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Abstract

Prompt tuning is a parameter-efficient method,
which learns soft prompts and conditions
frozen language models to perform specific
downstream tasks. Though effective, prompt
tuning under few-shot settings on the one
hand heavily relies on a good initialization
of soft prompts. On the other hand, it can
easily overfit to few-shot training samples,
thereby undermining generalizability. Exist-
ing works leverage pre-training or supervised
meta-learning to initialize soft prompts but
they fail to data-efficiently generalize to un-
seen downstream tasks. To address the above
problems, this paper proposes a novel Self-
sUpervised meta-Prompt learning framework
with MEta-gradient Regularization for few-
shot generalization (SUPMER). SUPMER
leverages self-supervised meta-learning with
a diverse set of well-designed meta-training
tasks to learn a universal prompt initialization
for efficient adaptation using only unlabeled
data. Additionally, it jointly meta-learns a gra-
dient regularization function to transform raw
gradients into a domain-generalizable direc-
tion, thus alleviating the problem of overfit-
ting. Extensive experiments show that SUP-
MER achieves better performance for differ-
ent few-shot downstream tasks, and also ex-
hibits a stronger domain generalization abil-
ity. The code for SUPMER will be available at
https://github.com/beepkh/SUPMER.

1 Introduction

Recent NLP accomplishments witnessed the rapid
development of pre-trained language models
(PLMs) (e.g., BERT Devlin et al., 2019; T5 Raf-
fel et al., 2020; GPT3 Brown et al., 2020). Fine-
tuning, which tunes the entire PLM parameters,
has achieved outstanding performances in various
NLP tasks. However, as the pre-trained model
scale increases, tuning the entire set of parameters
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Figure 1: (a) Performance of PT with different prompt
initialization. (b) Performance after different training
steps for vanilla PT and SUPMER.

would be sometimes unaffordable. More recently,
prompt-based methods, which simply insert a piece
of carefully designed text to the input (e.g., “It was
⟨X⟩.”) and predict target words (e.g., “great” or
“terrible”) at the mask position with frozen PLMs,
have demonstrated remarkable effectiveness. But it
has been observed that the performance of prompt-
based methods is greatly affected by the design of
prompts. In light of this, prompt tuning (PT Lester
et al., 2021), as a parameter-efficient tuning method,
is proposed to only prepend some additional learn-
able tokens called soft prompts to the input text,
with all PLM parameters freezing.

Though prompt tuning is an efficient and effec-
tive paradigm, Gu et al. (2022) shows it performs
much worse than fine-tuning under few-shot set-
tings. We argue that the performance is not satisfac-
tory mainly due to two limitations: 1) The perfor-
mance of PT is highly sensitive to the soft prompt
initialization, especially for few-shot tasks. As
shown in Figure 1 (a), different soft prompt initial-
ization leads to significant performance variations.
2) Few-shot PT risks overfitting to some spurious
correlations as soft prompts are tuned on limited
training samples, thus undermining the generaliz-
ability of PLMs. As shown in Figure 1 (b), the
performance of few-shot vanilla PT degrades sig-
nificantly in the final training steps.

Recent research mainly focused on the first limi-
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tation, leveraging pre-training or supervised meta-
learning for soft prompt initialization. A pre-
trained prompt tuning method (PPT) (Gu et al.,
2022) is proposed from the beginning, which uti-
lizes self-supervised tasks to pre-train soft prompts
and then applies them in the few-shot scenario.
However, without explicitly optimizing the fast
adaptation ability of the model, PPT suffers from a
train-test mismatch between the pre-training data
and the downstream data. So it limits generaliza-
tion to unseen few-shot tasks, especially when there
is a significant disparity in task domains or for-
mats. MetaPrompting (Hou et al., 2022), as an-
other effort, seeks assistance from model-agnostic
meta-learning (MAML Finn et al., 2017) for fast
adaptation in few-shot settings. However, in each
task, MetaPrompting requires plenty of labeled
data within certain classes to perform supervised
meta-learning for prompt initialization, which is
often inaccessible in practical few-shot scenarios.
And the learned initialization can only generalize
to the remaining classes of the same task in a few-
shot manner, exhibiting weak task transferability.
Furthermore, all these existing works ignore the
second limitation, i.e., the propensity for few-shot
prompt tuning to lead to overfitting.

To address the shortcomings of existing works,
we propose SUPMER, a Self-sUpervised meta-
Prompt learning framework with MEta-gradient
Regularization. It leverages self-supervised meta-
learning to universally learn an efficient soft prompt
initialization, also with a meta-gradient regulariza-
tion function to mitigate overfitting. This compre-
hensive process only requires a one-time execu-
tion and enables seamless adaptation to different
downstream few-shot tasks, while also facilitating
faster convergence for downstream prompt tuning.

Specifically, to address the first limitation, we de-
sign a novel self-supervised meta-learning method
for prompt initialization, which automatically gen-
erates a diverse set of meta-training tasks from
large-scale unlabeled corpora and explicitly learns
to fast adapt across these tasks. To ensure task di-
versity, we initially design a collection of anchor
self-supervised meta-training tasks with different
formats. And then a curriculum-based task aug-
mentation method is further proposed to enrich the
task distribution dynamically in terms of the cur-
rent model capability.

For the second issue, we integrate a meta-
gradient regularization function into meta-prompt

learning. As we simulate distribution shift through
task augmentation, the meta-gradient regularization
parameters are jointly optimized to align gradient
directions across different distributions within our
proposed meta-prompt learning paradigm. Con-
sequently, in downstream tasks, these optimized
parameters can be directly utilized to transform
raw gradients over few-shot samples into a domain-
generalizable direction, preventing prompt tuning
overfitting to some domain-specific correlations.

Overall, our contributions are mainly three-fold:
(1) We propose a novel self-supervised meta-

prompt learning framework to better initialize soft
prompts, where only unlabeled pre-training data
are used to construct different meta-training tasks
with curriculum-based task augmentation for fur-
ther task enrichment.

(2) We incorporate a novel meta-gradient regu-
larization function into our meta-prompt learning
framework, which meta-learns to transform the raw
gradient during few-shot learning into a domain-
generalizable direction, thus preventing prompt tun-
ing overfitting to domain-specific correlations.

(3) Comprehensive experiments on few-shot
learning and domain generalization validate the
superiority of our method, which even outperforms
full-model tuning in few-shot learning. It also ex-
hibits a stronger domain generalization ability.

2 Related Work

Soft Prompt Tuning. Soft prompt tuning is one
of the most parameter-efficient tuning methods
widely used in NLP (Liu et al., 2023) and vision-
language tasks (Zhou et al., 2022; Li et al., 2023a),
which only tunes a small number of (extra) pa-
rameters to attain strong performance. Specifi-
cally, it freezes the PLM parameters and prepends
some trainable continuous embeddings (i.e., soft
prompts) to the input sequence (Lester et al., 2021)
or every layer of the pre-trained model (Li and
Liang, 2021; Liu et al., 2022).

To efficiently train task-adaptive soft prompts in
few-shot scenarios, some studies (Vu et al., 2022;
Asai et al., 2022; Sun et al., 2022) employ task
adaptation techniques, obtaining source prompts
from source tasks in a supervised way and interpo-
lating them into the target prompts. Other works
focus on training improved prompt initializations.
PPT (Gu et al., 2022) pre-trains the soft prompts
with some self-supervised tasks on unlabeled cor-
pora, but it doesn’t explicitly optimize the fast adap-
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Figure 2: The framework of SUPMER. We employ task interpolation to enrich the distribution of self-supervised
meta-training tasks. Concurrently, we integrate a meta-gradient regularization function into meta-prompt learning.
Furthermore, during meta-prompt learning we also dynamically adapt the mixing ratio of task interpolation,
upgrading the vanilla task augmentation into a curriculum-based one.

tation ability of the model. MetaPrompting(Hou
et al., 2022) utilizes supervised meta-learning for
soft prompt initialization, splitting each dataset into
two sets with disjoint data classes. One split is used
to initialize soft prompts while the other serves as
the downstream task. In comparison, SUPMER dif-
fers from MetaPrompting in the following ways: 1)
for each downstream task MetaPrompting focuses
on a fixed supervised dataset to reinitialize soft
prompts, whereas SUPMER can universally gener-
alize to different unseen tasks with large-scale un-
labeled corpora for initialization; 2) MetaPrompt-
ing doesn’t freeze PLM parameters, while SUP-
MER only tunes the soft prompts as the general
soft prompt tuning methods do.

Meta-Learning. Meta-learning, also known as
learning to learn, optimizes the ability to learn
new tasks quickly and efficiently, utilizing expe-
rience from previously seen tasks. It can be classi-
fied into three types: metric-based methods (Koch
et al., 2015; Vinyals et al., 2016; Snell et al.,
2017), model-based methods (Graves et al., 2014;
Mishra et al., 2018; Qiao et al., 2018), and gradient-
based methods (Hochreiter et al., 2001; Ravi and
Larochelle, 2017; Nichol et al., 2018; Li et al.,
2020). In this work, we focus on a gradient-based
meta-learning algorithm (i.e., MAML Finn et al.,
2017). Compared to typical meta-learning methods
that rely on human-annotated meta-training tasks,
we automatically generate abundant tasks in a self-
supervised way, also integrating a meta-gradient
regularization function into MAML to steer gradi-

ents towards a domain-generalizable direction.

3 Method

In this section, we describe the whole framework
of SUPMER (shown in Figure 2). With pre-defined
preliminaries, we first introduce the way to con-
struct anchor self-supervised meta tasks and the
foundation of task augmentation to densify task
distributions. Then we elaborate on the SUPMER
model, including the meta-gradient regularization
function. Finally, we upgrade the original task aug-
mentation method into a curriculum-based one. Be-
sides, we formalize all tasks in a text-to-text format
following the T5 fashion (Raffel et al., 2020).

3.1 Preliminaries
Prompt Tuning. In prompt tuning (Lester et al.,
2021), given a training sample (xi, yi) from task
Dτ , we apply a prompt template P converting xi
into a new sequence P (xi) and then concatenate
a set of soft prompts θ to the beginning of P (xi).
And verbalizer V plays a role in mapping yi to some
corresponding label tokens V(yi) in the vocabulary
of PLMs. So the objective of prompt tuning can be
formulated as follows:
argmin

θ
LDτ (θ)

= argmax
θ

∑

(xi,yi)∈Dτ

log p
(
⟨X⟩ = V(yi)|[θ;P (xi)]; θ

)

(1)

where θ denotes the soft prompt embedding (the
only tunable parameters in prompt tuning). ⟨X⟩ let
PLMs predict target tokens at the masked positions
and [·; ·] is the concatenation operation.
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Model-Agnostic Meta-Learning. Assuming ac-
cess to a task distribution p(T ), the goal of meta-
learning is to utilize tasks τi ∼ p(T ), referred to as
meta-training tasks or meta tasks, to train a learn-
ing procedure that generalizes to unseen tasks from
the distribution. Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017) is a gradient-based
bi-level optimization meta-learning method, which
consists of an inner loop task-specific learning and
outer loop fast adaptation across tasks.

Specifically, a task τ is composed of the support
set Dsτ and the query set Dqτ . In the inner loop of
MAML, a model learns to adapt to a new task τi
using its support set in the following way:

θ′i = θ − α1∇θLDs
τi
(θ) (2)

where α1 is the inner loop learning rate and θ is the
model’s parameters. And the optimized parameters
θ′i is then evaluated on the query set of task τi with
the loss function LDq

τi
. In the outer loop, this loss

across meta-training tasks is treated as the final
training loss to update θ:

θ ← θ − β1∇θ

∑

τi∼p(T )

LDq
τi
(θ′i) (3)

where β1 is the outer loop learning rate.

3.2 Constructing Anchor Meta Tasks
Supervised datasets with a large amount of la-
beled data are often unavailable in many NLP tasks.
While unlabeled data is more easily accessible and
generally covers broader semantic concepts. So we
utilize the unlabeled data from a large corpus to
create anchor self-supervised meta-training tasks.

The unlabeled data are first grouped into differ-
ent clusters. We utilize PLMs to derive semanti-
cally meaningful embeddings for sentences in the
corpus, and then apply unsupervised K-means to
cluster these unlabeled sentences. Based on the re-
sults of K-means, we design three different formats
of self-supervised meta-training tasks: sentence-
pair classification, multi-choice classification, and
single-sentence classification.

Specifically, sentence-pair classification in-
volves predicting whether two sentences are adja-
cent in the same document or from the same cluster
after K-means clustering. Multi-choice classifi-
cation identifies the correct sentence among sev-
eral candidates, which is either adjacent to a query
sentence or from its same cluster. And Single-
sentence classification aims to associate each sen-
tence with its correct cluster label, as determined

by K-means. On this basis, for each task format,
we distribute meta-training data into different tasks
to construct anchor meta-training tasks with well-
balanced task distributions. We group samples with
similar embeddings into the same task based on the
results of K-means. And we give a more detailed
description of anchor meta-training task construc-
tion in Appendix A.2.

3.3 Vanilla Task Augmentation
With a set of anchor meta-training tasks, in this
section we first introduce the vanilla task augmen-
tation to densify the task distribution. Extending
the idea of mixup (Zhang et al., 2018), we augment
the task set through task interpolation, which lin-
early combines features and corresponding labels
of samples from the query set in different tasks. In
§3.5 we further upgrade the vanilla task augmen-
tation method into a curriculum-based one, which
dynamically controls the task interpolation in terms
of the current model capability.

Specifically, for a task composed of the support
set and the query set, we denote the hidden repre-
sentations of the query set samples in task τk as
Hq. Given an anchor task τi, first we randomly se-
lect another task τj . While retaining the support set
of τi, we reconstruct its query set by interpolating
on the hidden representations (Hq

i ,H
q
j ) and corre-

sponding labels (Y q
i ,Y

q
j ) from the query sets in τi

and τj , which can be accomplished using mixup:

H̃q
i = (1− λ)Hq

i + λHq
j , Ỹ

q
i = (1− λ)Y q

i + λY q
j

(4)

where the mixing ratio λ ∈ [0, 1] is drawn from
a Beta distribution Beta(α, α), and α is a hyper-
parameter. The process of task augmentation not
only enriches the task distribution, but also sim-
ulates the distribution shift between the support
set and the query set within one task, as we only
leverage interpolation between the query sets of dif-
ferent anchor meta-training tasks. And in §3.4 we
will show the effect of this distribution deviation.

3.4 Meta-Prompt Learning with
Meta-Gradient Regularization

In this section we introduce the algorithm of
our meta-prompt learning framework, which is a
bi-level meta-learning paradigm learning a task-
universal soft prompt initialization θ for efficient
adaptation. And it jointly meta-learns a meta-
gradient regularization function ψϕ that transforms
raw gradients into a domain-generalizable direction
to prevent prompt tuning from overfitting.
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Specifically, considering that the inner loop up-
date of MAML (i.e., Eq. (2)) over limited samples
might overfit to some domain-specific correlations,
we propose to learn a gradient regularization func-
tion ψϕ(·), making a direct transformation to the
raw gradients obtained from the support set Dsτi .
The function first performs affine transformation
h(·) (e.g., rotation) to modulate the raw gradients
g, and then an update gate vector z is employed to
combine g and h(g) into the final gradients:

ψϕ(g) = z · h(g) + (1− z) · g (5)

Obviously, the value of z can be used to control
how much the transformed gradients h(g) con-
tribute to the output of ψϕ(g). We hope to deter-
mine this weight based on the input samples them-
selves, setting z = σ(WH + b), where H is the
hidden representations of input samples. Formally,
now we transform Eq. (2) into:

θ′i = θ − α1ψϕ(∇θLDs
τi
(θ)) (6)

After adapting the soft prompt embeddings to
the support set Dsτi , in the outer loop we optimize
the prompt initialization θ based on these adapted
embeddings θ′ via Eq. (3). Besides, meta-gradient
regularization parameters ϕ are also optimized us-
ing the same loss to learn a better gradient transfor-
mation, with β2 as the learning rate:

ϕ← ϕ− β2∇ϕ

∑

τi∼p(T )

LDq
τi
(θ′i) (7)

Overall, the total meta-prompt learning obejec-
tive can be formulated as follows:

argmin
θ,ϕ

∑

τi∼p(T )

LDq
τi

(
θ − α1ψϕ(∇θLDs

τi
(θ))

)
(8)

Downstream Prompt Tuning. The above meta-
prompt learning framework only requires a one-
time execution. The optimized prompt initialization
θ∗ and meta-gradient regularization parameters ϕ∗

are then universal for different downstream tasks.
During downstream prompt tuning, we fix ϕ∗ and
further adapt θ∗ to testing tasks as Eq. (6).

Analysis of SUPMER. Here we give some anal-
ysis of how SUPMER could enhance generalizabil-
ity, with more complete proof in Appendix A.1.
Given that x = θ− α1ψϕ(∇θLDs(θ)) and x0 = θ,
focusing on a single meta-training task, we can ap-
ply a first-order Taylor expansion around the point

x0 to reformulate Eq. (8) as:

∵ LDq (x) = LDq (x0) + L′
Dq (x0)(x− x0)

∴ argmin
θ,ϕ
LDq

(
θ − α1ψϕ(∇θLDs(θ))

)

=argmin
θ,ϕ
LDq (θ)− α1∇θLDq (θ) · ψϕ

(
∇θLDs(θ)

)
(9)

Based on the aforementioned discussion, we can
reach the following conclusions: (1) The update
of θ minimizes the expected loss on the query set.
(2) The optimization of both θ and ϕ maximizes
the inner product between the regulated gradients
from the support set and the gradients from the
query set. The inner product of two vectors is
larger if they are in a similar direction. Recalling
that we simulate the distribution shift between the
support set and the query set, the optimization of θ
and ϕ tries to align the gradient directions across
different distributions. To improve the alignment
between the domain-specific gradients, the gradi-
ent regularization parameters ϕ are optimized to
retain some domain-invariant information of meta-
training data and then can be utilized to regulate
raw gradients obtained from few-shot samples into
a domain-generalizable direction in downstream
prompt tuning, thus avoiding overfitting to some
spurious correlations.

3.5 Curriculum-based Task Augmentation

In §3.4 we show that SUPMER can help align the
optimization direction across two distributions with
deviation, which is simulated by performing task
augmentation exclusively on the support sets. From
Eq. (4) it is evident that the mixing ratio λ of mixup
controls the extent of the distribution deviation,
with a larger λ resulting in a more noticeable devia-
tion. However, in the previously discussed method,
λ is sampled from a fixed Beta distribution. In this
section, we propose a more flexible sampling ap-
proach, which upgrades the original task augmenta-
tion method into a curriculum-based one, gradually
increasing the task difficulty and achieving a more
reasonable distribution shift.

The curriculum-based task augmentation dynam-
ically adjusts the parameters of the Beta distribu-
tion, from which we sample the mixing ratio λ.
Specifically, a batch of meta tasks is sampled in
each training epoch. For each task, we can obtain
gradients on the support set gsi and gradients on the
query set gqi , along with their cosine similarity. We
leverage the average cosine similarity sk−1 of all
tasks in a batch during the last epoch to derive the
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Model: T5-base (220M)

Methods SST-2 SST-5 MR CR SUBJ TREC CB RTE QNLI WiC MRPC QQP AVG

Prefix Tuning 78.21.7 38.02.5 74.03.2 84.53.3 66.23.9 70.12.9 70.42.6 54.42.0 55.74.3 53.41.3 68.11.2 64.91.3 64.82.5
P-Tuning-v2 83.10.8 41.71.5 82.30.8 88.70.5 74.82.4 78.12.1 67.55.4 53.91.3 61.41.6 54.52.2 70.71.1 68.01.1 68.71.7
FT 83.61.7 41.22.6 81.70.9 88.30.9 80.01.4 79.81.7 71.91.5 56.92.1 62.30.6 54.61.6 70.20.7 69.51.0 70.01.4

PT 71.93.4 37.32.8 73.24.5 84.43.5 61.55.3 65.34.2 58.96.1 53.22.8 55.24.8 53.12.4 66.65.3 63.02.6 62.04.0
PPT 81.22.0 40.25.4 81.20.7 83.67.3 66.83.7 73.42.4 60.77.7 55.41.2 60.43.9 53.61.3 68.00.8 63.10.7 65.63.1
Unified-PPT 76.87.7 44.71.7 79.03.3 87.70.6 64.25.8 68.42.9 63.92.9 54.41.1 56.72.4 54.51.6 67.81.1 67.62.9 65.52.8
MetaPT 85.71.3 45.31.1 82.54.5 88.50.3 73.23.7 78.72.2 65.42.4 56.11.7 58.23.1 54.11.3 69.60.6 68.80.9 68.81.9

SUPMER 87.30.5 46.70.6 84.00.6 89.30.3 79.62.2 80.20.9 72.41.4 57.31.0 61.71.0 54.81.2 71.30.5 70.51.0 71.30.9

Model: Flan-T5-XL (3B)

Methods SST-2 SST-5 MR CR SUBJ TREC CB RTE QNLI WiC MRPC QQP AVG

Zero-shot Inference 89.1 52.3 83.3 80.6 57.4 87.2 76.8 75.8 85.0 50.5 77.2 77.5 74.4
Few-shot Inference 93.2 53.3 88.5 87.8 58.6 91.6 83.9 79.1 86.9 64.3 79.9 81.0 79.0

Prefix Tuning 88.62.1 45.42.7 88.72.2 89.11.6 84.63.9 90.62.4 65.46.4 73.42.6 72.34.1 55.51.8 73.92.6 75.02.3 75.22.9
P-Tuning-v2 91.21.0 53.51.1 90.00.8 89.81.1 87.73.2 92.30.9 69.12.9 62.34.6 76.83.6 63.12.0 77.21.7 77.31.6 77.52.0
FT 92.91.4 53.61.9 89.61.3 91.30.5 88.70.9 93.62.0 77.81.6 76.01.7 84.41.5 63.01.8 77.71.3 82.92.9 81.01.6

PT 88.29.2 45.73.4 85.65.6 88.65.1 81.65.1 85.15.6 65.47.2 61.64.0 69.35.9 54.81.1 71.12.7 70.28.6 72.35.3
PPT 91.02.6 49.12.3 88.81.3 88.03.0 87.61.9 90.81.7 67.14.8 67.12.2 81.51.1 56.11.3 75.82.2 71.63.1 76.22.3
Unified-PPT 89.98.3 47.42.8 89.70.9 89.01.5 86.44.3 88.43.2 69.33.5 63.21.1 74.93.2 59.91.7 74.02.4 76.32.0 75.72.9
MetaPT 93.70.8 52.51.3 90.70.7 89.70.6 88.12.4 91.81.8 72.12.2 74.11.3 77.52.5 58.51.6 76.61.8 81.42.4 78.91.6

SUPMER 95.50.4 55.30.7 91.40.5 90.70.7 90.30.8 93.01.5 87.61.5 81.41.0 88.30.6 65.01.7 78.10.8 85.10.4 83.50.9

Table 1: Results of few-shot learning. For each dataset we report the average accuracy and standard deviation over
five random seeds (zero-shot & few-shot inference produce nearly consistent results each time as they do not require
parameter tuning). Bold fonts indicate the best results. We can see SUPMER achieves better performance.

mixing ratio λk for the current epoch k:

λk = Beta(α, bkα)

bk =
m

1+sk−1
2 − 1

m− 1
,

where sk−1 =
1

|B| ·
|B|∑

i=1

gsi · gqi
∥gsi ∥ · ∥gqi ∥

(10)

where m is the curve parameter. In this way, when
our model is not capable of aligning the optimiza-
tion directions across different distributions at the
beginning, a smaller λ is preferable to create a
smaller distribution deviation. Then λ tends to
gradually increase as the model’s capability im-
proves, resulting in a larger distribution deviation
and a corresponding increase in task difficulty.

We present the pseudo-codes of SUPMER in
Appendix A.4.

4 Experiments

4.1 Experimental Setup
We evaluate our approach in two problem settings:
1) Few-shot learning with different NLP down-
stream tasks; 2) domain generalization.

Few-shot Learning. We consider 6 downstream
tasks with 12 datasets: 1) the sentiment analy-
sis datasets SST-2, SST-5 (Socher et al., 2013),
MR (Pang and Lee, 2005) and CR (Hu and Liu,
2004); 2) the subjectivity classification dataset
SUBJ (Pang and Lee, 2004); 3) the question

classification dataset TREC (Voorhees and Tice,
2000); 4) the natural language inference datasets
CB (De Marneffe et al., 2019) and RTE (Wang
et al., 2019); 5) the question answering dataset
QNLI (Rajpurkar et al., 2016); 6) the word
sense disambiguation dataset WiC (Pilehvar and
Camacho-Collados, 2019); 7) the paraphrase de-
tection datasets MRPC (Dolan and Brockett, 2005)
and QQP. Following Karimi Mahabadi et al. (2022),
for each dataset we sample 16 instances per label
from the original training set to form training and
validation sets for few-shot learning.

Domain Generalization. Then we design a more
challenging problem about zero-shot domain gen-
eralization in the sentiment analysis task. Our ex-
periments include 6 domains across 3 datasets: 1)
the Amazon review dataset (Blitzer et al., 2007)
containing reviews about Books (B), DVDs (D),
Electronics (E) and Kitchen appliances (K); 2) the
airline review dataset (A) (Nguyen, 2015; Ziser
and Reichart, 2018); 3) the restaurant (R) domain
obtained from the Yelp dataset (Zhang et al., 2015).

We choose A as the source domain and the other
five (B, D, E, K, R) constitute the target domains.
On this basis, we sample 16 instances per label
from the training set of the source domain to tune
soft prompts. And then we directly use the soft
prompts learned from the source domain to evaluate
performance on the test set of each domain.
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Model: T5-base (220M)

Method Source Target AVG
A B D E K R

Prefix Tuning 78.12.2 82.71.0 81.51.2 84.40.6 82.72.6 84.92.2 82.41.6
P-Tuning-v2 84.00.8 83.60.9 82.41.7 85.90.9 84.21.5 83.82.7 84.01.4
FT 84.40.2 83.90.6 81.00.6 84.10.6 85.00.7 85.30.6 84.00.6

PT 79.82.5 75.32.2 76.03.2 79.62.0 79.81.9 83.01.8 78.92.3
PPT 81.91.4 77.93.5 83.61.3 88.41.0 89.11.6 87.81.5 84.81.7
Unified-PPT 80.93.0 82.12.0 76.84.0 81.04.5 82.23.9 84.93.3 81.33.5
MetaPT 86.10.3 84.30.8 84.20.7 89.40.9 90.30.6 - (86.90.7)

SUPMER 85.70.5 85.30.6 85.10.4 90.30.6 91.10.5 90.40.4 88.00.5

Model: Flan-T5-XL (3B)

Method Source Target AVG
A B D E K R

zero-shot inference 77.8 84.6 86.2 86.8 88.6 87.8 85.3
few-shot inference 82.5 90.3 89.7 92.3 92.2 89.2 89.4

Prefix Tuning 83.01.1 85.31.9 83.41.1 87.31.5 86.42.4 89.81.0 85.91.5
P-Tuning-v2 85.60.4 86.72.3 86.81.8 88.62.1 90.22.3 88.92.6 87.81.9
FT 86.20.7 88.82.2 84.61.3 87.21.3 89.81.1 90.70.9 87.91.3

PT 82.61.2 79.03.9 82.51.7 84.22.3 84.52.5 84.82.1 82.92.3
PPT 85.20.9 83.23.3 89.71.8 92.41.7 93.61.5 89.61.1 89.01.7
Unified-PPT 83.00.8 82.53.0 82.04.8 86.03.0 86.62.2 85.62.0 84.32.6
MetaPT 87.10.6 87.42.7 89.51.7 93.80.6 94.31.1 − (90.41.3)

SUPMER 87.00.2 89.81.4 91.11.2 95.10.8 95.80.9 91.80.8 91.80.9

Table 2: Results of domain generalization. For MetaPT
we calculate the average performance only across do-
main A, B, D, E, K (without R).

4.2 Experimental Details

Baselines. Our experiments are built on a smaller-
scale model, T5-base (Raffel et al., 2020), and
then on a larger-scale instruction-tuned model,
Flan-T5-XL (Chung et al., 2022). For both two
backbone models, we use the following baselines:
(1) prompt tuning methods with the same num-
ber of tunable parameters as SUPMER: vanilla
prompt tuning (PT Lester et al., 2021), PPT (Gu
et al., 2022), Unified-PPT (Gu et al., 2022), and
MetaPT (Huang et al., 2022). (2) methods with
more tunable parameters: Prefix-Tuning (Li and
Liang, 2021), P-tuning-v2 (Liu et al., 2022), full-
model tuning (FT). Furthermore, Given that FLAN-
T5-XL was also designed with few-shot inference
in mind, we additionally compare with two base-
line methods on FLAN-T5-XL, i.e., zero-shot in-
ference and few-shot inference, which directly
employ Flan-T5-XL for downstream evaluation.
We list the details of baselines in Appendix B.

Implementation Details. We solve all down-
stream tasks in a text-to-text format and run each
experiment with 5 different random seeds. For
all prompt tuning methods, we follow Lester et al.
(2021) to design soft prompts composed of 100
soft tokens, with tunable parameters far less than
full-model tuning. For our SUPMER, following
PPT (Gu et al., 2022) we sample 10GB data from
OpenWebText (Gokaslan et al., 2019), a large-
scale unlabeled corpus, to construct self-supervised
meta-training tasks. The meta-training stage only
requires a one-time execution. In downstream
prompt-tuning, we freeze the meta-gradient reg-
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Figure 3: The performance after different training steps
on CB and MRPC.
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Figure 4: The performance on SST-5 and SUBJ when
different numbers of training samples are available.

ularization parameters and the soft prompts are the
only tunable parameters. We give more details of
training hyper-parameters in Appendix C.

4.3 Main Result

Table 1 and Table 2 show the main results of few-
shot learning and domain generalization. From the
results, we have the following observations.

First, in few-shot learning, SUPMER achieves
better performance than all baselines on 10 of 12
datasets, whether using T5-base or Flan-T5-XL as
the backbone. And the average accuracy of SUP-
MER over all datasets reaches 71.3% on T5-base,
significantly outperforming other baselines (e.g.,
improving the performance by +1.3 points com-
pared to FT). Notably, when utilizing the larger
Flan-T5-XL as the backbone, SUPMER demon-
strates even more substantial performance gains
(e.g., improving the average performance by +2.5
points compared to FT), which indicates that our
approach unlocks greater capabilities for stronger
models that have undergone instruction-tuning with
a higher number of parameters.

Specifically, SUPMER consistently outperforms
all other prompt tuning methods with the same
number of tunable parameters across all datasets.
This indicates that our method offers soft prompts
with better few-shot generalization ability. And it is
noteworthy to highlight that SUPMER utilizes ex-
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Methods SST-2 SST-5 MR CR SUBJ TREC CB RTE QNLI WiC MRPC QQP AVG

1 SUPMER (only labeled) 87.5 47.0 83.8 89.9 75.4 79.6 67.9 56.6 59.0 54.6 69.2 69.5 70.0
2 SUPMER (only unlabeled) 87.3 46.7 84.0 89.3 79.6 80.2 72.4 57.3 61.7 54.8 71.3 70.5 71.3

3 PPT (labeled + unlabeled) 84.7 45.0 82.4 87.8 67.2 77.4 64.3 55.3 61.6 53.9 68.9 67.7 68.0
4 MetaPT (labeled + unlabeled) 86.1 46.3 83.7 89.4 73.8 80.1 67.2 57.4 60.0 54.3 70.1 69.9 69.9
5 SUPMER (labeled + unlabeled) 89.1 48.2 85.7 90.8 79.3 83.4 73.2 58.8 63.7 55.3 70.5 71.5 72.5

Table 3: Results of few-shot learning on T5-base, considering different data and methods for prompt initialization.

actly the same unlabelled data as PPT and Unified-
PPT for soft prompt initialization. Yet it consider-
ably outperforms these two baselines, demonstrat-
ing that the performance improvement is primarily
attributable to our methodology rather than the
meta-training data itself. Additionally, SUPMER
outperforms baseline methods with more tunable
parameters (e.g., full-model tuning) on the majority
of datasets, achieving superior performance with
fewer parameters.

Second, SUPMER is superior to all baselines
in almost all domain-generalization setups. For
example, compared to MetaPT which meta-trains
soft prompts with a supervised sentiment analysis
dataset, SUPMER exhibits average gains of 1.1%
on T5-base and 1.4% on Flan-T5-XL. So it can be
inferred that SUPMER shows stronger robustness
to domain shifts, exhibiting better generalization to
unseen tasks or domains.

Third, for both few-shot learning and domain
generalization on Flan-T5-XL, SUPMER demon-
strates superior performance across almost all
datasets and domains in contrast to few-shot in-
ference. It provides further evidence that for LMs
such as Flan-T5-XL with inherent few-shot infer-
ence capabilities, our approach can significantly en-
hance their abilities in a parameter-efficient tuning
strategy, without providing any in-context exam-
ples during inference.

Fourth, SUPMER also results in lower variances
on most datasets. Few-shot learning is often notori-
ous for its instability. And in our method we keep
few-shot prompt tuning more stable.

4.4 Ablation Study

Analysis of Generalization. Figure 3 shows the
performance trend for each method after different
training steps on datasets CB and MRPC with T5-
base model. It illustrates that few-shot prompt tun-
ing converges slowly with its performance typically
showing an overall decline during the final training
steps because they may easily result in overfitting.
In comparison, SUPMER achieves faster, stronger,
and more enduring few-shot generalization. It not

Methods Few-shot Learning DG

1 only sp 66.7 85.7
2 only mc 66.9 85.7
3 only ss 67.4 86.7

4 w/o ta 68.6 85.3
5 w/o curriculum 69.9 87.0

6 w/o mgr 69.4 86.1

7 SUPMER 71.3 88.0

Table 4: Results of ablation study to illustrate the effect
of individual components. We report the average accu-
racy over all 12 datasets in few-shot learning and all 6
domains in domain generalization (DG).

only accelerates the convergence to the optimal per-
formance realizing fast adaptation, but also con-
sistently maintains its optimal performance across
prolonged training periods.

Effect of Sample Size. We also discuss how
the performance of SUPMER and other baselines
varies when the number of training samples in-
creases on SST-5 and SUBJ. As shown in Figure 4,
with T5-base as the underlying PLM, when the
number of training samples per label grows from
4 to 64, SUPMER is consistently better than other
prompt tuning methods. And the performance gap
between these methods is gradually reduced as the
number of training data increases.

Self-Supervised v.s. Supervised. To illustrate
that self-supervised meta-learning can better gen-
eralize to unseen tasks compared to supervised
meta-learning, we also collect a set of labeled
datasets (ensuring no overlap with downstream test-
ing datasets) to formulate meta-training tasks for
soft prompt initialization and conduct the experi-
ments of few-shot learning on T5-base. The results
are displayed in Table 3 (rows 1 and 2). As our col-
lected labeled data contains lots of sentiment anal-
ysis datasets (e.g., Yelp5), SUPMER (only labeled)
and SUPMER (only unlabeled) reveal proximity in
their performance on sentiment analysis tasks (i.e.,
SST-2, SST-5, MR, CR). But in other tasks, using
unlabeled data consistently achieves better results
than utilizing only labeled data, also with a higher
average accuracy over all datasets, which validates
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the superiority of self-supervised meta-learning.

Effect of integrating Labeled Data. To further
explore the impact of integrating labeled data and
substantiate the efficacy of SUPMER following
this integration, we amalgamate the original un-
labeled meta-training data with our collected la-
beled data mentioned above, with a mixing ratio
of labeled to unlabeled as 1:2. The amalgamated
data is employed for constructing meta-training
tasks to meta-train SUPMER. Moreover, follow-
ing PPT (Gu et al., 2022) and MetaPT (Huang
et al., 2022), We also leverage pre-training and
vanilla MAML to initialize soft prompts using the
same amalgamated data. The experimental results
of few-shot learning on T5-base are shown in Ta-
ble 3 (rows 3-5). First, we can see that SUPMER
(labeled+unlabeled) outperforms SUPMER (unla-
beled) and SUPMER (labeled) as it allows us to
harness the high-quality advantages of labeled data
while also exploiting the broader semantic concepts
encapsulated by unlabeled data. Second, After the
integration of labeled data, SUPMER still consis-
tently demonstrates significantly superior perfor-
mance compared to baseline methods employing
the same data for prompt initialization, which fur-
ther underscores the effectiveness of SUPMER.

Effect of Individual Components. We train the
following ablation models. 1) only sp / mc / ss:
we retain sentence-pair classification / multi-choice
classification / single-sentence classification as the
only anchor meta-training task format. 2) w/o ta:
we entirely remove the task augmentation method.
3) w/o curriculum: we only retain the vanilla task
augmentation without the curriculum-based idea.
4) w/o mgr: we remove the meta-gradient regu-
larization function. All experiments follow the
settings in §4.1 and are conducted on T5-base. We
report the average accuracy of few-shot learning
and domain generalization in Table 4. More de-
tailed results are in Appendix D.

The results of Row 1-3 indicate that considering
diversified task formats during meta-training helps
efficiently generalize to different tasks as down-
stream tasks often contain various task formats.
Row 4 and Row 5 highlight that task augmenta-
tion plays an essential role in our framework, with
curriculum-based augmentation further enriching
the task distribution and realistically simulating
the distribution shift. Moreover, Row 6 validates
the superiority of meta-gradient regularization in

avoiding overfitting to some domain-specific corre-
lations, thus achieving better performance.

5 Conclusion

In this paper, we present SUPMER, a self-
supervised meta-prompt learning framework with
meta-gradient regularization. With a diverse set of
well-designed self-supervised meta-training tasks,
SUPMER jointly meta-learns a universal prompt
initialization and an effective gradient regulariza-
tion function for efficient few-shot generalization.
Extensive experiments on few-shot learning and
domain generalization show that SUPMER outper-
forms other prompt methods and full-model tuning,
achieving state-of-the-art performance.

Limitations

Although SUPMER performs superbly in a variety
of problem scenarios, there still exist some limita-
tions in our work: 1) We did not conduct any data
filtering or cleaning operations to the meta-training
data, which could potentially result in the inclusion
of some biased content. 2) Our experiments are
solely conducted on English tasks, and also do not
involve some kinds of NLP tasks (e.g., language
generation Li et al., 2022c) or vision-language
tasks (Zhang et al., 2022b; Li et al., 2022b; Zhang
et al., 2019; Li et al., 2021).

To address these limitations, in the future we
plan to conduct further cleansing and filtering on
the current meta-training data. Besides, we intend
to evaluate the few-shot performance of our frame-
work in the multilingual setting and also broaden
the scope of tasks, including retrieval (Pan et al.,
2023), language generation (Li et al., 2022c) and
vision-language tasks (Li et al., 2023b; Chen et al.,
2023; Li et al., 2022a; Zhang et al., 2022a). Fur-
thermore, we hope our work could pave the way
for future research on better leveraging parameter-
efficient methods under few-shot settings.
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Appendices

A Additional Information for SUPMER

A.1 Complete Analysis of SUPMER

In this section, we provide a more comprehensive
and complete analysis of SUPMER. We will show
that during meta-training, the optimization of soft
prompt embeddings θ and the meta-gradient regu-
larization parameters ϕ tends to maximize the inner
product of gradients obtained from the support set
after regulation and gradients from the query set.

Specifically, to update the parameters θ and ϕ,
we should evaluate their gradients at first, denoting
them as gθ and gϕ. Considering the original algo-
rithm of MAML, each task consists of a support set
and a query set. And only one step of gradient de-
scent is applied in the inner-loop optimization. To
make our statement more direct, we denote the loss
function based on the support set and the query set
as L0 and L1. In SUPMER, ignoring the regular-
ized loss, only L1 is directly utilized to optimize ϕ,
while θ is optimized in a bi-level meta-optimization
paradigm. Here we define the following terms re-
lated to θ similar to Nichol et al. (2018):

gθi =
∂Li(θi)

∂θi
(gradient obtained during SGD)

gθi =
∂Li(θ0)

∂θ0
(gradient at initial point)

H
θ
i =

∂2Li(θ0)

∂θ20
(Hessian at initial point)

θ1 = θ0 − α1ψϕ(g
θ
0) (gradient descent in the inner-loop)

(11)

For each definition i ∈ {0, 1} and ψϕ(·) is the
meta-gradient regularization operation. θ0 denotes
the initial soft prompt embeddings for each step,
and θ1 denotes the embeddings after the inner-loop
optimization. Obviously we have gθ0 = gθ0. Firstly
we perform a Taylor series expansion to approxi-
mate the SGD gradients gθ1 obtained from the query
set as follows:

gθ1 =
∂L1(θ1)

∂θ1

=
∂L1(θ0)

∂θ0
+
∂2L1(θ0)

∂θ20
(θ1 − θ0) +O(||θ1 − θ0||2)︸ ︷︷ ︸

=O(α2
1)

= gθ1 − α1H
θ
1ψϕ(g

θ
0) +O(α2

1)
(12)

Then we analysis the gradient descent operation
in the inner-loop optimization based on the sup-
port set. Define U as the gradient descent and we
have U(θ0) = θ0 − α1ψϕ(

∂L0(θ0)
∂θ0

). So we can get

∂U(θ0)
∂θ0

and ∂U(θ0)
∂ϕ as follows:

∂U(θ0)

∂θ0
=

∂

∂θ0
(θ0 − α1ψϕ(

∂L0

∂θ0
))

= I − α1
∂ψϕ(g

θ
0)

∂gθ0
· ∂g

θ
0

∂θ0

= I − α1
∂ψϕ(g

θ
0)

∂gθ0
·Hθ

0

(13)

∂U(θ0)

∂ϕ
=

∂

∂ϕ
(θ0 − α1ψϕ(

∂L0

∂θ0
))

= −α1
∂ψϕ(g

θ
0)

∂ϕ

(14)

So based on Eq. (12, 13, 14), we can finally approx-
imate the gradients gθ and gϕ as:

gθ =
∂L1(θ1)

∂θ0

=
∂L1(U(θ0))

∂θ0

=
∂L1

∂θ1
· ∂U(θ0)

∂θ0

= gθ1 − α1H
θ
1ψϕ(g

θ
0)− α1g

θ
1 ·

∂ψϕ(g
θ
0)

∂gθ0
·Hθ

0 +O(α2
1)

= gθ1 − α1
∂

∂θ0
(gθ1ψϕ(g

θ
0)) +O(α2

1)

gϕ =
∂L1(θ1)

∂ϕ

=
∂L1(U(θ0)

∂ϕ

=
∂L1

∂θ1
· ∂U(θ0)

∂ϕ

= −α1g
θ
1

∂ψϕ(g
θ
0)

∂ϕ
+O(α2

1)

= −α1
∂

∂ϕ
(gθ1ψϕ(g

θ
0)) +O(α2

1)

(15)

Thus, − ∂
∂θ0

(gθ1ψϕ(g
θ
0)) and − ∂

∂ϕ(g
θ
1ψϕ(g

θ
0)) indi-

cate the optimization direction, which increases the
inner product between gradients from the query set
and gradients from the support set after transfor-
mation. To further consolidate our analysis, we
also track the normalized gradient inner product
in the first 5000 steps during meta-training. As
shown in Figure 5, it is clear that the normalized
gradient inner product gradually increases during
meta-training.

On this basis, since there exists distribution shift
between the support set and the query set after task
augmentation, our method aligns the gradient di-
rections across different distributions, which helps
enhance model generalization. In other words, the
trainable parameters descend in a coordinated man-
ner such that the input-output correspondence is as
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Figure 5: Normalized gradient inner products in the first
5000 steps during meta-training.

close as possible across two distributions with de-
viation. Besides, the meta-gradient regularization
parameters ϕ also retain some domain-invariant in-
formation of the meta-training data in the above
process. Considering that ϕ is fixed in downstream
tasks, ϕ can be applied to encourage the alignment
between the domain-specific gradients and avoid
prompt-tuning overfitting to some domain-specific
correlations.

A.2 Constructing Anchor Meta Tasks

Given a sentence x from unlabeled corpora, we can
derive semantically meaningful sentence embed-
ding H = fencθ (x) with PLMs, e.g., T5 encoder.
And we apply K-means to cluster these unlabeled
sentences according to their embeddings:

P, {µc} = arg min
{Cc},{µc}

K∑

c=1

∑

H∈Cc

∥H − µc∥2 (16)

where µc indicates the learned centroid of cluster
Cc and P indicates the partitions of all sentences.
K-means clustering leads to more abundant formats
and objectives of meta-training tasks. Based on the
results of K-means, we design three formats of an-
chor self-supervised meta-training tasks: sentence-
pair classification, multi-choice classification, and
single-text classification. Here we introduce each
of them in detail.

Sentence-pair Classification. Sentence-pair
classification takes a pair of sentences (x0, x1) as
input, and x0 is the anchor sentence. We carry
on next sentence prediction task and sentence
similarity task in sentence-pair classification with
the label list Y = [0, 1, 2]. For the former one,
following Gu et al. (2022), we set two sentences
next to each other as label 0, those from the same
document but not adjacent as label 2, and those
from different documents as label 1. And for

Algorithm 1 Meta-training Process of SUPMER

1: p(T ) : Distribution over anchor tasks
2: fθ : PLM with soft prompt embeddings θ
3: ψϕ : Meta-gradient regularization
4: α1, β1, β2 : Learning rate
5: TA : Task augmentation in Algorithm 2

6: s← −1
7: Randomly initialize θ, ϕ
8: while not done do
9: Sample a batch of task {τi}ni=1 from p(T )

10: {τi}ni=1 = TA({τi}ni=1, p(T ), s)
11: for all τi = {Dsτi ,D

q
τi} do

12: Evaluate∇θLDs
τi
(fθ) with Dsτi

13: Evaluate∇θLDq
τi
(fθ) with Dqτi

14: Transform ∇θLDs
τi
(fθ) via ψϕ(·)

15: si =
∇θLDq

τi
(fθ)·ψϕ(∇θLDs

τi
(fθ))

∥∇θLDq
τi
(fθ)∥·∥ψϕ(∇θLDs

τi
(fθ))∥

16: θ′i = θ − α1ψϕ(∇θLDs
τi
(fθ))

17: end for
18: s←∑

i si/
∑

i 1
19: θ ← θ − β1∇θ

∑
τi
LDq

τi
(fθ′i)

20: ϕ← ϕ− β2∇ϕ
(∑

τi
LDq

τi
(fθ′i) + Lreg

)

21: end while
22: return θ, ϕ

sentence similarity task, we set two sentences
coming from the same cluster as label 0, and those
from different clusters as label 1. In this way, the
prompt template and verbalizer are designed as:

P = “s1 ⟨X⟩ .s2”
V = {0→ yes, 1→ no, 2→ maybe} (17)

Multi-choice Classification. Multi-choice clas-
sification takes an anchor sentence x0 as the query
and we should find the correct one in several an-
swer candidates. Here we also set two different
tasks. The first one aims to select the sentence next
to s0 and the second one aims to select the sentence
which belongs to the same cluster as s0. In each
task we will set four candidates, and only one of
them is correct. We design the prompt template
and verbalizer as follows:

P = “s0? A.s1 · · ·D.s4. Answer: ⟨X⟩ ”
V = {0→ A, 1→ B, 2→ C, 3→ D} (18)

Single-Sentence Classification. Through K-
means clustering, each sentence is associated with
a cluster label ri in {0, 1}K where ric = 1 if c = k
and yic = 0 if c ̸= k. Here k represents the cluster
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to which the sentence belongs. We simply use ri
as the pseudo label for meta-training and construct
4-way classification tasks. As for the designing
of the verbalizer, we transform the single-sentence
classification into the format of multi-choice classi-
fication. We insert the centroid of cluster µc into
the template and use it to represent the correspond-
ing cluster. So that we have:

P = “s0? A. ⟨µc1⟩ · · ·D. ⟨µc4⟩ . Answer: ⟨X⟩ ”
V = {0→ A, 1→ B, 2→ C, 3→ D} (19)

On this basis, for each task format, we separate
all data into different tasks to construct anchor
meta-training tasks with good task distributions.
Through K-means, sentences with similar embed-
dings are clustered into the same group. So in
sentence-pair classification and multi-choice classi-
fication, we group samples whose anchor sentence
comes from the same cluster into the same meta-
training task. And in single-sentence classification,
for each meta-training task, we randomly select N
clusters as N classes and then sample k sentences
for each cluster to construct a N -way k-shot classi-
fication task (N = 4). In this way, we completely
construct all anchor meta-training tasks.

A.3 Additional Loss to Train Meta-Gradient
Regularization Parameters

In the meta-training stage, we optimize the meta-
gradient regularization parameters ϕ via Eq. (7),
utilizing the same loss which optimizes the soft
prompt embeddings. Here we introduce a regu-
larized loss to attach some additional restrictions
when updating the meta-gradient regularization pa-
rameters. Notably, a higher value of bk in Eq. (10)
indicates a higher probability of a larger distribu-
tion deviation between the support set and the query
set. Furthermore, in Eq. (5) we also tend to in-
crease z to achieve a more pronounced gradient
transformation with a more noticeable distribution
deviation. From this perspective, z has a similar
monotonicity with bk, and they both range between
0 and 1. Thus we further add a regularized loss
Lreg = ∥z − bk∥2 to constrain the value of z and
finally modify Eq. (7) into:

ϕ← ϕ− β2∇ϕ

( ∑

τi∼p(T )

LDq
τi
(fθ′i) + λLreg

)
(20)

A.4 Pseudo-Codes of SUPMER
We show the pseudo-codes for the meta-training
process of SUPMER in Alg. 1. And the process of
curriculum-based task augmentation is described
in Alg. 2.

Algorithm 2 TA : Curriculum-based Task Aug-
mentation

1: {τi}ni=1 : A batch of anchor tasks
2: p(T ) : Distribution over anchor tasks
3: s ∈ [−1, 1] : Avg cos-sim between gradients
4: α, m : hyper-parameters

5: s← (1 + s)/2
6: b← (ms − 1)/(m− 1)
7: for all τi = {Dsτi ,D

q
τi} do

8: Sample task τj = {Dsτj ,D
q
τj} from p(T )

9: Draw λ from Beta(α, bα)
// Dqτi = (Hq

i ,Y
q
i ),D

q
τj = (Hq

j ,Y
q
j )

// H: the hidden representations of samples
10: H̃q

i = (1− λ)Hq
i + λHq

j

11: Ỹ q
i = (1− λ)Y q

i + λY q
j

12: Dqτi ← (H̃q
i , Ỹ

q
i )

13: end for
14: return {τi}ni=1

B Dataset & Baseline Details

Few-shot Learning. We conduct experiments of
few-shot learning on 6 different downstream En-
glish tasks with 12 datasets. Since some of the
test sets of the datasets are not publicly available,
following Karimi Mahabadi et al. (2022), we lever-
age the original validation sets of SST-2, CB, RTE,
QNLI, WiC, MRPC, and QQP1 as substitutes for
the unavailable test sets. And the validation sets
for few-shot learning are sampled from the orig-
inal training set, ensuring no overlap with our
designated test sets. Besides, we download the
datasets of SST-2, SST-5, MR, CR, and SUBJ from
Gao et al. (2021). And the rest of the datasets
are obtained from the HuggingFace Datasets li-
brary (Lhoest et al., 2021). CB, RTE, BoolQ, and
Wic are from SuperGLUE Benchmark (Wang et al.,
2019), while QNLI, MRPC, and QQP are from
GLUE Benchmark (Wang et al., 2018) with Cre-
ative Commons license (CC BY 4.0). We give the
statistics of all these datasets in Table 5.

Domain Generalization. Similar to Calderon
et al. (2022), We evaluate on the sentiment analysis
task including 6 different domains: Airlines (A),
Books (B), DVDs (D), Electronics (E), Kitchen
appliances (K), and Restaurants (R). Each domain
has totally 2,000 manually labeled data of binary
categories for testing, including 1000 positive and

1https://quoradata.quora.com/
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Dataset Task #Train #Test K

SST-2 Sentiment analysis 6920 872 2
SST-5 Sentiment analysis 8544 2210 5
MR Sentiment analysis 8662 2000 2
CR Sentiment analysis 1774 2000 2

SUBJ Subjectivity classification 8000 2000 2

TREC Question classification 5452 500 6

CB Natural language inference 250 56 3
RTE Natural language inference 2490 277 2

QNLI Question answering 104743 5463 2

WiC Word sense disambiguation 5428 638 2

MRPC Paraphrase detection 3668 408 2
QQP Paraphrase detection 363846 40430 2

Table 5: Statistics of all 12 datasets for few-shot learn-
ing. K is the number of labels. We sample N × K
instances from the original training set to construct the
few-shot training and validation sets. And #Test shows
the size of the test set.

1000 negative. We choose A as the source domain
and the other five (B, D, E, K, R) constitute the
target domains. We sample 16 instances per la-
bel from the training set of the source domain for
prompt tuning and then evaluate on the test sets of
all 6 domains.

Baselines. We first compare with baseline meth-
ods with the same number of parameters as SUP-
MER. These methods utilize prompt tuning (Lester
et al., 2021) to handle downstream tasks, with the
key distinction lying in the initialization of the soft
prompts. Vallina prompt tuning (PT Lester et al.,
2021) directly tunes the soft prompts in the down-
stream task, which are randomly initialized from
a normal distribution. PPT (Gu et al., 2022) pre-
trains soft prompts in a self-supervised way with 3
formats of pre-training tasks: sentence-pair classi-
fication, multiple-choice classification and single-
text classification. Unified-PPT (Gu et al., 2022)
formulate all these three formats into a unified task
form. MetaPT (Huang et al., 2022) using a su-
pervised sentiment analysis dataset Yelp5 as the
meta-training data and directly leveraging MAML
to initialize soft prompts.

To further demonstrate the effectiveness of
our method, we also consider baseline methods
with more tunable parameters, including Prefix-
Tuning (Li and Liang, 2021) and P-tuning-v2 (Liu
et al., 2022), which add prompts at each layer of
PLM. We also compare with full-model tuning
(FT) that fine-tunes all parameters of the PLM.

Given that FLAN-T5-XL was also designed with
few-shot inference in mind, we newly compare
with two baseline methods on FLAN-T5-XL: zero-

Hyper-parameter Value

Number of clusters for each task format 250
Tasks per batch 4

Size of support set per task 32
Size of query set per task 32

Optimizer Adam
Inner loop learning rate 0.1
Outer loop learning rate 0.1

Learning rate for ϕ 1e-4
Scheduler Linear scheduler

Warm-up steps 0
Max training steps 100,000

Validation steps 2,000
Max sequence length 512

λ 1.0
m 2.0

Table 6: Hyper-parameters for SUPMER. ϕ denotes
the meta-gradient regularization parameters. λ is the
coefficient of the regularized loss. And m is the curve
parameter in the curriculum-based task augmentation.

shot inference and few-shot inference. For both
of them, we directly employ Flan-T5-XL for down-
stream evaluation, coupled with carefully designed
task instructions for each dataset. Furthermore, in
few-shot inference, we also provide an appropriate
number of few-shot examples to form a demonstra-
tion context.

C Training Details

We apply the T5 base model (Raffel et al., 2020)
(220M parameters) and Flan-T5-XL model (Chung
et al., 2022) (3B parameters) as the underlying
PLM, and use the HuggingFace Pytorch implemen-
tation (Wolf et al., 2020). We run experiments with
8 GeForce RTX 3090 24G GPUs. And the meta-
training process of SUPMER takes about 140 GPU
hours. Next we will describe the details of training
hyper-parameters in the case of leveraging T5-base
as the PLM.

C.1 Training Hyper-parameters for
Downstream Tasks

In our experiments, we leverage full-model tun-
ing and prompt tuning to solve downstream tasks,
including few-shot learning and domain general-
ization. In few-shot learning, following some prior
work (Schick and Schütze, 2021; Karimi Mahabadi
et al., 2022), we set the maximum sequence length
of each example to 256 for CR, SUBJ, CB, RTE
and WiC, and 128 for other datasets. While in do-
main generalization, the maximum sequence length
of each example is set to 256.

We run each experiment 5 times on the random
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Methods SST-2 SST-5 MR CR SUBJ TREC CB RTE QNLI WiC MRPC QQP

only sp 83.61.5 42.62.2 81.71.8 86.00.6 65.82.8 71.26.6 64.62.1 57.02.5 58.43.3 53.61.5 69.91.3 66.01.0
only mc 83.41.4 44.51.9 79.35.1 88.30.5 70.54.7 66.41.4 65.93.1 54.91.3 58.71.7 54.21.8 68.80.8 67.61.3
only ss 84.51.5 45.02.0 81.50.7 88.40.5 73.33.1 79.15.8 62.12.6 53.91.0 56.51.4 53.31.3 67.71.3 63.71.7

w/o ta 84.71.0 40.13.3 81.91.8 87.20.8 73.62.8 78.83.7 66.41.9 56.60.9 59.41.8 54.32.4 69.51.1 70.21.1
w/o curriculum 86.80.8 40.82.2 82.31.3 88.40.9 74.83.1 79.71.6 71.02.1 56.50.8 62.61.4 55.41.1 69.70.8 71.31.2

w/o mgr 85.01.3 44.51.1 82.80.7 88.00.5 76.01.7 79.55.0 67.11.6 56.80.8 58.92.4 54.42.0 70.01.0 70.30.9

SUPMER 87.30.5 46.70.6 84.00.6 89.30.3 79.62.2 80.20.9 72.41.4 57.31.0 61.71.0 54.81.2 71.30.5 70.51.0

Table 7: Detailed results of ablation study for few-shot learning to illustrate the effect of individual Components.
In the first three rows we keep only one anchor task format during meta-training, and sp stands for sentence-pair
classification, mc for multi-choice classification, ss for single-sentence classification. And w/o ta means entirely
removing task augmentation, w/o curriculum only retains the vanilla task augmentation without the curriculum-based
idea. w/o mgr means removing the meta-gradient regularization method.

Method Source Target

A B D E K R

only sp 83.41.1 82.11.4 83.00.7 88.51.2 88.90.8 88.10.7
only mc 84.00.6 82.31.2 81.50.9 88.51.0 89.30.7 88.80.7
only ss 83.60.7 84.70.8 84.20.6 88.90.9 89.70.9 89.00.3

w/o ta 83.40.8 82.01.4 81.71.5 87.80.8 88.20.6 88.60.6
w/o curriculum 84.00.5 84.70.8 83.90.6 89.60.5 90.30.8 89.71.1

w/o mgr 83.80.4 83.40.5 83.30.5 88.10.6 89.20.8 88.90.4

SUPMER 85.70.5 85.30.6 85.10.4 90.30.7 91.10.5 90.40.4

Table 8: Detailed results of ablation study for domain generalization to illustrate the effect of individual Components.

seed [10, 20, 30, 40, 50] and report the average ac-
curacy as well as the standard deviation. For both
full-model tuning and prompt tuning, We imple-
ment AdamW as the optimizer. We use a batch size
of 32 and train the model for 200 epochs, mean-
while evaluating the model every 10 steps. And we
report the results for hyper-parameters performing
the best on the validation set for each task.

Besides, for full-model tuning, all parameters of
PLM are fine-tuned without adding soft prompts.
We use the learning rate of [1e-5, 2e-5, 3e-5] and
choose the one obtaining the highest validation
performance. Moreover, to fine-tune the Flan-T5-
XL model, we use ZeRO (Rajbhandari et al., 2020)
stage-2 provided in DeepSpeed (Rasley et al., 2020)
to reduce GPU memory usage.

For prompt tuning, we freeze all PLM parame-
ters and only tune soft prompts composed of 100
soft tokens. As a result, the tunable parameters of
prompt tuning are only 77K with T5-base and 205K
with Flan-T5-XL, updating around 3000 and 15000
times fewer parameters on T5-base and Flan-T5-Xl,
respectively, compared to full-model tuning. And
we find that prompt tuning requires a much larger
learning rate than full-model tuning. We search
for the learning rate in [1e-1, 2e-1, 3e-1] and also
choose the model with the best performance on the

validation set.

C.2 Training Hyper-parameters for Prompt
Initialization

Pre-training for prompt initialization. Gu et al.
(2022) proposes two frameworks for unsuper-
vised prompt pre-training, named PPT and Uni-
fied PPT. PPT designs three formats of unsuper-
vised pre-training tasks (sentence-pair classifica-
tion, multiple-choice classification and single-text
classification), and Unified-PPT further formulate
them into a unified task form. We implement PPT
and Unified-PPT following the hyper-parameters
provided in Gu et al. (2022) and reset the pre-
trained language model to T5-base and Flan-T5-
XL. Specifically, for both PPT and Unified-PPT,
we sample 10GB of unlabeled data from OpenWeb-
Text to construct pre-training tasks for each task
format. And 5% data are split for validation. We
apply the “inverse square root” learning rate sched-
uler with no warm-up steps and set the learning
rate as 0.1. We set the batch size to 256 with the
max sequence length as 512, and train soft prompts
for at most 200,000 steps. We evaluate the perfor-
mance on the validation set every 2,000 steps and
choose prompts with the lowest validation loss.
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Method Source Target AVG
A B D E K

1 SUPMER (only labeled) 86.4 84.7 84.8 90.0 90.7 87.3
2 SUPMER (only unlabeled) 85.7 85.3 85.1 90.3 91.1 87.5

3 PPT (labeled + unlabeled) 83.1 79.0 84.4 89.3 90.6 85.3
4 MetaPT (labeled + unlabeled) 86.3 85.3 86.7 90.1 91.4 88.0
5 SUPMER (labeled + unlabeled) 86.6 88.6 88.5 92.7 93.7 90.0

Table 9: Results of domain generalization on T5-base, considering different data and methods for prompt initializa-
tion. As our collected labeled data includes Yelp5, a sentiment analysis dataset in the domain of restaurants, we
conduct the experiments of domain generalization only across domains A, B, D, E, K (without R).

Meta-training for prompt initialization. In our
SUPMER framework, we sample 10GB of unla-
beled data from OpenWebText to construct self-
supervised meta-training tasks. We split 5% data to
construct tasks for validation. And for each task for-
mat, we first set the number of clusters to 250. We
sample 4 meta-training tasks in a batch, and train
the prompt embeddings θ and the meta-gradient
regularization parameters ϕ for at most 100,000
steps. We also evaluate the performance on the
validation set every 2,000 steps, choosing θ and
ϕ with the lowest validation loss for downstream
tasks. Table 6 lists all training hyper-parameters for
SUPMER. It is worth noting that for most hyper-
parameters in Table 6, we just set a default value by
experience without tuning them. we tune the hyper-
parameters which are also tuned in other baselines
(e.g., learning rate), ensuring all methods have the
same number of tunable hyper-parameters in our
experiments.

Moreover, to illustrate the superiority of
self-supervised meta-learning, we also imitate
MetaPT(Huang et al., 2022) to initialize soft
prompts via supervised meta-learning. MetaPT
uses a supervised sentiment analysis dataset Yelp5
as the meta-training data, which has 650,000 train-
ing samples only covering the domain of restau-
rants. Following Huang et al. (2022), We group all
labeled data into 10 clusters through K-means. And
we set the inner loop learning rate to 0.08, the outer
loop learning rate to 0.025 with the early stop pa-
tience as 6. Other hyper-parameters are consistent
with those in SUPMER.

D Full Results of Ablation Study

In this section, we first give detailed experimental
results of the ablation study to illustrate the effect
of individual components. We evaluate each abla-
tion model over all 12 datasets of few-shot learning
and all 6 domains of domain generalization, with

T5-base as the underlying PLM. We run each ex-
periment 5 times on the random seed [10, 20, 30,
40, 50] and report the average performances as well
as the standard deviation. The detailed results of
few-shot learning and domain generalization are
shown in Table 7 and Table 8. We can see each
component is critical in our framework.

Besides, in §4.4, to explore the superiority of
self-supervised meta-learning and the impact of
integrating additional labeled data for soft prompt
initialization, we conduct experiments of few-shot
learning on T5-base, considering different data and
methods for soft prompt initialization. We also
carry out experiments of domain generation lever-
aging different data with various prompt initial-
ization methods, with the results presented in Ta-
ble 9. From Table 3 and 9, it is evident that self-
supervised meta-learning utilizing unlabeled data
exhibits enhanced adaptability to unseen tasks in
comparison to its supervised counterparts. And
amalgamating both labeled and unlabeled data for
the construction of meta-training tasks emerges
as a more advantageous strategy. When it comes
to employing both labeled and unlabeled data for
prompt initialization, SUPMER continues to show-
case markedly superior results in contrast to base-
line methods in the realms of both few-shot learn-
ing and domain generalization.
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