and 4096-
dimensional FFN embedding, and an additional
layer-normalization layer (Xu et al., 2019) on top
of both the encoder and decoder.

4 Method

In our implementation, we first use a multi-stage
pre-training method to train a general NMT model
with relatively high translation quality. Then,
we use domain adaptation method to fine-tune
the NMT model so that the model can have ba-
sic formality control capability. Finally, we use
the reranking-based transductive learning (RTL)
method to further improve the formality control
capability of the model.

4.1 Multi-stage Pre-training
There are four different types of formality control
tasks, which are constrained supervised task, con-
strained zero-shot task, unconstrained supervised
task, and unconstrained zero-shot task. For these
four different tasks, we formulate different pre-
training strategies and collectively refer to these
strategies as multi-stage pre-training method.

Under the constrained condition, we adopt the
Deep Transformer-Big model structure and use
bilingual data of all four language pairs to train
a one-to-many multilingual NMT model from
scratch, which is used as the basic model for con-
strained zero-shot task. For constrained supervised
task, we use the bilingual data of this task to further

7https://dl.fbaipublicfiles.com/
fairseq/models/mbart50/mbart50.ft.1n.
tar.gz
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pre-train the multilingual NMT model to obtain a
bilingual NMT model as the basic model.

While under the unconstrained condition, we fur-
ther pre-train the mBART50 1n model using bilin-
gual data from all these four language pairs as the
basic model for unconstrained zero-shot task. For
unconstrained supervised task, we use the bilingual
data of this task to further pre-train the pre-trained
model, and use the final pre-trained bilingual model
as the basic model.

4.2 Domain Adaptation for Formality Control
With the pre-trained basic model, we use domain
adaptation method (Chu et al., 2017) to achieve ba-
sic formality control. First, we treat formal formal-
ity and informal formality as two special domains,
and control the formality of the model’s translation
results using a tagging method (Chu et al., 2017;
Nădejde et al., 2022), which attaches a formality-
indicating tag to the source input. Then, in order to
affect the general translation quality as little as pos-
sible, we use a mix fine-tuning method (Chu et al.,
2017; Nădejde et al., 2022). Our specific implemen-
tation is to upsample the formality-annotated train
set by 5 times, and mix it with the same amount
of randomly sampled general bilingual data to fine-
tune the pre-trained basic model.

As mentioned in Section 2.2, for the zero-shot
task, due to the lack of formality-annotated data,
we have to use the formality-annotated data of the
two other supervised language pair, which is why
we set the basic model of zero-shot task to a mul-
tilingual NMT model. After using domain adap-
tation method, the cross-lingual transfer learning
capability of multilingual model can help zero-shot
language pair achieve basic formality control.

4.3 Reranking-based Transductive Learning
After using domain adaptation method, we can en-
able the model to have the basic formality control
capability. Inspired by the idea of transductive
learning (Shi et al., 2018; Lee et al., 2021), we pro-
pose a RTL method, which can further improve the
formality control capability of NMT model. Our
method is mainly divided into two steps:

In the first step, we adopt beam search based de-
coding method (Sennrich et al., 2016b) for the for-
mality control model, and then select the final trans-
lation result that meets the specified formality re-
quirements from the top100 decoding results based
on reranking idea (Dou et al., 2019). For supervised
task, we use a reference-free formality classifier

and the formality phrases from formality-annotated
training data for reranking. The implementation de-
tails are shown in Algorithm 1. For zero-shot task,
due to the lack of formality-annotated training data,
we just use a reference-free formality classifier for
reranking. Among them, the formality classifier
under the constrained condition comes from self-
training (Axelrod et al., 2011), while the formality
classifier under the unconstrained condition comes
from the organizer8 (Briakou et al., 2021).

Algorithm 1: Reranking by reference-free
formality classifier and formality phrases

Input: source sentence x, reference-free
formality classifier C, formality
control model M , formal and
informal formality phrases
WF = {wF

j }
|WF |
j=1 , WI = {wI

j }
|WI |
j=1

Output: the formality translation yF and yI
1 translate x by M , the top 100 formality

translations are respectively defined as:
DF = {yFi }100i=1, DI = {yIi }100i=1

2 yF = yF0
3 for yFi in DF do
4 Fflag = False
5 for wF

j in WF do
6 if wF

j in yFi then
7 Fflag = True
8 break
9 end

10 end
11 calculate the formality by C: C(yFi )
12 if Fflag and C(yFi )=="formal" then
13 yF = yFi
14 break
15 end
16 end
17 pick yI from DI in a similar way to yF
18 return yF , yI

In the second step, we add the source text of test
set and the reranked formality translation results
to the training data used for domain adaptation,
and then use the adjusted training data to further
fine-tune the formality control model.

We can also repeat the previous two steps until
the formality control capability of the model on test
set is no longer improved. We refer to this iterative

8https://github.com/amazon-science/
contrastive-controlled-mt/releases/tag/
classifier-v1.0.0
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EN-VI
To Formal To Informal Flores

M-Acc C-F BLEU COMET M-Acc C-F BLEU COMET BLEU COMET
AWS-baseline 99.40% 99.16% 43.2 0.6189 98.10% 98.49% 41.5 0.6021 - -
Multilingual pre-training 10.86% 1.67% 25.6 0.2023 89.14% 98.33% 30.0 0.2873 42.3 0.6653
+ Bilingual pre-training 8.80% 3.01% 24.8 0.1782 91.20% 96.99% 28.9 0.2630 42.4 0.6706
+ Domain adaptation 98.17% 97.83% 49.1 0.7248 99.37% 99.83% 48.0 0.6952 41.3 0.6576
+ RTL 99.59% 100.00% 49.5 0.7296 99.38% 100.00% 48.1 0.7034 41.7 0.6614
+ Iterative RTL 100.00% 99.83% 51.3 0.7522 100.00% 100.00% 49.8 0.7209 41.8 0.6730
UMD-baseline 96.00% 99.67% 26.7 0.3629 96.00% 98.16% 25.3 0.3452 - -
mBART50 1n 3.82% 1.51% 26.7 0.3516 96.18% 98.49% 31.0 0.4426 34.7 0.6040
+ Multilingual pre-training 9.44% 1.84% 25.4 0.2089 90.56% 98.16% 29.9 0.2975 42.2 0.6673
+ Bilingual pre-training 12.20% 2.51% 25.2 0.1579 87.80% 97.49% 29.4 0.2445 42.4 0.6698
+ Domain adaptation 99.02% 99.50% 47.8 0.7181 99.36% 100.00% 47.4 0.6930 43.2 0.6916
+ RTL 99.22% 100.00% 47.7 0.7190 99.16% 100.00% 47.8 0.7053 43.4 0.7033
+ Iterative RTL 100.00% 100.00% 48.2 0.7214 100.00% 100.00% 48.3 0.7102 43.4 0.6983

Table 3: The overall translation quality and formality control accuracy of EN-VI models.

EN-KO
To Formal To Informal Flores

M-Acc C-F BLEU COMET M-Acc C-F BLEU COMET BLEU COMET
AWS-baseline 28.50% 54.61% 11.1 0.5044 80.40% 57.62% 11.1 0.5125 - -
Multilingual pre-training 100.00% 69.85% 5.0 0.2408 0.00% 30.15% 4.5 0.2288 12.9 0.6497
+ Bilingual pre-training 100.00% 65.33% 5.5 0.2189 0.00% 34.67% 4.7 0.2105 13.8 0.6610
+ Domain adaptation 100.00% 97.49% 24.5 0.7234 100.00% 96.31% 25.1 0.7194 12.6 0.6528
+ RTL 100.00% 97.65% 25.8 0.7337 100.00% 98.51% 26.5 0.7337 13.0 0.6828
+ Iterative RTL 100.00% 99.83% 25.0 0.7434 100.00% 99.66% 27.0 0.7495 13.2 0.6729
UMD-baseline 78.30% 98.60% 4.9 0.2110 97.60% 99.50% 4.9 0.1697 - -
mBART50 1n 100.00% 98.49% 4.1 0.4468 0.00% 1.51% 3.2 0.3670 9.5 0.5854
+ Multilingual pre-training 100.00% 65.66% 5.0 0.2501 0.00% 34.34% 4.3 0.2338 13.3 0.6605
+ Bilingual pre-training 100.00% 64.66% 5.2 0.2240 0.00% 35.34% 4.6 0.2114 14.2 0.6734
+ Domain adaptation 100.00% 99.33% 24.9 0.7297 100.00% 99.66% 25.5 0.7379 12.8 0.6666
+ RTL 100.00% 99.66% 25.5 0.7393 100.00% 100.00% 26.2 0.7340 13.8 0.6845
+ Iterative RTL 100.00% 100.00% 24.2 0.7254 100.00% 100.00% 26.7 0.7311 14.0 0.6882

Table 4: The overall translation quality and formality control accuracy of EN-KO models.

process as iterative RTL method.

5 Experiments

5.1 Training Details
We use the Pytorch-based Fairseq framework9 (Ott
et al., 2019) to pre-train or fine-tune NMT model,
and use Adam optimizer (Kingma and Ba, 2014)
with parameters β1=0.9 and β2=0.98. During the
multi-stage pre-training phase, each model uses 8
GPUs for training, warmup steps is 4000, batch size
is 4096, learning rate is 5× 10−4, label smoothing
rate (Szegedy et al., 2016) is 0.1, and dropout is
0.1. In the domain adaptation and RTL phases, each
model only uses 1 GPU for training without warm-
up, batch size is 1024, learning rate is 3 × 10−5,
label smoothing rate is 0.1, and dropout is 0.3.

5.2 Evaluation Metrics
We evaluate the translation results of formality con-
trol model from the following two dimensions:

• We use SacreBLEU v2.0.0 10 (Papineni et al.,
9https://github.com/facebookresearch/

fairseq
10https://github.com/mjpost/sacrebleu

2002; Post, 2018) and COMET (eamt22-
cometinho-da)11 (Rei et al., 2022) to evaluate
the overall translation quality of formality con-
trol model on the official formality test sets
and FLORES-200 devtest sets12 (Goyal et al.,
2022).

• We also use the reference-based corpus-level
automatic metric Matched-Accuracy (M-Acc)
and the reference-free automatic metric (C-
F) that uses a multilingual formality classifier
provided by the organizer to evaluate the for-
mality control accuracy of the model on the
official formality test sets, respectively.

5.3 Evaluation Results
Based on the above evaluation metrics, we eval-
uate the formality control models trained at dif-
ferent phases for each language pair under con-
strained and unconstrained conditions, and com-
pare with constrained baseline (AWS-baseline)
(Nădejde et al., 2022) and unconstrained baseline

11https://github.com/Unbabel/COMET
12https://github.com/facebookresearch/

flores/tree/main/flores200
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EN-RU
To Formal To Informal Flores

M-Acc C-F BLEU COMET M-Acc C-F BLEU COMET BLEU COMET
Multilingual pre-training 99.27% 67.83% 29.7 0.4265 0.73% 32.17% 23.7 0.3869 32.2 0.7790
+ Domain adaptation 99.71% 90.67% 33.8 0.5977 85.49% 70.67% 31.2 0.5333 27.8 0.7040
+ RTL 99.74% 100.00% 34.5 0.6155 97.14% 100.00% 33.4 0.6019 29.4 0.7261
+ Iterative RTL 100.00% 100.00% 36.5 0.6472 100.00% 100.00% 35.6 0.6442 29.0 0.7153
UMD-baseline 96.20% 92.00% 22.0 0.3492 84.10% 85.17% 21.6 0.3475 - -
mBART50 1n 100.00% 91.67% 25.6 0.2916 0.00% 8.33% 19.3 0.2351 25.0 0.5950
+ Multilingual pre-training 98.15% 67.00% 28.9 0.4263 1.85% 33.00% 23.1 0.3904 32.1 0.7638
+ Domain adaptation 99.49% 98.17% 31.8 0.5336 99.73% 99.83% 30.8 0.5214 30.7 0.7386
+ RTL 98.76% 100.00% 32.3 0.5575 99.73% 99.83% 31.6 0.5363 30.9 0.7417
+ Iterative RTL 100.00% 100.00% 33.7 0.5804 100.00% 99.83% 32.4 0.5558 31.0 0.7521

Table 5: The overall translation quality and formality control accuracy of EN-RU models.

EN-PT
To Formal To Informal Flores

M-Acc C-F BLEU COMET M-Acc C-F BLEU COMET BLEU COMET
Multilingual pre-training 84.23% 77.46% 34.5 0.4750 15.77% 22.54% 31.4 0.4488 51.3 0.9047
+ Domain adaptation 100.00% 99.67% 43.0 0.6689 96.68% 96.49% 43.7 0.6689 45.0 0.7995
+ RTL 99.47% 100.00% 43.1 0.6769 92.76% 100.00% 44.1 0.6949 45.3 0.7994
+ Iterative RTL 100.00% 100.00% 47.4 0.7337 100.00% 100.00% 47.9 0.7442 44.9 0.7926
UMD-baseline 96.30% 97.66% 27.3 0.4477 93.20% 90.82% 30.9 0.4161 - -
mBART50 1n 86.81% 91.32% 32.2 0.5011 13.19% 8.68% 31.5 0.4955 33.8 0.6767
+ Multilingual pre-training 82.19% 77.96% 34.1 0.4872 17.81% 22.04% 31.4 0.4598 49.8 0.8753
+ Domain adaptation 100.00% 99.83% 39.9 0.7070 98.29% 90.32% 45.1 0.7170 46.7 0.8302
+ RTL 100.00% 100.00% 39.9 0.7165 94.97% 99.33% 45.0 0.7341 48.0 0.8457
+ Iterative RTL 100.00% 100.00% 45.4 0.7737 100.00% 99.66% 49.1 0.7845 48.1 0.8457

Table 6: The overall translation quality and formality control accuracy of EN-PT models.

(UMD-baseline) (Lin et al., 2022) provided by the
organizers.

5.3.1 EN-VI & EN-KO
The formality control task for EN-VI and EN-KO
language pairs is supervised, and we adopt the
same training methods on these two language pairs.
Table 3 and Table 4 are the evaluation results of
the models trained at different phases for these two
language pairs. From the experimental results, the
multi-stage pre-training method can improve the
translation quality of the model on the FLORES-
200 devtest sets, while domain adaptation and RTL
methods are effective in improving formality con-
trol capability of the model. Besides, domain adap-
tation and RTL methods have relatively little im-
pact on the general translation quality of the model
on the FLORES-200 devtest sets. Finally, we sub-
mit the Iterative RTL model as primary system.

5.3.2 EN-RU & EN-PT
The formality control tasks for the EN-RU and EN-
PT language pairs are zero-shot, and we only use
one-stage pre-training on these two tasks. Table 5
and Table 6 are the evaluation results of the models
trained in different phases for these two language
pairs. The experimental results show that domain
adaptation and RTL methods are still effective in
improving the zero-shot formality control capabil-

ity of multilingual model. Finally, we still submit
the Iterative RTL model as primary system.

6 Conclusions

This paper presents HW-TSC’s submission on the
IWSLT 2023 formality control task, in which we
participate in both constrained and unconstrained
tasks for all four language pairs. For the formal-
ity control task, we use a multi-stage pre-training
method to improve the general translation quality
of the basic model. We also adopt domain adap-
tation and RTL methods to improve the model’s
formality control capability. Experimental results
show that these methods we have adopted are ex-
tremely effective, but how to improve general trans-
lation quality more effectively and achieve formal-
ity control with less training resources is still wor-
thy of further research.
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Maria Nădejde, Anna Currey, Benjamin Hsu, Xing
Niu, Marcello Federico, and Georgiana Dinu. 2022.
CoCoA-MT: A dataset and benchmark for Con-
trastive Controlled MT with application to formality.
In Findings of the Association for Computational Lin-
guistics: NAACL 2022, Seattle, USA. Association for
Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Ricardo Rei, Ana C Farinha, José G.C. de Souza, Pe-
dro G. Ramos, André F.T. Martins, Luisa Coheur, and
Alon Lavie. 2022. Searching for COMETINHO: The
little metric that could. In Proceedings of the 23rd
Annual Conference of the European Association for
Machine Translation, pages 61–70, Ghent, Belgium.
European Association for Machine Translation.

Andrea Schioppa, David Vilar, Artem Sokolov, and
Katja Filippova. 2021. Controlling machine transla-
tion for multiple attributes with additive interventions.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6676–6696, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 35–40.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96.

Weiwei Shi, Yihong Gong, Chris Ding, Zhiheng MaXi-
aoyu Tao, and Nanning Zheng. 2018. Transductive

semi-supervised deep learning using min-max fea-
tures. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 299–315.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2021. Multilingual translation from de-
noising pre-training. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3450–3466.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Aditi Viswanathan, Varden Wang, and Antonina
Kononova. 2020. Controlling formality and style
of machine translation output using automl. In Infor-
mation Management and Big Data: 6th International
Conference, SIMBig 2019, Lima, Peru, August 21–23,
2019, Proceedings 6, pages 306–313. Springer.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F Wong, and Lidia S Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822.

Daimeng Wei, Zhiqiang Rao, Zhanglin Wu, Shaojun Li,
Yuanchang Luo, Yuhao Xie, Xiaoyu Chen, Hengchao
Shang, Zongyao Li, Zhengzhe Yu, et al. 2022. Hw-
tsc’s submissions to the wmt 2022 general machine
translation shared task. In Proceedings of the Seventh
Conference on Machine Translation, Online. Associ-
ation for Computational Linguistics.

Zhanglin Wu, Jinlong Yang, Zhiqiang Rao, Zhengzhe
Yu, Daimeng Wei, Xiaoyu Chen, Zongyao Li,
Hengchao Shang, Shaojun Li, Ming Zhu, et al. 2022.
Hwtsc translation systems for the wmt22 biomedical
translation task. In Proceedings of the Seventh Con-
ference on Machine Translation, Online. Association
for Computational Linguistics.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao,
and Junyang Lin. 2019. Understanding and improv-
ing layer normalization. Advances in Neural Infor-
mation Processing Systems, 32.

Biao Zhang, Philip Williams, Ivan Titov, and Rico Sen-
nrich. 2020. Improving massively multilingual neu-
ral machine translation and zero-shot translation. In
2020 Annual Conference of the Association for Com-
putational Linguistics, pages 1628–1639. Associa-
tion for Computational Linguistics (ACL).

186

https://aclanthology.org/C18-1086
https://aclanthology.org/C18-1086
https://aclanthology.org/C18-1086
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://aclanthology.org/2022.eamt-1.9
https://aclanthology.org/2022.eamt-1.9
https://doi.org/10.18653/v1/2021.emnlp-main.535
https://doi.org/10.18653/v1/2021.emnlp-main.535

