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Abstract

The recent explosion of performance of large
language models (LLMs) has changed the field
of Natural Language Processing (NLP) more
abruptly and seismically than any other shift
in the field’s 80-year history. This has resulted
in concerns that the field will become homog-
enized and resource-intensive. The new status
quo has put many academic researchers, espe-
cially PhD students, at a disadvantage. This
paper aims to define a new NLP playground
by proposing 20+ PhD-dissertation-worthy re-
search directions, covering theoretical analy-
sis, new and challenging problems, learning
paradigms, and interdisciplinary applications.

1 Introduction

It is the best of times. It is the worst of times. We
are living in an incredibly exciting yet strange era
of Natural Language Processing (NLP) research
due to the recent advancements of large language
models (LLMs) on various data modalities, from
natural language (Brown et al., 2020) and program-
ming language (Chen et al., 2021; Wang et al.,
2023a) to vision (Radford et al., 2021; Li et al.,
2022a; Wang et al., 2022b) and molecules (Ed-
wards et al., 2022; Zeng et al., 2022; Su et al.,
2022).

At the core, LLMs produce text sequences
word-by-word by computing conditional proba-
bility based on context. At a sufficiently large
scale, they can answer questions, generate argu-
ments, write poetry, impersonate characters, ne-
gotiate contracts and achieve competitive results
across a wide variety of standard NLP tasks includ-
ing entity typing, sentiment analysis, and textual
entailment, showcasing “emergent behavior” such
as in-context learning (Wei et al., 2022).

However, this “moment of breakthrough” re-
ceived a polarized response in the NLP research
community: while some welcomed the progress,

others felt lost. Why is NLP so vulnerable to a
single advancement?

In retrospect, when NLP adopted the machine
learning paradigm in the early 1990s it started
along a journey that led to increased homogeneity.
The dominant methodology became: (1) Identify a
challenge problem or task; (2) Create a dataset of
desired input-output instances; (3) Select or define
one or more evaluation metrics; and (4) Develop,
apply, and refine machine learning models and al-
gorithms to improve performance.

If a challenge did not support the creation of
a dataset (e.g., text styles of people in different
professions) or metric (e.g., summaries of novels
or movies), or worse yet if it was not amenable
to a machine learning solution, then mainstream
NLP simply did not address it. For a long time,
NLG was in this position because its starting point
—semantic representations— were neither standard-
ized, nor easy to produce at scale, nor amenable
to direct evaluation. No dataset, no metric — little
attention. Yet multi-sentence NLG starting with
deep semantic input, and with output tailored to
different audiences, is arguably the most complex
task in NLP, since it involves so many aspects of lin-
guistic communication together. As such, it surely
deserved the concentrated effort that NLP has be-
stowed on MT, Speech Recognition, QA, and other
major challenges in the past.

Suddenly, within the space of a few months, the
landscape changed. NLP encountered an engine
that seemingly could do everything the field had
worked on for decades. Many subtasks in NLP
seemed to become irrelevant overnight: Which
grammar formalism to parse into? Which rhetor-
ical structure and focus control model for multi-
sentence coherence? Which neural architecture is
optimal for information extraction or summariza-
tion? None of that matters if the magical engine
can do the entire end-to-end language-to-language
task seamlessly (Sanh et al., 2022; OpenAl, 2023).
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Dozens of Ph.D. theses lost their point, because
their point was a small step in the process that no
longer seemed needed. The dominant paradigm
is also challenged: instead of setting up bench-
marks and then developing models accordingly,
people started discovering new abilities of such
models (Bubeck et al., 2023) (who knew that LLMs
could draw unicorns using TikZ?).

An important constraint is the practicality of the
goal. This newer generation of LLMs is beyond the
practical reach of all but a small number of NLP
researchers. Unless one of the organizations build-
ing LLMs provides free access for research —an
unlikely occurrence given the estimated six-figure
monthly expense to run one— or a procedure is de-
veloped to construct university-sized ones cheaply,
the academic NLP community will have to be quite
creative in identifying things that either generative
LLMs cannot do in principle or applications that
can be built without re-training them and at the
same time are important and doable in practice.

Inspired by the efforts of a group of PhD stu-
dents (Ignat et al., 2023), we believe it would be a
valuable exercise to define new research roadmaps.
We believe that while LLMs seemingly close re-
search avenues, they also open up new ones. Cur-
rent LLMs remain somewhat monolithic, expen-
sive, amnesic, delusional, uncreative, static, as-
sertive, stubborn, and biased black boxes. They
still have a surprising deficiency (near-random per-
formance) in acquiring certain types of knowl-
edge (Wang et al., 2023f), knowledge reasoning
and prediction. In this paper, we aim to define a
new NLP playground by proposing a wide range
of PhD-dissertation-worthy research directions to
democratize NLP research again. In particular, we
cover observations and suggestions along the per-
spectives of LLM theory (Section 2), challenging
new tasks (Section 3), important but understudied
learning paradigms (Section 4), proper evaluation
(Section 5), and interdisciplinary applications (Sec-
tion 6).

2 Theoretical Analysis of LLMs

There is a growing necessity to open the black box
of machine learning models through theoretical
analysis. In this section, we advocate for both
mathematical (by mathematical analysis) and ex-
perimental (inducing rules and laws such as Ghor-
bani et al. (2021); Hoffmann et al. (2022) from
extensive experimental observations) theories of

LLMs.

2.1 Mechanism Behind Emergent Abilities

LLMs have displayed impressive emergent capa-
bilities such as instruction following, chain-of-
thought reasoning, and in-context learning (Brown
et al., 2020; Wei et al., 2022; Min et al., 2022;
Wei et al.; Logan IV et al., 2022; Wei et al., 2021).
For example, the ability of instruction following
enables models to follow novel instructions. For
guidance on prompting beyond heuristics, we need
a comprehensive understanding of how instructions
work. Some initial theories suggest an explanation
through Bayesian inference (Jiang, 2023), which
relies on strong assumptions without practical in-
sights. Here we advocate for theories on the fea-
sibility of constraining or measuring models’ de-
viation from instructions. A multi-player setting
is also important, where one user’s prompt is com-
posed with another player’s prompt (such as Ope-
nAI’s hidden meta instruction) before being fed
into LLLMs, where additional security issues might
arise for the first user.

Chain-of-thought (CoT) reasoning is where
LLMs tackle complex tasks by generating solu-
tions in a sequential, step-by-step manner. CoT
theoretically enhances the computational capacity
of Transformer-based models to solve problems
exceeding O(n?) complexity. While some con-
structive explanations have been suggested (Feng
et al., 2023a), they are not fully validated as the
underlying mechanism. Importantly, it is worth
investigating the verifiability problem of the rea-
soning chain (whether CoT can be trusted as a valid
logic chain) and its calibration (whether LL.Ms for-
mulate ad-hoc CoTs for arbitrary conclusions).

In-context learning (ICL), where LLMs learn
from demonstration examples in-context without
parameter updates, has seen explanations based on
gradient-descent (Akyiirek et al., 2022; von Oswald
etal., 2022), kernel regression (Han et al., 2023a) or
Bayesian inference (Xie et al.; Jiang, 2023; Wang
et al., 2023d). Important challenges remain and ne-
cessitate more comprehensive explanations, such
as sensitivity to example order and robustness to
perturbed input-output mapping. We hypothesize
that a deeper understanding of how LLMs balance
algorithmic solutions with implicit language infer-
ence can help clarify these questions, which might
be approachable by exploring how LLMs disentan-
gle semantic and functional information.
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Model-specific vs. Model-agnostic is a persis-
tent gap among explanations, raising the question
of whether the emergent abilities depend on the
Transformer architecture or simply fitting the pre-
training data. With some recent work suggesting
that other architectures achieve comparable perfor-
mance in some domains (Peng et al., 2023; Zhai
et al., 2021), this open question is important for
prioritizing among model design (including other
architectures), prompting engineering, and simply
carefully collecting larger datasets. To bridge this
gap, we also advocate for theoretical frameworks
beyond (mixture) of HMMs to better model lan-
guage data properties.

2.2 Theoretical Robustness and Transparency

Robustness is to ensure that no backdoor designs
or adversarial usages can be easily implemented
in the model. Although not a novel problem by
definition, this issue has new implications and for-
mulations in the LLM era. In a situation where
most users do not have access to the pre-training
and model-editing details, we call for research into
robustness diagnosis for arbitrary given LLM. De-
spite negative evidence suggesting it may be nearly
impossible to prevent adversarial prompting under
certain conditions (Wolf et al., 2023), we maintain
a positive outlook and hope that it can be potentially
overturned under more realistic conditions, such
as high computational complexity in searching for
adversarial prompts.

Transparency in LLMs is concerned with align-
ment between the model’s self-explanations and
its internal computational rationale. With empiri-
cal studies suggesting that LLMs may not always
accurately express their “thoughts” (Turpin et al.,
2023), computational modeling of LLM intentions
becomes essential. The quest for transparency is
important for preventing LLMs from generating
misleading rationales to humans. We advocate for
establishing both positive and negative theorems
on counteracting false rationales under different
conditions, along with examining associations be-
tween “faithfulness” modes and neuron activities
in specific architectures.

3 New and Challenging Tasks

3.1 Knowledge Acquisition and Reasoning

Knowledge inside LLMs The black box prop-
erty of LLMs poses a significant challenge when
it comes to evaluating implicit knowledge within

the model. Initial studies have been conducted
to elicit/identify (Cohen et al., 2023; Shin et al.,
2020; Petroni et al., 2019, 2020; Fung et al., 2023;
Gudibande et al., 2023; Li et al., 2023c) and local-
ize/edit knowledge (Dai et al., 2021; Meng et al.,
2022a,b; Zhu et al., 2020; Mitchell et al., 2022a;
De Cao et al., 2021; Hase et al., 2023; Meng et al.,
2022a; Mitchell et al., 2022b). However, our under-
standing of the knowledge organization within lan-
guage models (where and how knowledge is stored)
is still limited, and it remains uncertain whether full
comprehension is achievable. Moreover, existing
studies primarily focus on factual or commonsense
knowledge, overlooking more complex knowledge
such as rules of inference (Boolos et al., 2002).

Large-Scale Knowledge Reasoning LLMs have
demonstrated promising performance across vari-
ous reasoning tasks (Dua et al., 2019; Miao et al.,
2020; Cobbe et al., 2021; Yu et al., 2020; Bhagavat-
ula et al., 2020; Talmor et al., 2019) when appropri-
ately prompted, such as through the use of Chain-
of-Thought and improved Chain-of-Thought (Wei
et al.; Chowdhery et al., 2022; Xue et al., 2023;
Diao et al., 2023; Wang et al., 2023e; Paul et al.,
2023) or Program-of-Thought (Chen et al., 2022).
However, current reasoning benchmarks (Cobbe
et al., 2021; Ling et al., 2017; Patel et al., 2021;
Hosseini et al., 2014; Miao et al., 2020; Koncel-
Kedziorski et al., 2016; Talmor et al., 2019; Geva
et al., 2021) focus on reasoning with small-scale
context, typically consisting of hundreds of words.
This level of reasoning falls short when tackling
complex tasks, such as scientific research, which
demands knowledge from extensive volumes of
related literature and domain-specific knowledge
bases. Retrieval-augmentation (Guu et al., 2020;
Khandelwal et al., 2020; Borgeaud et al., 2022;
Izacard et al., 2022; Lai et al., 2023b) serves as
a powerful tool for integrating large-scale contex-
tual knowledge into language models. However,
current retrieval methods predominantly rely on
semantic similarities, while humans possess the ac-
commodative learning (Illeris, 2018) ability to draw
inspirations from semantically dissimilar knowl-
edge and transfer it to the target task. To achieve
this, we not only need to extend the input context
length, but also understand how models organize
knowledge and develop more effective knowledge
representations and evaluation metrics (Section 5).
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Faithfulness and Factuality Ensuring the truth-
fulness of generation output requires optimal uti-
lization of internal knowledge within the model
and external knowledge, which includes the in-
put context, knowledge bases, and open web re-
sources. Access to external knowledge typically re-
lies on the success of information retrieval (Lewis
et al., 2020; He et al., 2023; Yu et al., 2023c,b),
information extraction (Wen et al., 2021; Huang
et al., 2023), grounded generation (Li et al., 2021,
2022b; Gao et al., 2023a; Weller et al., 2023; Lai
et al., 2023a) and knowledge-augmented genera-
tion (Petroni et al., 2020; Geva et al., 2023). In-
ternal knowledge involves the implicit parametric
knowledge stored within the model, the correction
and refinement of which is limited to the infer-
ence stage (Lee et al., 2022; Meng et al., 2022a,b;
Chen et al., 2023a). To effectively minimize hal-
lucination and correct factual errors, it is crucial
to not only decipher how knowledge is interpreted
through model parameter patterns, but to under-
stand how the model pieces knowledge together
and governs the underlying logic during genera-
tion. A significant challenge in knowledge-guided
generation is defining an appropriate knowledge
representation that supports both complex struc-
tures and distributed representations. We believe
this representation should combine the strength
of symbolic-based reasoning to minimize unwar-
ranted inferences, and the flexibility of distributed
representations to encode any semantic granular-
ity. Drawing insights from misinformation detec-
tion and knowledge comparative reasoning systems
could also be one useful dimension of signals for
improving faithfulness and factuality (Liu et al.,
2021a; Fung et al., 2021; Wu et al., 2022, 2023).

3.2 Creative Generation

Although people have long envisioned using mod-
els for creative writing, this has only become a
reality recently, when language generation models
could reliably produce fluent text. Compared to
previous sections where generated text is a vehi-
cle for knowledge, creative use cases focus more
on the style or form of language and encourage
open-ended output. !

Creative Writing Assistance Since language
models offer conditional generation ability out-of-

'In this section we limit our scope to applications of text
generation, however, we fully acknowledge the potential of
multi-modal creative generation, such as generating personal
avatars, movie clips, and 3D scenes.

the-box, they have been adopted by many people in
the creative industry for brainstorming or research
tools (Kato and Goto, 2023; Gero et al., 2023;
Halperin and Lukin, 2023). One key challenge
for such tools is promoting creative generation, in-
stead of generating the most probable continuation,
which was what language models were trained for.
Current LMs have been observed by writers to over-
rely on cliques or tropes and produce overly moral-
istic and predictable endings (Chakrabarty et al.,
2024). While the plot should be unexpected, details
in the story should not go against commonsense
(unless it is part of the setting), and maintain con-
sistency within the story. This requires a model
that enables controllability over the level of cre-
ativity in its output. Do we need to train a more
creative model, or can we fix the problem at the
inference stage? On the other hand, the focus on
detoxification of LMs through RLHF (reinforce-
ment learning with human feedback) might have
led to the incompetency of the model in navigating
deeper and morally challenging themes.

Another direction for exploration is how to build
better writing tools that work together with humans.
Some attempts have been made to allow users to
interact through instructions (Chakrabarty et al.,
2022) or use editing sequences to improve writing
quality (Schick et al., 2022). These could serve as
critical building blocks toward the goal of develop-
ing a model that supports different types of input
and can improve itself and personalize through in-
teraction. In addition, models can also assist in
different stages of writing, such as world-building
and reviewing drafts. It remains to be explored
where the model is most effective and where hu-
man writers should step in and make decisions.

Interactive Experiences Text generation models
can not only be assistants for writing static scripts
but also open up an opportunity to create dynamic
and personalized experiences for the user by con-
ditioning on their input. These interactive expe-
riences can be used for education, therapy, game
design, or filmmaking. More recently, there have
been attempts to connect conversational models
with other components such as speech recogni-
tion, text-to-speech, and audio-to-face rendering
to create an end-to-end immersive experience of
interacting with non-playable characters?>. An-
other related open area for exploration is to create

NVIDIA blog
3https://charisma.ai/
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emotion-oriented experiences, which is one of the
key goals of storytelling (Lugmayr et al., 2017).
We should consider creating narratives based on
the desired emotional response and the reader’s
feedback (Brahman and Chaturvedi, 2020; Ziems
et al., 2022; Mori et al., 2022).

4 New and Challenging Learning
Paradigms

4.1 Multimodal Learning

In light of the remarkable progress of the language
world, we are now poised to venture into a multi-
tude of modalities that were previously beyond con-
sideration. Some learning signals stem from read-
ing static data, such as images, videos, speech, and
more, which will be discussed in this section; while
other signals require interacting with the physical
world, which will be detailed in Section 4.2.2.

Multimodal encoding, at its core, involves learn-
ing the “correspondence” or “alignment” among
various modalities, which always facing the chal-
lenges of Granularity Difference across modali-
ties. This is a new and growing area with several
solutions proposed to align across modalities: (1)
a hard alignment that enables granularity-aware
fusion (Tan and Bansal, 2020; Li et al., 2022a; Mo-
meni et al., 2023; Wang et al., 2022c, 2023f); (2)
a soft alignment to project the text space with the
vision space (Zhou et al., 2023; Li et al., 2023b;
Zhu et al., 2023; Lin et al., 2023). Beyond these
semantic alignment challenges, there are further
difficulties when it comes to non-semantic abstrac-
tions:

Geometric Reasoning: Recognizing spatial
relationships, such as “left”, “right”, “beside”,
“above”, or “behind”, requires comprehensive ge-
ometric mental simulation, which existing models
consistently making errors (Kamath et al., 2023).
Maintaining transformation invariance, regardless
of position, rotation, or scale, remains a core chal-
lenge. Besides, current models, predominantly
trained on 2D images, inherently miss out on the in-
tricacies of 3D spatial configurations, inhibiting un-
derstanding of depth and relative object sizes based
on distance. To address these challenges, existing
efforts augment existing large models with an agent
view to infer spatial layouts, predicting possible
navigations from visual and textual cues (Liu et al.,
2022; Berrios et al., 2023; Feng et al., 2023b). How-
ever, we believe the underlying challenge lies in the
missing objective of geometric reasoning. Existing

pretraining paradigms predominantly focus on se-
mantic alignment between image/video-language
pairs, while features (e.g., low-level edges, lines)
are largely omitted in the encoded image represen-
tation.

Context Ambiguity: Accurate understanding
should factor in the wide context of temporal
dynamics, social dynamics, emotional dynam-
ics, and more. The temporal dimension presents
a unique challenge in understanding vision and
speech. Existing methods only focus on tempo-
ral ordering (Zellers et al., 2021, 2022) and for-
ward/backward generation (Seo et al., 2022; Yang
et al., 2023a; Cheng et al., 2023). However, tem-
poral dynamics is much more complicated. For
instance, a video gesture (like a nod) may corre-
spond to a later affirmation in the speech (Li et al.,
2019). Such ambiguity requires reasoning over a
wider context with various constraints. Emotion,
another yet-underexplored abstract dimension, is
conveyed through tone, pitch, speed in speech, and
through expressions or body language in vision.
Besides, social norm understanding is challenging
as the same word or facial expression can convey
different emotions depending on the context. Thus,
potential solutions require to take into account vari-
ous contexts, including preceding conversations or
events, along with casual reasoning.

Hierarchical Perception: Human cognition is
inherently hierarchical. When processing visual
signals, our attention is not uniformly distributed
across every pixel but focus on salient regions that
carry the most information, allowing us to quickly
identify key features and make sense of our sur-
roundings (Hochstein and Ahissar, 2002; Eicken-
berg et al., 2017). However, existing models over-
look such attention hierarchy and tend to lose fo-
cus when asking about visual details (Gao et al.,
2023b). To address this challenge, interpreting nat-
ural scenes requires hierarchical recognition, from
broader contexts down to detailed attribute abstrac-
tion. Besides, aligning visual hierarchies with lin-
guistic structures is important. Further, it requires
the ability to perform abstraction over details, bal-
ancing between an abstracted scene understanding
and intricate recognition is an ongoing challenge.

4.2 Online Learning

Trained on static corpora, existing models are in-
capable of keeping themselves updated on new in-
formation or learning from interaction history for
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self-improvement. To alleviate these issues, this
section discusses the need for next-generation mod-
els to learn in an online setting.

4.2.1 Updating Information Within Models

A straightforward approach to updating models is
to continue training on new data. This is how-
ever not efficient, since we only care about new
information which accounts for a small fraction of
the data, nor effective, as fine-tuning on new data
might interfere with learned information in mod-
els. To achieve efficient updates, we would like
the model to automatically identify notable infor-
mation in new data (Yu and Ji, 2023) instead of
relying on heavy human selection or preprocess-
ing as in knowledge editing tasks (Dai et al., 2021;
Meng et al., 2022a,b; Zhu et al., 2020; De Cao
et al., 2021; Hase et al., 2023; Mitchell et al.,
2022b). Effectively updating the model requires
overcoming the bias toward (Yu and Ji, 2023; Wei
et al., 2023) as well as avoiding catastrophic for-
getting (McCloskey and Cohen, 1989; Ratcliff,
1990) of learned prior information. This might
be achieved by changing the training paradigm to
increase model capacity over time (e.g. progres-
sive training (Gong et al., 2019), MoE (Shen et al.,
2023)) or better understanding of knowledge or-
ganization within models (as detailed in Section
3.1) so that edits can be performed with minimal
interference.

4.2.2 Learning from Continuous Interactions

Interaction is essential in human learning (Jarvis,
2006). Humans learn how to best tackle different
tasks by interacting with the environment, and
they learn social norms from their interactions with
other humans. Moreover, such interactions are
multi-turn in nature, allowing humans to itera-
tively refine their actions for the task at hand and
continuously improve their mental model’s capa-
bility of performing similar tasks in the future.

Interaction with Environments We consider en-
vironments a broad category of systems that pro-
vide feedback upon actions. The world we live
in can be regarded as a typical environment: the
law of physics would decide the world state change
and provide sensor stimuli to the actor (e.g., Ahn
et al. (2022)). Training a model (i.e., Embod-
ied Al) that can interact with the physical world
through multi-modal input (Driess et al., 2023;
Jiang et al., 2023) poses challenges related to multi-
modal learning (Section 4.1) as well as unique chal-

lenges due to long-horizon planning requirements
and dynamic environments. The concept of envi-
ronments also extends to human-crafted environ-
ments (e.g., programming language interpreters
(Wang et al., 2023b), embodied simulators (Shrid-
har et al., 2020)) that provide automated feedback
for any input by rules. Such artificial environments
allow easy collection of automatic feedback which
could prepare models for deployment in the physi-
cal world.

Interaction with Humans Beyond learning from
generic human preference towards building gener-
alist agents (Ouyang et al., 2022), real-world ap-
plications typically require customizable solutions
(e.g., personalized agents) to be created efficiently.
We advocate for a new learning paradigm where
models can be taught through (multi-modal) inter-
actions with humans, including natural language
feedback (Padmakumar et al., 2022; Wang et al.,
2023c) and physical demonstration (Lee, 2017).
Such complex problem nature may also involve
customized retrieval from a large toolset of spe-
cialized models and effective action planning (Qin
et al., 2023; Yuan et al., 2023).

5 [Evaluation

As models become increasingly powerful and
multi-purpose, their evaluation has become a grow-
ing bottleneck for advancing NLP. We first discuss
the question of “what should be evaluated” fol-
lowed by “how should we measure performance.”

5.1 Benchmarks

Language models are known to be multi-task
learners, and the new generation of LLMs can
achieve impressive performance under few-shot
or even zero-shot conditions. This has led to
the creation of many general benchmarks such as
GLUE (Wang et al., 2018), SuperGLUE (Wang
et al.,, 2019), MMLU (Hendrycks et al., 2021),
Super-Naturallnstructions (Wang et al., 2022a),
HELM (Liang et al., 2022), and AGIEval (Zhong
et al., 2023). While setting up comprehensive
benchmarks is useful, current benchmarks still have
the following limitations: (1) lack diverse and dif-
ficult tasks that are important for real-world appli-
cations; (2) only contain static data sets that are
not sufficient for applications that require multi-
turn context-dependent input such as situation-
grounded dialog; (3) robustness deficiencies, and
(4) lack of support for performance analysis.
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Although some benchmarks extend to thousands
of NLP tasks, most of them are variants of sentence-
level tasks, while ignoring more challenging tasks
such as structured prediction and cross-document
reasoning. For example, Li et al. (2023a) reported
that LLMs methods obtained 25.2%-68.5% lower
performance than state-of-the-art methods based
on much smaller models for nearly all of the Infor-
mation Extraction tasks. Task design should also
aim to assist with human users’ daily tasks, as ex-
emplified by the most popular tasks being related
to planning and seeking advice by the ChatGPT
users at ShareGPT . Another issue is that bench-
marks quickly saturate due to the development of
newer models, and thus “live” benchmarks that can
be updated over time (Kiela et al., 2021) might be
worth pursuing.

To move beyond static data, we believe that simu-
lated environments such as large-scale multi-player
game environments can serve as an efficient solu-
tion. Games have been used as a way of bench-
marking progress of reinforcement learning algo-
rithms (Silver et al., 2018; Guss et al., 2021) and
also used to collect static datasets in NLP (Urbanek
et al., 2019; Bara et al., 2021; Lai et al., 2022).
Game worlds provide a cheap way to explore dif-
ferent environments and situations, which is neces-
sary for grounded language learning and learning
through interaction. Humans can interact with mod-
els playing as characters in the game to evaluate
their performance, or we can let models interact
with each other (Park et al., 2023) and evaluate
their interaction behavior as a whole.

Finally, we advocate for work on model diag-
nosis beyond the current brittle paradigm of case
study through manual inspection: methods that
help identify which parts of the input the model
underperform on (Liu et al., 2021b), what are the
model’s behavior patterns and what data this per-
formance could be attributed to (Ilyas et al., 2022).

5.2 Maetrics

Automatic evaluation metrics have been an acceler-
ant for NLP progress in the last 20 years. Heuristic-
based metrics (Papineni et al., 2002; Lin, 2004;
Lavie and Agarwal, 2007) have been found to cor-
relate weakly with human preferences (Liu et al.,
2016). As a result, the field has pivoted to model-
based metrics which have shown better alignment
with human judgment (Lowe et al., 2017; Zhang

“https://sharegpt.com/

et al., 2020; Sellam et al., 2020; Yuan et al., 2021;
Zhong et al., 2022). However such metrics might
allow for shortcut approaches or come with biases
embedded in the scoring model (Sun et al., 2022).

Automatic metrics struggle with open-ended nat-
ural language generation problems such as con-
versation and creative writing tasks due to the ab-
sence of ground truth. LLMs present an oppor-
tunity to tackle this problem (Zheng et al., 2023;
Fu et al., 2023; Liu et al., 2023b), but they also
suffer from certain biases including position, ver-
bosity, and self-enhancement biases (models prefer
themselves) that users should be cautious about.
We need to develop metrics beyond accuracy and
evaluate aspects such as robustness (Chen et al.,
2023b), bias, consistency (Chan et al., 2023), infor-
mativeness, truthfulness, and efficiency.

On the other hand, human evaluation has tradi-
tionally been perceived as the more trustworthy
evaluation method and a better indicator of the
model utility. However, as models improve, it is
questionable whether crowdworkers are adequate
to serve as assessors (or annotators), particularly
in fields such as science, healthcare, or law. An-
notator bias (Geva et al., 2019; Sap et al., 2022)
and disagreement (Fornaciari et al., 2021) should
also be taken into consideration. If we design our
models to be “assistants”, a more useful human
evaluation might not be to identify which output is
more correct, but which output can help the human
complete the task more efficiently.

6 NLP+X Interdisciplinary Applications
6.1 Human-Centered NLP

As LLMs become ubiquitous in both the research
and public spheres, mitigating potential harms,
both allocation and representation (Blodgett et al.,
2020), to social groups using these models must be
a core consideration. Social bias and stereotypes
are a common way for LLMs to materialize these
internal defects, so debiasing these models is im-
portant for fairness and robustness. Furthermore,
LLMs must be aware of the extra-contextual re-
quirement of abiding by the sociocultural norms
expected by the user (Fung et al., 2023), especially
when used as chatbots directly interacting with hu-
mans.

Post-hoc debiasing and improving the social
awareness of pretrained LLMs are important to this
end. Though modern approaches have made great
advances in democratizing LLM training, most
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builders don’t have a need to pretrain their own
LLMs, opting to, at most, fine-tune them. Rather
than hope that an LLM is unbiased after pretrain-
ing, many researchers have discussed the utility in
having a separate general debiasing step to account
for any unintended associations stemming from
pretraining (Yu et al., 2023a; Omrani et al., 2023;
Yang et al., 2023b). Relatively less explored is the
complementary requirement of augmenting LLMs
with the awareness and ability to abide by sociocul-
tural norms. The crux of the problem is training the
model to recognize what behaviors in its training
data are the results of sociocultural norms, discover
why and when those norms should be followed, and
how those norms can be followed (i.e., is it only
in a specific way or is this a behavior that can be
generalized across situations?).

Another important direction is personalization
based on the user, particularly for chatbots. LLMs
have an amazing ability to multiplex behavior
based on the language context provided in the
prompt (Section 2.1), but they do not have the abil-
ity to account for the audience apart from what’s
inferred from text. This poses a problem for per-
sonalization because the same context or conver-
sation can have differing levels of appropriateness
depending on the audience (e.g., something that
one finds relatively harmless may be incredibly of-
fensive to someone else). Thus, we must improve
LLMs’ ability to infer the personal norms and ap-
propriate behaviors in each individual context in-
dependently and act accordingly. This may, in part,
involve bridging the gap between distant users who
share similar beliefs to decode latent representa-
tions (Sun et al., 2023). In parallel, we can also
provide users with multi-dimensional controls for
generation (Han et al., 2023b), including their sen-
timent, political stance, and moral values, so that
they can directly influence the model’s language
usage.

6.2 NLP for Science

One area with the most potential impact from NLP
is science (Hope et al., 2022; Zhang et al., 2023).
Although researchers have long been interested in
extracting actionable information from the litera-
ture (Hersh and Bhupatiraju, 2003; Griffiths and
Steyvers, 2004; Li et al., 2016; Wang et al., 2021),
this has been challenging due to the variety and
complexity of scientific language. With the grow-
ing capabilities of NLP techniques, intensified fo-

cus is now deserved because of both the potential
impacts and the challenges that will need to be
overcome.

One exciting emerging area is jointly learning
natural language and other data modalities in the
scientific domain (Edwards et al., 2021; Zeng et al.,
2022; Edwards et al., 2022; Taylor et al., 2022),
and one of the largest problems in current LLMs—
hallucination—becomes a strength for discovering
new molecules (Edwards et al., 2022), proteins (Liu
et al., 2023a), and materials (Xie et al., 2023).

Another noteworthy application is NLP for
Medicine. As a particular motivating example,
there are an estimated 1033 realistic drug-like
molecules (Polishchuk et al., 2013). Within these
drugs, there are substructures which confer benefi-
cial drug properties, and the knowledge about these
properties are reported in millions of scientific
papers. However, existing LLMs are pretrained
only from unstructured text and fail to capture this
knowledge, in part due to inconsistencies in the
literature.

Recent solutions for domain-knowledge-
empowered LLMs include development of a
lightweight adapter framework to select and
integrate structured domain knowledge into
LLMs (Lai et al., 2023b), data augmentation for
knowledge distillation from LLMs in general
domain to scientific domain (Wang et al., 2023g),
and tool learning frameworks leveraging foun-
dation models for more complicated sequential
actions problem solving (Qin et al., 2023; Qian
et al., 2023). Overall, future research can explore
bespoke architectures, data acquisition techniques,
and training methodologies for comprehending the
diverse modalities, domain-specific knowledge,
and applications within science.

6.3 NLP for Education

LLMs readily capture a vast knowledge of many
subjects, and augmenting LLMs with external
knowledge naturally leads to improved abilities for
eliciting that knowledge to generate lesson plans
and materials. However, there are also applications
in education which seem distinct from general NLP
tasks. In particular, personalizing education and
the educational experience with LLMs would al-
low educators to focus on the more general efforts
of high-level teaching. Then, the utility of using
language models to educate comes not from the
language model’s ability to “learn” the appropriate
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knowledge but in its ability to find associations.
One facet of this challenge comes from identifying
and analyzing gaps in a student’s understanding
or learning. For example, apart from simply scor-
ing essays or responses across discrete dimensions
such as fluency or sentence structure or by identi-
fying keyspans (Mathias and Bhattacharyya, 2020;
Takano and Ichikawa, 2022; Fiacco et al., 2022),
one could use LLMs to determine which parts of a
freeform submission indicate a gap and associate
it with a learning goal provided by the teacher,
without using specific (and costly to create) gold-
labeled responses, so that the student has actionable
feedback and can work on self-improvement. As
part of this work, we need to accurately identify
which portions of the response are written by the
student as opposed to copied from an Al assis-
tant. This would ensure that gaps aren’t hidden,
but would require a longitudinal view of the stu-
dent’s ability. Also, we must be able to ensure that
the LLM’s recommendations are based on actual
details of the student and the text rather than be-
ing general predictions with high priors or based
on hallucinations. Furthermore, rather than sim-
plifying original lesson materials (Mallinson et al.,
2022; Omelianchuk et al., 2021), we should invest
in using LL.Ms to generate or retrieve materials
or scaffolding that help to advance the students’
learning rate.

7 What We Need

Our overall aim is to combat both the stultification
of NLP as a mere evaluation optimization endeavor
and to dispel fears that LLMs and generative Al
will shut down the field. As an old saying goes,
frequent moves make a tree die but a person pros-
perous. Just as NLP researchers in the 1980s had
to learn about machine learning and then embrace
it as a core technique in the field, so we now must
explore and embrace LLLMs and their capabilities.
Machine learning did not ‘solve’ the challenges
of NLP: it did not produce an engine that could
learn languages, translate, answer questions, create
poetry, and do all the things a child can do. Some
people claim that LLMs can do all this, and more.
But we are in the first flush of engagement, and
have not yet have time to discover all their short-
comings.

Central is the challenge of scale. No child needs
to read or hear more than half the internet’s En-
glish text in order to use language. What reasoning

and sensory capabilities do people have that LLMs
lack? How can NLP research evolve to model
and encompass those? We urgently need global
infrastructures to dramatically scale up computing
resources, because the open-source models still
cannot achieve performance comparable to GPT
variants (Gudibande et al., 2023). But we also ur-
gently need deeper thinking about the foundational
conceptual models driving our field.

During this unique period when NLP researchers
feel uncertain regarding which research problems
to pursue, we as a community need a collective
effort to systematically change and refine our pa-
per review system and academic success measure-
ments, in order to establish a more inclusive re-
search environment and encourage researchers (par-
ticularly those in junior positions) to explore long-
term, high-risk topics that are crucial for the en-
tire field. The new challenges also require us to
be more open-minded to close collaboration with
researchers from other fields, including social sci-
ence, natural science, computer vision, knowledge
representation and reasoning, and human-computer
interaction.

Limitations

In this paper we describe some new or under-
explored NLP research directions that remain
dissertation-worthy. We propose a wider and ex-
citing version of NLP that encourages people to
focus on a wider range of more challenging and
difficult problems with exciting potential impacts
for social good. These problems may not always
admit of easy datasets and pure machine learning
solutions. Our list is not meant to be exhaustive,
and we choose these directions as examples. It is
up to NLP researchers to uncover the problems and
develop novel solutions.

Ethical Considerations

The research areas listed in this document are a few
of the main areas ripe for exploration; additional
ones exist. We do not intend for our proposed posi-
tions to be forcefully pedagogical. We encourage
diverse and deeper investigation of worthy research
areas. Within these proposed directions, we ac-
knowledge that some require access to users’ per-
sonal information (e.g. chatbot personalization in
Section 6.1), and some applications might have
high impact on users (e.g. using models to assess a
student’s grasp of knowledge for targeted education
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in Section 6.3). The use of LLMs for creative work
has also led to concerns about copyright and regu-
lations over whether Al can be credited as authors.
We do not support the use of LLMs for screening or
resource allocation purposes without safeguarding
measures. Even for lower risk use cases, we opt
for more research on the robustness, transparency,
and fairness of systems. Finally, we must evalu-
ate the compliance of prompting LLMs with laws
and regulations. For instance in education applica-
tions, if we require information about the student,
we must refer to laws such as FERPA/DPA/GDPR,
especially in an online learning setting.
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