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Abstract

While prompt tuning approaches have achieved
competitive performance with high efficiency,
we observe that they invariably employ the
same initialization process, wherein the soft
prompt is either randomly initialized or derived
from an existing embedding vocabulary. In con-
trast to these conventional methods, this study
aims to investigate an alternative way to derive
soft prompt. Our empirical studies show that
the soft prompt typically exhibits a low “in-
trinsic rank” characteristic. With such observa-
tions, we propose decomposed prompt tuning,
a novel approach that utilizes low-rank matri-
ces to initialize the soft prompt. Through the
low-rank reparameterization, our method sig-
nificantly reduces the number of trainable pa-
rameters while maintaining effectiveness. Ex-
perimental results on the SuperGLUE bench-
mark in both high-resource and low-resource
scenarios demonstrate the effectiveness of the
proposed method.1

1 Introduction

Pre-trained language models (Peters et al., 2018;
Radford et al., 2019; Devlin et al., 2019; Liu et al.,
2020; Raffel et al., 2020) have achieved remarkable
performance on various natural language under-
standing and generation tasks. The pretrain-then-
finetune paradigm has been adopted as a common
approach to deal with downstream tasks. How-
ever, such a paradigm is often considered ineffi-
cient, especially in the era of large language mod-
els (LLMs), as it requires tuning a large number of
model parameters and saving a separate model for
each task.

Recently, parameter-efficient fine-tuning (PEFT)
approaches (Houlsby et al., 2019; mahabadi et al.,
2021; Liu et al., 2022b,a; Vu et al., 2022; Asai
et al., 2022; Wang et al., 2022, 2023) have been
proposed to address this challenge. The main idea

1Our code is available at https://github.com/
XYaoooo/DPT.
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Figure 1: Average performance over all the datasets
of SuperGLUE with T5 models. The number of train-
able parameters used are 11.2K, 102K, and 925K with
T5-Large for DPT, vanilla prompt tuning (PT) (Lester
et al., 2021), and Residual PT (Res PT) (Razdaibiedina
et al., 2023), respectively. More details are included in
Section 5.1.

of these methods is to fine-tune only a subset of the
model’s parameters or additionally introduced pa-
rameters while freezing the majority of parameters
of a pre-trained model. These approaches require
saving only the trainable parameters for different
tasks, striking a balance between performance and
efficiency.

The success of PEFT methods is also aligned
with the previous findings that pre-trained models
possess a low “intrinsic rank” (Li et al., 2018; Agha-
janyan et al., 2020). Aghajanyan et al. (2020) em-
pirically showed that employing a low-dimensional
reparameterization is equally effective as full-
model fine-tuning. Hu et al. (2022) further demon-
strated that weight updates during model training
also exhibit a low “intrinsic rank”. By only tuning
the proposed low-rank adaptation module, their ap-
proach achieves high efficiency while maintaining
competitive performance.

Another line of research work focuses on P*-
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tuning (Li and Liang, 2021; Liu et al., 2021; Qin
and Eisner, 2021; Lester et al., 2021). Specifically,
Li and Liang (2021) proposed prefix tuning by
prepending a sequence of virtual tokens to each
transformer layer, and it updates the representa-
tions of these virtual tokens while keeping the pre-
trained model frozen. Prompt tuning (Lester et al.,
2021) further simplified prefix tuning by updating
only a sequence of continuous prompt tokens in the
embedding layer.

Owing to its simplicity, subsequent studies (Ma
et al., 2022; Razdaibiedina et al., 2023) contin-
uously improve the vanilla prompt tuning ap-
proach. Despite the substantial achievements of
these prompt tuning methods, we observe that they
invariably employ the same initialization process,
wherein the soft prompt is either randomly initial-
ized or derived from the existing embedding vocab-
ulary. Different from the previous approaches, this
paper aims to explore an alternative approach to
deriving soft prompt.

Our motivation stems from the observations that
weight updates in the transformer layer during train-
ing have a low “intrinsic rank”, as highlighted
by Hu et al. (2022). This leads us to inquire whether
soft prompt also have a similar low “intrinsic rank”
pattern. To this end, we conduct studies examining
the “intrinsic rank” of soft prompt, and we include
the details of the analysis in Section 2. Based on the
studies, we find that the soft prompt indeed tends to
exhibit a low “intrinsic rank” behavior. Armed with
this insight, we propose decomposed prompt tun-
ing (DPT), a novel approach that employs low-rank
matrices to initialize the soft prompt. Specifically,
we decompose the original soft prompt into the
product of two compact matrices, and we include
the detailed description in Section 3. With this
low-rank reparameterization, DPT significantly re-
duces the number of trainable parameters while
achieving strong performance. A comparison with
previous approaches, depicted in Figure 1, verifies
the efficacy of our method.

Our contribution can be summarized as follows:

• We present an empirical study to show that
the soft prompt exhibits a low “intrinsic rank”
characteristic.

• Motivated by such findings, we propose our
method to initialize the soft prompt with low-
rank matrices. Experimental results on the
SuperGLUE benchmark in both high-resource

and low-resource scenarios demonstrate the
effectiveness of our proposed approach.

• Compared with the vanilla prompt tuning
approach, our method requires significantly
fewer trainable parameters while achieving
strong performance (i.e., 11.2K vs. 102K with
T5-Large (Raffel et al., 2020)).

2 Emergence of “Intrinsic Rank”

To investigate the rank of soft prompt, we design
an analysis based on the vanilla prompt tuning ap-
proach on the sub-tasks within the SuperGLUE
benchmark. Specifically, we re-design the soft
prompt, which facilitates a probe into its rank.

2.1 Prompt Tuning
We employ the vanilla prompt tuning (Lester et al.,
2021) approach to conduct our analysis, as illus-
trated on the left side of Figure 2. By considering
the classification task as a conditional generation
task, prompt tuning models the probability as:

Pr θ; θP (Y |[P ;X]) (1)

where the input is the concatenation of the
prepended prompt P of length c and the original
input X of length n. After the embedding layer,
the representations for the prompt and the original
input are Pemb ∈ Re×c and Xemb ∈ Re×n, respec-
tively, and e is the embedding dimension of the
pre-trained model. Y denotes a sequence of output
tokens, which also serves as the class label for the
input2. θ indicates the frozen parameters of the pre-
trained model, while θP represents the trainable
parameters corresponding to the prompt P .

2.2 Low-Rank Behavior of Soft Prompt
As highlighted earlier, the soft prompt Pemb ∈
Re×c comprises the only tunable parameters dur-
ing training. Typically, such a weight matrix in a
neural network has a full rank both before and after
model training. Therefore, to investigate whether
the prompt matrix Pemb has a low “intrinsic rank”,
we need to reparameterize the soft prompt.

Consider an example matrix M ∈ Rm×n, the
singular value decomposition of the matrix M is
in the form of M = UΣV , where U ∈ Rm×m,
V ∈ Rn×n, and Σ ∈ Rm×n is a diagonal matrix.
Note that the diagonal entries of Σ represent the
singular values of M , and the number of non-zero

2Y can be a single token or a sequence of tokens.
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Figure 2: Left: vanilla prompt tuning, Right: our proposed DPT. The soft prompt Pemb ∈ Re×c (left) can be
decomposed into two matrices, A ∈ Re×b and B ∈ Rb×c. By setting b ≪ min(c, e), the number of trainable
parameters of our DPT (eb+ bc) is much smaller than that of vanilla prompt tuning (ec).

singular values is equal to the rank of M . With the
above decomposition, we can first reparameterize
the soft prompt Pemb ∈ Re×c as:

Pemb = UΣV (2)

Here, the matrices U ∈ Re×e and V ∈ Rc×c are
randomly initialized and set as trainable parame-
ters in this analysis. Σ ∈ Re×c is initialized with
positive values along the diagonal, while the off-
diagonal elements are set as 0. We further impose
constraints on Σ such that only the diagonal en-
tries are trainable while the remaining are frozen.
Intuitively, if the soft prompt Pemb has a low “in-
trinsic rank”, then some of the diagonal entries of
Σ will converge to 0 during training. We provide
an explanation of why we can use the rank of Σ
as an approximation for the rank of Pemb in Ap-
pendix A.1.

However, due to the dense nature of the neural
network, the diagonal entries of Σ can hardly be
updated to exact 0. To resolve this challenge, we
apply a rectified linear unit (ReLU) to the diagonal
matrix Σ:

Pemb = UReLU(Σ)V (3)

Through such a reparameterization of the soft
prompt Pemb, we can count the number of posi-
tive entries in the rectified diagonal matrix Σ post-
training to approximately investigate the rank of the
matrix Pemb. We can infer that if the soft prompt
has a low “intrinsic rank”, more diagonal entries of
Σ ∈ Re×c will be updated to negative values.

We conduct our empirical experiments with the
T5-Base model on the CB dataset (De Marneffe
et al., 2019) of SuperGLUE benchmark, and Fig-
ure 3 shows the results. We observe that the num-
ber of positive diagonal entries decreases while the
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Figure 3: Number of positive and negative diagonal
entries in Σ.

number of negative diagonal entries increases as
training progresses. We interpret these observa-
tions as indicative that the soft prompt has a low
“intrinsic rank”. Note that the soft prompt length
c is set as the commonly used value of 100 in this
analysis, this accounts for the initial count of 100
positive diagonal entries. We also observe similar
behavior on other datasets with models of differ-
ent sizes, with additional details provided in Ap-
pendix A.2.

3 Method

Motivated by the observation of the soft prompt’s
low “intrinsic rank” behavior, as discussed in the
previous section, we propose a parameterization of
the soft prompt that explicitly constrains it to be
of low rank. In this section, we provide the details
of our approach, as illustrated on the right side of
Figure 2.

3.1 Decomposition of Soft Prompt

As described in Section 2.1, the input of the vanilla
prompt tuning approach is the concatenation of the
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prompt P and the input text X . The overall input
to the pre-trained model is then as follows:

{p1, p2, . . . , pc, x1, x2, . . . , xn} (4)

where there are c soft prompt tokens and n text
tokens. The focus of our approach is a more effi-
cient representation of the soft prompt Pemb, which
usually has dimension e× c.

Instead of using a random initialization for the
soft prompt, we decompose it into the product of
two matrices:

Pemb = AB (5)

where A ∈ Re×b and B ∈ Rb×c, as illustrated on
the right side of Figure 2. One of the main ad-
vantages of this representation is that it offers us
the ability to modulate the rank of the soft prompt
Pemb by controlling the size of the intermediary
dimension b, which we term as the “bottleneck”.
Specifically, by setting b to a relatively small value,
the resulting soft prompt Pemb inherently possesses
a low rank. Moreover, this decomposition approach
leads to a reduction in the number of trainable pa-
rameters by compressing the bottleneck. Specifi-
cally, there are ec trainable parameters in the vanilla
prompt tuning approach. With our proposed DPT
approach, the number of trainable parameters is
eb + bc. When setting b ≪ min(c, e), the total
number of trainable parameters can be significantly
reduced. Note that c is usually set to 100 and e is
1024 for T5-Large (Raffel et al., 2020), and we set
b as 10 in our main experiments. A more detailed
analysis of bottleneck b can be found in Section 6.1.

3.2 Training and Inference

We adopt similar training procedures as discussed
in Section 2.1. Our training objective is as follows:

Pr θ; θP (Y |[P ;X]) (6)

where P indicates the prompt with a length c to-
kens, θ denotes the frozen parameters of the pre-
trained model, and θP is the trainable parameter
associated with the prompt P . In our approach,
the representation of the soft prompt Pemb, is de-
rived as the product of two matrices (Eq. 5), A and
B, which are both initialized randomly and serve
as the tunable parameters of our model. θP cor-
responds to the parameters contained in matrices
A and B. After the training is completed, we can
store the product of A and B for inference.

4 Experimental Setup

4.1 Datasets

To assess the effectiveness of our proposed DPT
method, we conduct experiments on eight datasets
from the SuperGLUE benchmark (Wang et al.,
2019) under both high-resource and low-resource
conditions. We follow previous work (Lester et al.,
2021; Vu et al., 2022) to report the performance
of our model on the validation sets due to the re-
stricted access to the test sets of SuperGLUE. We
provide detailed descriptions, evaluation metrics,
and statistics of the SuperGLUE benchmark in Ap-
pendix A.3.

4.2 Settings

We use the encoder-decoder T5 model (Raffel et al.,
2020) as the backbone for our experiments. We em-
ploy three variants of the T5 model: T5-Small, T5-
Base, and T5-Large, which comprise 60M, 220M,
and 770M parameters respectively. We implement
our approach with the HuggingFace Transformers
library (Wolf et al., 2020). Each dataset within the
SuperGLUE benchmark is converted into a text-to-
text format for compatibility with the T5 model.
The model is trained for 100 epochs with an initial
learning rate of 0.3, and AdamW (Loshchilov and
Hutter, 2019) is employed as the optimizer. The
length of the soft prompt c is fixed at 100. The
embedding dimension e is configured as per the
model variant, being set to 512, 768, and 1024
for T5-Small, T5-Base, and T5-Large respectively.
Importantly, we set the bottleneck size b as 10 to
achieve a balance of performance and parameter
efficiency. This bottleneck plays an instrumental
role in inducing low-rank constraints on the em-
bedded soft prompt matrix Pemb. We initialize the
matrices A and B of our prompt parameters with
Gaussian distribution.

4.3 Baselines

To maintain consistency in evaluation metrics and
preprocessing procedures across all datasets, we
reproduce most of the scores to ensure a fair com-
parison. More details about implementation can be
found in Appendix A.4.

Fine-tuning We compare DPT with the conven-
tional fine-tuning approach of the T5 model (Raffel
et al., 2020), where separate copies of the model
must be tuned and stored for different datasets.
Though fine-tuning is not a parameter-efficient ap-
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Model # Trainable WSC WiC BoolQ CB COPA MultiRC ReCoRD RTE
Params. Acc. Acc. Acc. Acc. Acc. F1 F1 Acc.

Avg.

T5-Small
Fine-Tuning 60M 67.94 68.18 77.06 89.28 59.00 66.98 55.64 72.56 69.58
Prompt Tuning (Lester et al., 2021) 51K 63.14 59.29 66.78 74.99 58.33 64.89 52.75 59.92 62.51
Residual PT (Razdaibiedina et al., 2023) 462K 63.14 60.96 73.35 72.02 56.66 65.12 53.08 67.02 63.91
Ours 6K 63.78 64.31 71.74 79.16 58.00 64.89 53.27 70.51 65.70

T5-Base
Fine-Tuning∗ 220M 81.70 69.30 82.30 91.70 60.00 76.90 80.90 84.50 78.41
Prompt Tuning (Lester et al., 2021) 77K 64.74 59.97 62.18 70.23 56.33 72.69 71.84 56.43 64.30
Residual PT (Razdaibiedina et al., 2023) 693K 67.94 63.31 80.00 77.37 56.66 72.11 72.21 81.70 71.41
Ours 9K 67.30 68.49 78.64 78.56 56.66 71.22 72.53 81.94 71.88

T5-Large
Fine-Tuning∗ 770M 88.50 73.50 88.30 94.30 87.00 85.40 89.20 90.60 87.10
Prompt Tuning (Lester et al., 2021) 102K 76.52 70.00 84.09 74.40 62.00 76.18 84.51 88.95 77.08
Residual PT (Razdaibiedina et al., 2023) 925K 70.50 72.25 85.04 73.21 62.66 76.46 84.36 88.92 76.67
Ours 11K 79.16 71.99 84.76 88.09 62.33 76.72 84.46 90.25 79.72

Table 1: Results on the SuperGLUE validation set. All scores are the average over 3 runs with different random
seeds. The last column (Avg.) indicates the average score across all datasets in the SuperGLUE benchmark. The
models with ∗ symbol denote that the results are retrieved from Aribandi et al. (2022), and the rest are reproduced
by following the original implementations. Standard deviation of three runs is in Appendix A.5.

proach, it is usually treated as an upper bound of
performance.

Prompt Tuning Prompt tuning (PT) (Lester
et al., 2021) prepends a soft prompt to the input
embedding. It adapts to downstream tasks by exclu-
sively updating the parameters of the soft prompt,
keeping the language model frozen.

Residual Prompt Tuning Residual prompt tun-
ing (Residual PT) (Razdaibiedina et al., 2023) is
a recently proposed variant of PT. It enhances the
original prompt embeddings through an additional
layer of shallow network instead of passing them di-
rectly into the frozen transformer layer. A residual
connection is also employed to boost the perfor-
mance and convergence rate.

Our proposed model is not directly comparable
with the multi-stage XPrompt (Ma et al., 2022),
which iteratively updates the soft prompt embed-
ding. Adapter-based methods (Houlsby et al., 2019;
Rücklé et al., 2021; Guo et al., 2021) are also not in-
cluded for comparison in this paper as they require
efforts to modify the transformer layers. Further-
more, they often include a considerably larger num-
ber of parameters than prompt tuning approaches
as mentioned in Razdaibiedina et al. (2023). More
detailed comparisons can be found in Section 7.

5 Results

5.1 Main Results
Table 1 presents a comparison of our DPT with
the vanilla prompt tuning (Lester et al., 2021) and

residual prompt tuning (Razdaibiedina et al., 2023)
across 8 datasets from the SuperGLUE benchmark.
Besides the model performance, we also include
the comparison of the total number of trainable
parameters. Remarkably, our model consistently
outperforms the aforementioned approaches across
T5 models of different sizes in terms of the average
scores over the 8 datasets. Specifically, our model
outperforms the vanilla prompt tuning by 3.19,
7.58, and 2.64 points in terms of the average score
(Avg.) with T5-Small, T5-Base, and T5-Large
models, respectively. In most cases, our model
surpasses the vanilla prompt tuning approach by a
large margin. Moreover, DPT is highly efficient in
terms of parameter usage, requiring approximately
one-ninth of the number of trainable parameters
compared to vanilla prompt tuning (i.e., 11.2K vs.
102K for T5-Large). When compared with the re-
cently proposed residual prompt tuning, our model
also shows better or comparable performance. Cru-
cially, DPT achieves this while requiring signif-
icantly fewer trainable parameters. Specifically,
residual prompt tuning consumes nearly 84 times
more parameters than our method (i.e., 11.2K vs.
925K for T5-Large). Note that we set the length of
the soft prompt for residual prompt tuning to 100
which empirically yields better performance 3. We
also provide the experimental results of residual
prompt tuning when setting the length of the soft
prompt to 10 in Appendix A.6. The experimental

3There are 100-token and 10-token residual prompt tuning
variants in the original paper (Razdaibiedina et al., 2023).
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Figure 4: Comparison of DPT with vanilla prompt tuning (PT) and Residual PT (Res PT) in the few-shot setting.
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Figure 5: Comparisons of DPT with PT and Res PT with different sizes of the bottleneck b. Each point represents
the average of three runs with different random seeds.

results demonstrate the effectiveness of our pro-
posed low-rank soft prompt in both performance
and parameter efficiency.

5.2 Few-shot Performance
We further evaluate our method in a few-shot set-
ting on all datasets in the SuperGLUE benchmark.
Specifically, we sample total of 8, 16, and 32 train-
ing instances without balancing the label distribu-
tion to mimic a realistic scenario. To ensure a
fair comparison, the sampled data for our method,
vanilla prompt tuning, and residual prompt tuning
are kept identical for each run. We employ the T5-
Large model as the backbone for this evaluation as
it achieves the strongest performance in the vanilla
prompt tuning. The results presented are averaged
across three separate runs with different random
seeds. We compare our approach against the pre-
vious methods in terms of the average score over
all datasets in the SuperGLUE benchmark, and the
results are shown in Figure 4a. We observe that
our method consistently outperforms both vanilla
prompt tuning and residual prompt tuning in our
experiments. Additionally, We also include ex-
perimental results on specific datasets from Super-
GLUE in Figure 4b, 4c, 4d, and 4e. These results
further demonstrate the effectiveness of our method
over the baselines in the few-shot setting.

6 Analysis

6.1 Sensitivity of Bottleneck Size

As mentioned in Section 3.1, the rank of our soft
prompt can be adjusted through the bottleneck b.
In this section, we investigate how the size of the
bottleneck impacts the performance of DPT. We
conduct experiments using T5-Large on the WiC,
CB, RTE, and COPA datasets, with bottleneck
b ∈ {4, 6, 8, 10, 12, 14}. The results are shown
in Figure 5. We can see that though our approach
experiences performance fluctuations with differ-
ent sizes of the bottleneck b, DPT outperforms the
vanilla prompt tuning and residual prompt tuning
in quite a few cases. Intuitively, the size of the bot-
tleneck plays a critical role in the expressiveness of
our model. We observe a performance drop when
the size of the bottleneck is getting smaller. We
find similar behavior when T5-Base is used, and
the results can be found in Appendix A.7.

6.2 Effect of Prompt Length

To investigate the effect of prompt length on the
performance of our proposed method, we conduct
an analysis on four of the SuperGLUE tasks4, and
the results are shown in Figure 6. The prompt

4These four datasets are randomly selected for analysis.
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Figure 6: Comparisons of our method with PT and Res PT with different prompt lengths c ∈ {20, 100, 200}. Each
point is the average of three runs with different random seeds.

length c is set as 20, 100, and 200. We use the T5-
Large model as the backbone, while the bottleneck
variable b is held constant at 10. As mentioned in
Section 3, the number of trainable parameters in
the vanilla PT is ec, whereas for our DPT method,
it is eb+ bc. The benefit of our approach in terms
of parameter-efficiency is more pronounced as the
prompt length increases5. We observe that our DPT
consistently outperforms the vanilla prompt tuning
approach across various prompt lengths. More-
over, DPT is generally found to be comparable or
superior to residual prompt tuning. Corroborat-
ing the observations made by Lester et al. (2021),
a long soft prompt does not necessarily improve
the model performance. While a prompt length
of 100 has been empirically validated as an ef-
fective hyperparameter in previous work (Lester
et al., 2021; Razdaibiedina et al., 2023), our analy-
sis reveals that the performance gains can still be
achieved with a prompt length of 200, as illustrated
in Figure 6a. Furthermore, our DPT is less sen-
sitive to the change of prompt length on CB and
RTE, as shown in Figure 6b and Figure 6c. We
observe similar behavior when switching to T5-
Base as the backbone, and details are included in
Appendix A.8.

6.3 Constrained Bottleneck under Short
Prompt

A critical aspect we sought to address with DPT is
the potential to sustain both parameter efficiency
and competitive performance, even with a short
prompt. When the prompt length c is reduced to
values such as 6 or 10, DPT may not exhibit param-
eter efficiency if the bottleneck b remains to be 10.
To explore the possibility of achieving parameter

5When b and e are fixed, the ratio eb+bc
ec

decreases as the
prompt length c increases. This implies that our method ex-
hibits higher parameter efficiency with longer prompt lengths.
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Figure 7: Further comparisons with short prompt
lengths and small bottleneck. 7a and 7b are based on
T5-Large while 7c and 7d are based on T5-Base.

efficiency under such conditions, we compress the
bottleneck to an extremely low value of 2. The
experiments conducted on the CB and WiC tasks
using the T5-Large and T5-Base model are illus-
trated in Figure 7. Notably, even with the bottle-
neck compressed to such a small value, our method
is still able to surpass baselines. This demonstrates
that our method is able to effectively generalize to
extremely short prompts with a very constrained
bottleneck.

6.4 Bottleneck vs. Number of Trainable
Parameters

To further study the effect of bottleneck size with-
out considering parameter efficiency, we conduct
experiments with the bottleneck b of varying mag-
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Figure 8: We enlarge the bottleneck to even 10000 to study the performance of DPT. x-axis is the bottleneck size.
y-axis is the performance. 8a and 8b are from T5-Large while 8c is from T5-Base.

nitudes, specifically b ∈ {10, 1000, 10000}, while
maintaining a fixed prompt length of 100 tokens.
The experimental results are on the RTE dataset
with the T5-Large and T5-Base model, and we
record the average, minimal, and maximum scores
across three runs. Figure 8 shows the comparison,
and it is noteworthy that the number of trainable
parameters involved are 11.2K, 1.1M, and 11.2M
respectively for the varying bottleneck sizes under
T5-Large. When configuring the bottleneck b to a
large value, the soft prompt ceases to be a low-rank
matrix and the number of trainable parameters is
more than that of a vanilla prompt tuning approach.
More importantly, we observe that increasing the
number of trainable parameters does not necessar-
ily lead to an enhancement in performance. Fur-
thermore, overparameterization could deteriorate
the stability of the performance.

7 Related Work

Parameter-efficient fine-tuning (PEFT) meth-
ods (He et al., 2022a; Ben Zaken et al., 2022;
He et al., 2022b; Mao et al., 2022; He et al.,
2022c) have emerged as a popular approach to
fine-tune language model which can largely re-
duce the number of trainable parameters while
maintaining competitive performance. There are
two primary paradigms for current PEFT methods:
adapter-based and prompt-based approaches.

Adapter-based Methods The concept of the
adapter was originally proposed by Houlsby et al.
(2019). They inserted a down projection layer fol-
lowed by an up projection layer in each sub-module
of the transformer sequentially. When adapting a
model to downstream tasks, only the parameters

of the adapter were updated (Pfeiffer et al., 2021;
Sung et al., 2022; Chen et al., 2023; Zeng et al.,
2023). To enhance this, Karimi Mahabadi et al.
(2021) incorporated hypernetworks, which gener-
ate weights for the main network, thus enabling
shared information capture across tasks. Following
that, Hu et al. (2022) proposed LoRA to approxi-
mate the update of the neural weight. LoRA was
based on the assumption that the change in weights
during model adaptation has a low “intrinsic rank”.
Different from the adapter, LoRA did not intro-
duce additional latency. Apart from being a PEFT
method, the adapter has also been employed in
broader applications in natural language process-
ing (Pfeiffer et al., 2021).

Our work diverges from LoRA (Hu et al., 2022)
and the broader adapter framework. Rather than
learning updates to the parameters, our approach
directly learns the parameters, under the hypoth-
esis that the soft prompt inherently exhibits a
low “intrinsic rank”. Furthermore, LoRA focuses
on Query-specific and Value-specific parameters
within the transformer architecture, whereas our
approach adheres to the prompt tuning paradigm,
where trainable parameters are exclusively inserted
in the embedding layer. Despite these fundamental
differences, it is noteworthy that both our approach
and LoRA share an underlying principle of lever-
aging low-rank structures.

Prompt-based Methods Prompt-based methods
can be categorized into hard prompt and soft
prompt approaches. Hard prompts involve adding
a fixed sequence of discrete tokens for the model
to condition on for generation (Jiang et al., 2020;
Shin et al., 2020; Zhao et al., 2021; Liu et al., 2023).
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However, they are sensitive to slight changes and
require complex designs, like verbalizer selection.
To address this, trainable soft prompt methods were
introduced. Li and Liang (2021) introduced prefix
tuning, which adds virtual tokens in each layer of
the encoder stack. As a simplification of prefix
tuning, Prompt Tuning (Lester et al., 2021) only
adds a soft prompt to the embedding layer. Further
advancements include incorporating soft prompts
across all transformer layers to enhance perfor-
mance (Liu et al., 2022b). Additionally, transfer
learning-based methods (Wang et al., 2023; Vu
et al., 2022) have been explored for better prompt
initialization through pre-training. For instance,
Wang et al. (2023) performed pre-training to learn
a soft prompt on a collection of source tasks and
subsequently employed the acquired prompt em-
beddings as initialization for target tasks. Transfer
learning-based techniques offer the potential for
better initialization and more effective prompt tun-
ing. In contrast to prior work, this paper focuses
on developing a more efficient parameterization of
the soft prompt.

8 Conclusion

In this work, we uncover the low “intrinsic rank”
behavior inherent in the soft prompt through em-
pirical examination. Motivated by these findings,
we introduce Decomposed Prompt Tuning (DPT),
a novel approach that reparameterizes the soft
prompt using two compact matrices. By adjust-
ing the bottleneck, DPT enables the effective ma-
nipulation of the soft prompt matrix, ensuring it
maintains a low rank. Notably, DPT attains strong
performance across the SuperGLUE benchmark
in high-resource and low-resource scenarios while
substantially reducing the number of trainable pa-
rameters.

Limitations

Despite our proposed approach being simple but ef-
fective, our method still possesses a few limitations.
We mainly evaluate our model on the natural under-
standing tasks, i.e., SuperGLUE. We do not evalu-
ate our proposed method on the natural language
generation tasks. Furthermore, our method also
inherits a few drawbacks from the vanilla prompt
tuning, such as slow convergence. These limita-
tions serve as future directions for further improve-
ment. Another limitation is that we only evaluate
our method with the encoder-decoder backbone

models. We leave the explorations with encoder-
only models and other large-scale pre-trained mod-
els for future work.
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A Appendix

A.1 Rank Explanation

Theorem A.1. Let A and B be matrices such that
the product AB is well defined. Then

rank(AB) ⩽ min(rank(A), rank(B))

Proof. Each column of AB is a combination of the
columns of A, which implies that R(AB) ⊆ R(A).
Hence, dim(R(AB)) ≤ dim(R(A)), or equiva-
lently, rank(AB) ≤ rank(A) Each row of AB
is a combination of the rows of B → rowspace
(AB) ⊆ rowspace (B), but the dimension of rows-
pace = dimension of column space = rank, so that
rank(AB) ≤ rank(B).

According to theorem A.1, if P = UΣV , it can
be easily obtained that:

rank(P ) ⩽ min(rank(U), rank(Σ), rank(V ))

rank(Σ) is an upper bound of rank(P ), be-
cause U and V are always full rank during training
process. Thus, we can use rank(Σ) as an approxi-
mation for rank(P ).

A.2 Record of Rank Change
We conduct additional experiments with different
models and datasets to probe the rank change of
soft prompt. We find consistent observations that
the soft prompt tends to exhibit a low “intrinsic
rank” behavior. As we can see from Figure 9, the
number of positive entries is decreasing while the
number of negative entries is increasing. In the
second row, we also record the rank change of the
soft prompt. Specifically, we calculate the rank of
the matrix obtained by multiplying U , Σ, and V .

A.3 Dataset Details
We record the statistical details of the SuperGLUE
benchmark and the metrics we use, and Table 2
shows the statistics. Note that the original CB
dataset has 554 training samples, we follow (Raffel
et al., 2020) to keep only 259 samples with a "True"
label. We transform the task to a text-to-text format.
Specifically, we highlight the ambiguous pronoun
in the input text and ask the model to predict the
noun that it refers to (Raffel et al., 2020).

A.4 Baseline Implementation Details
The length of the soft prompt is set as 100 for
vanilla prompt tuning, which is an optimal setting
according to the paper (Lester et al., 2021). The
soft prompt can be initialized by Gaussian distri-
bution or copying from the vocabulary embedding.
Here, we adopt the second initialization strategy
because of its superiority.

There are 10-token and 100-token residual
prompt tuning variants (Razdaibiedina et al., 2023).
We implement the 100-token one because it has
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Figure 9: The first row is record of positive and negative diagonal entries. The second row is the rank record.

Dataset Train Dev Task Metric

BoolQ 9,427 3,270 QA Acc.
CB 250 56 NLI Acc.
COPA 400 100 QA Acc.
MultiRC 27,243 4,848 QA F1
ReCoRD 100,730 10,000 QA F1
WiC 5,428 638 WSD Acc.
WSC 259 104 Coref. Acc.
RTE 2,490 277 NLI Acc.

Table 2: The details of 8 SuperGLUE tasks used in our
experiments.

better performance. We also follow the paper to set
the bottleneck as 400, above which leads to no im-
provement according to the paper. We follow them
to adopt ReLU as activation function and perform
layer normalization (Ba et al., 2016).

A.5 Standard Deviation of Scores

We report the the standard deviation of three runs
for our method, prompt tuning and residual prompt
tuning. The results are shown in Table 3.

A.6 Residual PT of 10 tokens
In most parts of this paper, we focus on soft prompt
of 100 tokens. (Razdaibiedina et al., 2023) present
10-token and 100-token variant of residual prompt
tuning in their main results. We reproduce the 100-
token residual prompt tuning in the main result
section. Here, we also reproduce the 10-token one
in Table 4 . The results are consistent with the
original paper that the performance of 10-token
version is inferior to that of 100-token version.

A.7 Various Bottleneck Size
We try different bottleneck b ∈ {4, 6, 8, 10, 12, 14}
and fix prompt length as 100. The result of T5-Base
is similar to that of T5-Large. DPT can surpass
prompt tuning in most cases, which demonstrates
the robustness of DPT. In Figure 10, we show the
result on T5-Base.

A.8 Various Prompt Length
We try prompt length 20, 100 and 200 and fix the
bottleneck as 10. The result of T5-Base is similar
to that of T5-Large. The performance of DPT is
consistently better than PT under various prompt
lengths as shown in Figure 11.

13346



Model WSC WiC BoolQ CB COPA MultiRC ReCoRD RTE

T5-Small
PT 1.10 2.82 1.28 3.57 1.15 0.90 0.30 3.12
Res PT 1.10 5.7 1.64 4.12 0.57 0.51 0.22 3.68
Ours 0.55 0.65 0.85 4.12 4.35 0.90 0.15 1.98

T5-Base
PT 1.10 6.30 0.01 1.02 1.15 0.24 0.09 0.20
Res PT 0.55 3.68 10.11 10.46 2.08 0.20 0.13 1.50
Ours 0.96 1.33 0.79 6.43 2.08 0.46 0.10 1.30

T5-Large
PT 1.92 1.04 0.82 1.03 0.00 0.18 0.09 0.20
Res PT 3.08 0.56 0.13 1.79 1.52 0.04 0.17 0.75
Ours 1.46 0.63 0.27 2.06 2.51 0.39 0.15 0.36

Table 3: We report standard deviation (%) of three runs for PT, Res PT and our method.

Model # Trainable WSC WiC BoolQ CB COPA MultiRC ReCoRD RTE
Params. Acc. Acc. Acc. Acc. Acc. F1 F1 Acc.

Avg.

T5-Small
Residual PT 416K 64.73 58.09 69.70 73.21 58.66 63.21 52.82 62.21 62.83

T5-Base
Residual PT 624K 68.26 66.87 79.11 74.99 57.66 71.20 72.41 68.58 69.88

T5-Large
Residual PT 832K 69.86 69.74 84.18 70.82 59.33 74.77 84.31 88.20 75.15

Table 4: Results on the SuperGLUE validation set. All scores are the average over 3 runs with different random
seeds. The last column (Avg.) indicates the average score across all datasets in the SuperGLUE benchmark.
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Figure 10: Comparisons of DPT with PT and Res PT with different sizes of the bottleneck b. Each point represents
the average of three runs with different random seeds.
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Figure 11: The comparison between our method and prompt tuning of different length in {20, 100, 200}. Each
point in the figure is average of three runs with random seeds. The backbone is T5-Base.
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