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Abstract

Deep neural classifiers trained with cross-
entropy (CE) loss often suffer from poor
calibration, necessitating the task of out-of-
distribution (OOD) detection. Traditional su-
pervised OOD detection methods require ex-
pensive manual annotation of in-distribution
and OOD samples. To address the annotation
bottleneck, we introduce SELFOOD, a self-
supervised OOD detection method that requires
only in-distribution samples as supervision. We
cast OOD detection as an inter-document intra-
label (IDIL) ranking problem and train the clas-
sifier with our pairwise ranking loss, referred
to as IDIL loss. Specifically, given a set of
in-distribution documents and their labels, for
each label, we train the classifier to rank the
softmax scores of documents belonging to that
label to be higher than the scores of documents
that belong to other labels. Unlike CE loss,
our IDIL loss reaches zero when the desired
confidence ranking is achieved and gradients
are backpropagated to decrease probabilities
associated with incorrect labels rather than con-
tinuously increasing the probability of the cor-
rect label. Extensive experiments with several
classifiers on multiple classification datasets
demonstrate the effectiveness of our method in
both coarse-and fine-grained settings.

1 Introduction

Deep neural networks (DNNs) are ubiquitously
used for text classification (Liu et al., 2019; Devlin
et al., 2019; Yang et al., 2019; Brown et al., 2020).
However, they are generally poorly calibrated, re-
sulting in erroneously high-confidence scores for
both in-distribution and out-of-distribution (OOD)
samples (Szegedy et al., 2013; Nguyen et al., 2015;
Guo et al., 2017; Mekala et al., 2022a). Such
poor calibration makes DNNs unreliable, and OOD
detection task vital for the safe deployment of
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(b) IDIL Loss

Figure 1: CE Loss and IDIL loss optimization for docu-
ments D1 ∈ Sports and D2 ∈ Arts. CE loss increases
scores corresponding to the Sports for D1 and Arts for
D2, implying an intra-document comparison. Instead,
IDIL loss compares softmax scores in an inter-document
intra-label fashion where it reduces scores correspond-
ing to Sports for D2 to be less than that of D1.

deep learning models in safety-critical applica-
tions (Moon et al., 2020).

Traditional supervised OOD detection methods
(Hendrycks et al., 2018; Larson et al., 2019; Ka-
math et al., 2020; Zeng et al., 2021b) assume access
to high-quality manually annotated in-distribution
and OOD samples. However, this requires exten-
sive annotation of OOD samples belonging to di-
verse distributions, which is expensive to obtain.
Moreover, text classifiers are ideally desired to
be more confident on in-distribution samples than
OOD samples. However, the poor calibration of
DNN precludes this phenomenon.

To address these problems, we propose
SELFOOD, a self-supervised OOD detection
framework that requires only in-distribution sam-
ples as supervision. To adhere to the aforemen-
tioned ranking constraint, we formulate OOD de-
tection as an inter-document intra-label (IDIL)
ranking problem and train the classifier using our
pairwise ranking loss, referred to as IDIL loss. As
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Figure 2: SELFOOD is a self-supervised framework that requires only annotated in-distribution data to train the
OOD classifier. Firstly, we bucket documents based on their annotated label (in dotted lines). Then, we compare
each document in a bucket with all documents in other buckets to compute IDIL loss (in solid lines). Finally, we
backpropagate gradients to decrease scores associated with incorrect labels during the training of the OOD classifier.

shown in Figure 1(a), text classifiers are gener-
ally trained using cross-entropy (CE) loss (Good,
1952) in an intra-document fashion where for each
document, the classifier is trained to distinguish
between different labels by maximizing the score
corresponding to the correct label. Instead, in
our method, as shown in Figure 1(b), we propose
to train in an inter-document, intra-label fashion
where for each label, we train the model to rank
the considered label probability score in documents
belonging to the label higher compared to those not
belonging to it. As OOD documents generally do
not belong to any in-distribution label, we hypothe-
size such explicit learning to rank translates to ac-
curately distinguishing OOD from in-distribution.

Moreover, minimizing CE loss involves continu-
ous optimization to increase the probability of the
correct label over the other labels, making the clas-
sifier overconfident (Wei et al., 2022). Instead, in
our method, our IDIL loss function becomes zero
once the desired ranking is achieved, and during
training, we backpropagate gradients to decrease
probabilities associated with incorrect labels rather
than increasing the probability of the correct label.
Theoretically, the perfect model trained using the
CE loss with 0 training loss is a solution to our
ranking problem, however, in Section 5.1, we em-
pirically show that our ranking objective leads to a
different solution, demonstrating the importance of
the optimization procedure. Finally, it is important
to note that our ranking formulation, loss function,
and the self-supervised training strategy are specifi-
cally designed to improve the performance of OOD
detection rather than classification accuracy.

We present our framework in Figure 2. Given a
set of in-distribution documents and corresponding

labels as input, we bucket documents belonging
to each label and train the classifier to rank the
probabilities using our IDIL loss function. Specifi-
cally, for each document in a label bucket, we pair
up with all documents in every other bucket and
compute IDIL loss.

Our contributions are summarized as follows:
• We propose SELFOOD, a novel self-supervised

method to train an OOD detection model without
any OOD samples as supervision.

• We formulate OOD detection as an inter-
document intra-label ranking problem and op-
timize it using our IDIL ranking loss.

• We perform extensive experiments on multiple
text classification datasets to demonstrate the ef-
fectiveness of our method in OOD detection.

• We release the code on Github1.

2 Related Work

Traditional supervised methods cast the OOD de-
tection as classification with binary labels (Kamath
et al., 2020), with one additional label for unseen
classes (Fei and Liu, 2016). Since manually anno-
tating documents is expensive (Mekala and Shang,
2020; Mekala et al., 2022b), recent works have de-
viated from requiring such extensive annotations
and leveraging various distance metrics to detect
OOD samples. Leys et al. (2018); Xu et al. (2020)
use Mahalanobis distance as a post-processing tech-
nique to identify OOD samples. These methods
use distance-based scoring functions along with the
intermediate model layer features to determine an
OOD score. Lee et al. (2018); Hsu et al. (2020)
use a similar distance metric called ODIN to detect

1
https://github.com/dheeraj7596/SELFOOD
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OOD images. An alternate approach to compen-
sate for the lack of OOD training data involves
generating pseudo-OOD data for training. Ouyang
et al. (2021) propose a framework to generate high-
quality OOD utterances and importance weights
by selectively replacing phrases in in-domain sam-
ples. Zhan et al. (2021) generate pseudo-OOD
samples for the task of intent detection using
self-supervision. Zhou et al. (2021); Zeng et al.
(2021a) introduce self-supervised approaches to
OOD detection using a contrastive learning frame-
work. They suggest fine-tuning transformers using
a margin-based contrastive loss to learn text repre-
sentations (Mekala et al., 2021) for OOD classifi-
cation. Vyas et al. (2018); Li et al. (2021) treat a
part of in-domain data as OOD samples as an al-
ternate self-supervised approach. Further, Wu et al.
(2022a) use a Reassigned Contrastive Loss (RCL)
along with an adaptive class-dependent threshold
mechanism to separate in-domain and OOD intents.
Ren et al. (2019); Gangal et al. (2020) leverage
likelihood ratios crafted by generative models to
classify OOD samples. Wei et al. (2022) observe
that the norm of the logits keeps increasing dur-
ing training, leading to overconfident outputs, and
propose LogitNorm as a solution to decoupling the
output norm during training optimization. Moon
et al. (2020) introduce a novel Correctness Ranking
Loss function in order to regularize output probabil-
ities to produce well-ranked confidence estimates.
Other calibration techniques include "Top-label"
calibration which is used to regularize the reported
probability for the predicted class (Gupta and Ram-
das, 2021).

3 SELFOOD: Self-Supervised OOD
Detection

We present the problem statement, the motivation
for our ranking formulation, and our method includ-
ing the loss function and its optimization strategy.

3.1 Problem Statement

In this paper, we work on the OOD detection task
with only in-distribution samples and no OOD sam-
ples as supervision. Specifically, given a labeled
dataset DInD = {(x1, y1), (x2, y2), . . . (xn, yn)}
sampled from a distribution space (X , C) where
documents xi ∈ X and labels yi ∈ C as input, our
goal is to train an OOD detector M that accurately
distinguishes in-distribution documents DInD and
OOD documents DOOD ∉ (X , C) without any

OOD documents required for training.

3.2 Motivation
Numerous neural text classifiers have been pro-
posed, incorporating multiple hidden layers (Rosen-
blatt, 1957), convolutional layers (Kim, 2014),
and various types of attention mechanisms (De-
vlin et al., 2019; Liu et al., 2019; Radford et al.,
2019). All these models culminate in a softmax
head, which produces probabilities corresponding
to each class. These classifiers are generally trained
with CE loss in an intra-document fashion i.e. each
document is considered independently and the soft-
max score of the true label is maximized. Such
training of neural text classifiers is known to in-
crease the magnitude of logit vectors even when
most training examples are correctly classified (Wei
et al., 2022), making them poorly calibrated, pro-
ducing unreasonably high probabilities even for in-
correct predictions (Szegedy et al., 2013; Nguyen
et al., 2015; Guo et al., 2017). This diminishes their
ability to maintain the desired attribute of ordinal
ranking for predictions based on confidence levels,
wherein a prediction exhibiting a higher confidence
value should be considered more likely to be accu-
rate than one with a lower confidence value (Moon
et al., 2020). Intuitively, a text classifier possessing
such quality would be a perfect OOD detector.

3.3 OOD Detection as Inter-Document
Intra-Label Ranking

In order to align with the aforementioned character-
istic, we propose formulating the OOD detection
as an inter-document, intra-label ranking problem.
Specifically, given a set of in-distribution docu-
ments, we compare across documents but within
the same label and train our model to generate
higher probability score for documents belonging
to the label than for documents not belonging to
the label. We consider the same model architec-
ture as any text classifier with a softmax head that
generates scores corresponding to each label, how-
ever, we train it using our IDIL loss instead of
CE loss. Our assumption is that an OOD docu-
ment does not fall under any specific label in the
in-distribution space. Hence, we anticipate that
the trained model would produce lower scores for
OOD documents compared to in-distribution doc-
uments. This distinction in scores is expected to
facilitate easy separation between OOD and in-
distribution documents.
IDIL Loss is a pairwise-ranking loss that enforces
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desired ordinal ranking of confidence estimates.
This loss function reaches its minimum value for a
particular label when the probability of that label
being the annotated label is greater than its prob-
ability when it is not the annotated label. Specifi-
cally, for documents x1, x2 ∈ DInD and their cor-
responding annotated labels y1, y2 where y1 ≠ y2,
IDIL loss corresponding to label y1 is mathemati-
cally computed as follows:

LIDIL(y1∣x1, x2) = SiLU(p(y1∣x2) − p(y1∣x1))
(1)

where SiLU(x) = xσ(x) is the Sigmoid Linear
Unit (SiLU) function (Elfwing et al., 2018). To
ensure stable training and enhance performance,
we incorporate the SiLU function, a continuous
variant of the Rectified Linear Unit (ReLU) (Hahn-
loser et al., 2000), in conjunction with the ranking
loss. The SiLU function introduces smooth gradi-
ents around zero, effectively mitigating potential
instability issues during training. We observe that
this inclusion contributes to the overall stability in
training and improved performance of the model as
shown in Section 4.5. Note that, in contrast to CE
loss, IDIL loss becomes zero once desired ranking
is achieved, addressing the overconfidence issue.

3.4 Implementation
Ideally, the loss has to be computed over all pos-
sible pairs of documents for each model update.
However, it is computationally expensive. There-
fore, following (Toneva et al., 2019; Moon et al.,
2020), we approximate the computation by consid-
ering only documents in each mini-batch. Specifi-
cally, we bucket the documents in the mini-batch
based on their annotated label and pair each docu-
ment in a bucket with all documents in other buck-
ets and compute the loss. Mathematically, the loss
for a mini-batch b is computed as follows:

L = ∑
l∈C

∑
x1∈bl

∑
x2∈b¬l

LIDIL(l∣x1, x2)
where bl denotes the set of training data points x in
this batch b whose label are l, and b¬l denotes the
set of training data points x in this batch b whose
label is not l.

In contrast to CE loss, where the optimization
involves increasing the score corresponding to
the correct label, we backpropagate gradients to
decrease scores associated with incorrect labels.
Specifically, during the backpropagation of gradi-
ents, we detach the gradients for the subtrahend

Table 1: Dataset statistics.

Dataset Domain Criteria # Docs # labels

NYT News Topic 13081 26
Yelp Reviews Sentiment 70000 5

Clima Climate Question Type 17175 8
TREC General Question Type 5952 6

of the difference and exclusively propagate the
gradients through the minuend. In Equation 1,
for instance, we detach the gradients for p(y1∣x1)
and solely backpropagate the gradients through
p(y1∣x2). This detachment allows for a more con-
trolled and selective gradient flow, aiding in the
optimization process, and improvement in perfor-
mance as shown in Section 4.5.

It is important to note that our optimization fo-
cuses solely on the inter-document ranking loss.
Consequently, while the trained model would serve
as a reliable OOD detector, it may not perform as
effectively as a classifier.

4 Experiments

We evaluate our OOD detection method against
state-of-the-art baselines with two classifiers on
multiple datasets belonging to different domains.

4.1 Datasets
We evaluate our method and baselines on four pub-
licly available English text classification datasets
belonging to different domains. In particular,
we consider the news topic classification dataset
New York Times (NYT)2, restaurant review senti-
ment classification dataset Yelp3, and question-type
classification datasets related to climate: Clima-
Insurance+ (Clima) (Laud et al., 2023), and a gen-
eral domain: TREC (Li and Roth, 2002; Hovy
et al., 2001). The documents within the New York
Times dataset are labeled with both coarse and fine-
grained labels. For our training and testing process,
we utilize fine-grained labels. The dataset statistics
are provided in Table 1.

4.2 Compared Methods
• Cross Entropy Loss (CE Loss) trains a classi-

fier using CE loss on in-distribution documents.
The predicted probabilities from the classifier are
used as confidence estimates for OOD detection.

• Correctness Ranking Loss (CRL) (Moon et al.,
2020) is a regularization term added to the CE-

2
http://developer.nytimes.com/

3
https://www.yelp.com/dataset/
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Table 2: OOD detection results with BERT & RoBERTa classifiers. Each experiment is repeated with three random
seeds and the mean scores are reported. The false-positive-rate at 95% true-positive-rate (FPR95), minimum
detection error over all thresholds (ERR), the area under the risk-coverage curve (AURC), and the area under the
precision-recall curve (AUPR) using in-distribution samples as the positives are used as evaluation metrics.

BERT RoBERTa

In-dist OOD Method FPR95(↓) ERR(↓) AUROC(↑) AUPR(↑) FPR95(↓) ERR(↓) AUROC(↑) AUPR(↑)

Yelp

NYT

LogitNorm 82.0 33.2 69.4 57.9 84.4 33.9 66.6 55.0
OneVsRest 85.1 35.8 62.4 49.3 88.5 29.6 69.8 56.5

RCL 56.9 31.2 73.2 55.2 87.7 34.5 56.7 45.0
Bayes Approx 64.3 35.9 66.5 50.3 79.6 36.4 54.1 40.8

CE Loss 82.1 34.9 63.4 50.7 79.8 32.9 66.8 58.0
CRL 99.9 36.9 43.9 51.1 99.8 28.1 64.8 60.5

SELFOOD 63.2 19.6 79.4 82.7 69.5 21.6 72.6 78.8

Clima

LogitNorm 79.2 25.5 72.5 54.8 82.6 25.4 70.7 54.0
OneVsRest 83.0 25.1 69.5 53.2 86.7 28.0 53.8 33.7

RCL 59.9 27.8 67.4 42.1 73.9 22.5 70.7 56.3
Bayes Approx 74.7 28.7 56.7 33.6 63.0 28.0 66.8 40.9

CE Loss 83.2 27.8 48.6 37.0 76.4 22.0 78.2 68.4
CRL 99.6 29.0 49.1 38.8 99.9 20.6 63.0 56.9

SELFOOD 17.6 4.8 97.9 96.4 65.6 16.6 73.2 77.2

TREC

LogitNorm 68.2 27.0 79.8 82.1 60.8 23.0 83.9 84.4
OneVsRest 84.8 40.0 63.9 69.7 75.5 33.0 57.9 61.2

RCL 89.8 43.2 40.1 51.5 77.4 32.4 65.0 68.6
Bayes Approx 92.5 44.7 32.1 44.7 51.8 25.9 72.7 69.4

CE Loss 74.2 33.7 52.8 62.7 58.5 27.5 75.3 78.3
CRL 33.3 15.5 66.7 77.2 100.0 37.3 56.7 73.9

SELFOOD 0.0 0.0 100.0 100.0 55.1 20.6 80.2 90.3

TREC

Yelp

LogitNorm 32.3 0.3 95.5 78.1 15.2 0.5 95.7 44.7
OneVsRest 4.2 0.3 97.9 83.4 39.3 0.4 91.6 63.0

RCL 78.5 0.6 80.2 20.2 67.7 0.6 83.0 24.2
Bayes Approx 46.6 0.4 93.0 61.6 63.7 0.7 87.7 21.3

CE Loss 27.2 0.3 94.9 71.2 11.3 0.4 96.9 62.3
CRL 96.6 0.7 70.9 16.5 99.8 0.7 24.3 9.7

SELFOOD 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0

NYT

LogitNorm 9.3 1.0 97.7 91.2 10.9 2.3 97.2 77.3
OneVsRest 1.8 0.5 99.0 95.8 32.5 1.8 93.2 74.8

RCL 63.6 3.3 84.1 45.7 74.2 3.0 80.4 45.1
Bayes Approx 39.1 2.5 93.5 68.1 64.9 3.0 88.4 54.4

CE Loss 8.4 1.3 97.6 87.5 6.8 1.4 98.1 87.1
CRL 97.2 3.3 73.0 35.2 99.9 3.8 22.9 12.2

SELFOOD 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0

Clima

LogitNorm 11.3 0.8 97.6 88.5 10.4 1.6 97.3 75.9
OneVsRest 3.4 0.6 98.7 93.2 36.3 1.8 91.7 60.1

RCL 73.5 2.4 81.2 37.1 60.7 2.0 86.4 48.2
Bayes Approx 51.7 2.0 90.5 54.4 61.1 2.4 87.6 40.4

CE Loss 15.1 1.7 96.2 69.5 12.2 1.8 96.4 67.8
CRL 86.3 2.2 80.7 39.5 98.9 2.7 30.1 13.0

SELFOOD 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0

loss to make class probabilities better confidence
estimates. It estimates the true class probabil-
ity to be proportional to the number of times a
sample is classified correctly during training.

• LogitNorm (Wei et al., 2022) is a variant of CE
loss that normalizes the logit vector to have a
constant norm during training.

• Bayesian Approximation (Bayes Approx) (Wu
et al., 2022b) calibrates distribution uncertainty
for OOD detection using Monte-Carlo dropout.

• Reassigned Contrastive Learning (RCL) (Wu
et al., 2022a) discriminates over-confident OOD
samples using adaptive class-dependent local
threshold mechanism.

• OneVsRest trains a one vs rest binary classifier
per label. The probability scores of each label
from its corresponding classifier are normalized
and used as their respective confidence estimates.

4.3 Experimental Settings

We experiment with BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) as text classifiers. For
SELFOOD, we train the classifier for 5 epochs with
a batch size of 16 using an AdamW optimizer. We
use a learning rate of 5e-5 using a linear scheduler
with no warm-up steps. For all baselines, we train
the classifier for the same number of steps.

In our evaluation, for each dataset as in-
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distribution, we treat all other datasets as OOD and
compute the performance. Our evaluation follows
a standard approach for each in-distribution dataset
where we begin by splitting the in-distribution
dataset into three subsets: 80% for train, 10% for
val, and 10% for test. The model is trained using
the train split, and its performance is evaluated on
both the test split of the in-distribution dataset and
the entire OOD dataset.
Evaluation Metrics. We utilize evaluation metrics
from (Hendrycks and Gimpel, 2017; DeVries and
Taylor, 2018; Moon et al., 2020) such as the false
positive rate at 95% true positive rate (FPR95), min-
imum detection error over all thresholds (ERR), the
area under the risk-coverage curve (AURC), and
the area under the precision-recall curve (AUPR)
using in-distribution samples as the positives.

4.4 Results
We summarize the evaluation results with BERT
and RoBERTa as classifiers on Yelp, TREC as
in-distribution in Table 2 and NYT, Clima as in-
distribution in Appendix A.1. All experiments
are run on three random seeds and the mean per-
formance scores are reported. As shown in Ta-
ble 2, we observe that SELFOOD performs better
than the baselines on most of the in-distribution,
OOD dataset pairs for both classifiers. A low
FPR95 value indicates that the top-95% confi-
dent in-distribution samples, selected based on
their probability scores, predominantly rank higher
than a majority of OOD samples and SELFOOD
achieves improvements of up to 82 points in FPR95
with Yelp as in-distribution and Clima as OOD
datasets when compared to CRL with BERT clas-
sifier. SELFOOD also exhibits substantial im-
provements of up to 33 points in Detection Er-
ror, 48 points in AUROC, and 58 points in AUPR
when compared to CE-Loss with BERT classifier.
SELFOOD achieves a perfect OOD detection score
for some settings such as TREC as in-distribution
dataset for both BERT and RoBERTa classifiers.
These results highlight the effectiveness of our
ranking formulation with self-supervised training
using IDIL loss.

4.5 Ablation Study
To understand the impact of each component in our
IDIL loss design and implementation, we compare
our method with four ablated versions with BERT
classifier in Table 3: (1) SELFOOD + Grad Sub
represents our method with backpropagating gradi-

Table 3: Ablation Study.
Method FPR95 ERR AUROC AUPR

In Dist: Clima
OOD: NYT

SELFOOD 17.2 2.6 97.8 94.5
+ Grad Sub 67.9 8.9 82.4 61.1
+ Grad Sub & Min 98.4 10.7 49.2 32.3
+ Intra-Doc 92.7 10.6 67.3 41.6
- SILu 14.6 3.9 96.7 89.3

In Dist: NYT
OOD: Clima

SELFOOD 10.5 1.7 98.4 90.5
+ Grad Sub only 83.5 5.1 77.4 44.8
+ Grad Sub & Min 96.5 5.2 60.3 36.0
+ Intra-Doc 48.3 2.6 93.2 80.2
- SiLU 19.0 2.3 97.4 86.0

ents through the subtrahend instead of the minuend,
(2) SELFOOD + Grad Sub & Min represents our
method with gradients backpropagating through
both minuend and subtrahend, (3) SELFOOD +
Intra-Doc considers intra-document comparison
similar to CE loss, in addition to inter-document
intra-label comparison for loss computation, and
(4) SELFOOD- SiLU excludes SiLU function from
the IDIL loss formulation. We also present the per-
formance of SELFOOD for reference. SELFOOD
performs better than SELFOOD + Grad Sub &
Min demonstrating that backpropagating through
one part of the difference is more beneficial than
both, and the comparison between SELFOOD and
SELFOOD + Grad Sub indicates that backpropa-
gating through minuend is better than subtrahend.
We observe that incorporating intra-document com-
parison into loss formulation leads to a decrement
in the ranking ability of the model. Finally, we
observe that removing the SiLU function from the
IDIL loss leads to a decrease in most of the metrics.

5 Analysis & Case Studies

In this section, we present a comprehensive analy-
sis of our proposed method from different perspec-
tives to understand its effectiveness.

5.1 CE Loss vs SELFOOD: Training
Trajectory Analysis

Mathematically, the model trained using CE loss is
a solution to our IDIL loss optimization. However,
our empirical results reveal a significant disparity in
OOD detection performance between SELFOOD
and model trained on CE loss. To gain a deeper un-
derstanding, we plot the CE Loss and IDIL losses
for models optimized with IDIL and CE loss, as
shown in Figure 3(a). We consider Clima as the
in-distribution dataset and BERT as the classifier.
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Figure 3: To understand training trajectories of CE Loss and SELFOOD, we plot their respective losses, validation
FPR, and learned weights while training. We observe IDIL loss minimization is more correlated with performance
and the learned weights of CE-Loss and SELFOOD show divergent paths since the beginning.
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Figure 4: Maximum softmax score vs percentile in-distribution & OOD data associated with that score. By using the
least in-distribution maximum softmax score as the threshold (dotted line) for OOD classification, CE loss considers
more than 50% and CRL considers almost 100% of the OOD data as in-distribution (red region). However, in the
case of SELFOOD, we observe a clear margin in maximum softmax scores that separate OOD and in-distribution.

Additionally, we plot the validation FPR95 using
Yelp as the OOD dataset to analyze the correlation
between loss minimization and performance in Fig-
ure 3(b). Figure 3(a) illustrates that while minimiz-
ing CE loss leads to fluctuations in the IDIL loss,
ultimately reaching zero, Figure 3(b) shows that
the performance is more closely associated with ex-
plicit IDIL minimization. Specifically, minimizing
the IDIL loss results in improved FPR95. The find-
ings indicate that the minimization of CE loss and
IDIL loss follows distinct trajectories. To validate
this hypothesis, we conduct an experiment using a
toy 3-dimensional dataset comprising five isomet-
ric Gaussian blobs and train a logistic regression
classifier initialized with same weights, minimiz-
ing IDIL and CE-loss. We flatten the weight matrix
and plot the top-3 principal components. As shown
in Figure 3(c), the learned weights of CE-Loss and
SELFOOD progress in different directions, thereby
confirming our hypothesis.

5.2 Maximum softmax score Analysis

We plot the maximum softmax score with the per-
centile in-distribution and OOD data associated
with that score for CE loss, CRL, and SELFOOD

with BERT classifier on Clima as in-distribution
and NYT as OOD datasets in Figure 4. When com-
paring the maximum softmax score with the per-
centile data associated with that score, interesting
observations can be made regarding its distribution.
Specifically, when using the least in-distribution
maximum softmax score as the threshold for OOD
classification, we find that the CE loss considers
over 50% of the OOD data and CRL considers
almost 100% of the OOD data as in-distribution.
However, in the case of SELFOOD, we observe a
clear margin in the maximum softmax scores that
effectively separates OOD and in-distribution data.
This suggests that the threshold needs to be care-
fully tuned for CE loss and CRL, requiring more
effort and annotated data, whereas in the case of
SELFOOD, we do not require such tuning. This
demonstrates that SELFOOD is capable of accu-
rately classifying between OOD and in-distribution
samples based on their respective maximum soft-
max scores, resulting in superior performance.

5.3 Batch size Analysis

We compare documents within the mini-batch
when computing the loss. Consequently, the num-
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Figure 5: Performance of SELFOOD w.r.t. batch size.
We consider BERT classifier, Clima as in-distribution,
and NYT, Yelp as OOD datasets. We observe an in-
crease in performance with an increase in batch size.

ber of document pairs over which the loss is com-
puted depends on the batch size used during train-
ing. To investigate the impact of batch size on per-
formance, we vary the batch size and evaluate the
corresponding performance in Figure 5 with BERT
classifier. We consider Clima as in-distribution,
and NYT, Yelp as OOD datasets. As the batch
size increases, the performance of the model also
improves, until a batch size of 16, where the perfor-
mance reaches a plateau. This observation aligns
with our intuition that a larger batch size allows for
more in-batch document pairs to be compared, lead-
ing to more accurate loss computation. Based on
these findings, we recommend utilizing a batch size
of 16 or higher to achieve optimal performance.

5.4 Fine-grained OOD Detection

To explore the limits of SELFOOD, we consider
in-distribution and OOD datasets from the same
domain. The objective is to assess its ability to dif-
ferentiate between samples that are closely related
but still OOD, which is a challenging task. Specif-
ically, we consider the news domain and choose
NYT as the in-distribution, and AGNews (Zhang
et al., 2015), 20News4 as OOD datasets and train
BERT classifier. As shown in Table 4, SELFOOD
performs significantly better than the baselines on
most of the metrics. Moreover, it also achieves
near-perfect scores for the AGNews, highlighting
its ability to accurately identify OOD samples even
when they belong to the same domain as the in-
distribution dataset.

5.5 Classification performance of SELFOOD

The BERT classifier trained with CE-Loss demon-
strates exceptional classification performance,
achieving accuracy scores of 97%, 85%, and 97%
on NYT, Clima, and TREC datasets respectively.
In contrast, SELFOOD achieves only 0.3%, 9.5%,

4
http://qwone.com/~jason/20Newsgroups/

Table 4: Fine-grained OOD detection results with NYT
as the in-distribution dataset with BERT classifier. We
choose two datasets AGNews, 20News from the news
domain, the same as NYT, and consider them as OOD
datasets. The results show that SELFOOD can accu-
rately detect OOD samples within the same domain.

OOD Method FPR95 ERR AUROC AUPR

AGNews

LogitNorm 45.9 0.9 86.7 15.8
Bayes Approx 57.5 0.9 87.7 23.9

CE-Loss 45.5 0.9 86.5 16.6
CRL 77.2 0.9 80.6 9.5

SELFOOD 0.0 0.1 100.0 99.4

20News

LogitNorm 24.5 6.2 91.7 39.2
Bayes Approx 35.0 4.3 93.7 66.6

CE-Loss 25.4 6.2 91.9 39.6
CRL 59.9 6.4 87.4 36.9

SELFOOD 28.2 4.9 94.2 61.5

and 1.8%. This highlights that while SELFOOD
serves as a reliable OOD detector, its performance
as a text classifier is subpar. This observation can
be attributed to our IDIL loss formulation, which
focuses on comparing confidence levels across doc-
uments for each label rather than across labels for
each document. As a result, the IDIL loss primarily
promotes the ordinal ranking of confidence lev-
els across documents, which enhances the model’s
OOD detection capabilities. However, this empha-
sis on inter-document ranking comes at the expense
of inter-label ranking, resulting in limited classifi-
cation capabilities. Moreover, when we introduce
the intra-document comparison to the IDIL loss, as
discussed in Section 4.5, we observe a decline in
the model’s ranking ability. Podolskiy et al. (2021)
use mahalanobis distance for OOD detection and
observe that although mahalanobis distance along-
side transformer-based models is effective, such
methods are sensitive to the geometric features
in the embedding space and can be spoilt if the
embedder is used for classification and is overfit.
This matches with our observation, upon adding
intra-document comparison to the loss, the OOD
detection performance drops. This further supports
the notion that balancing the inter-document and
intra-document comparisons is crucial for achiev-
ing optimal performance in both OOD detection
and text classification tasks.

5.6 SELFOOD + Mahalanobis distance

Mahalanobis distance-based estimation of OOD
scores is an effective post-processing method used
on trained OOD classifiers (Leys et al., 2018; Xu
et al., 2020). We investigate whether this post-
processing further improves the performance of
our method. OOD scores are estimated as the dis-
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Table 5: OOD detection results with Mahalanobis Dis-
tance post-processing technique. We choose two in-
distribution, OOD pairs with BERT classifier. The re-
sults show that SELFOOD’s OOD detection capabilities
are enhanced with the post-processing technique.

InD OOD Method FPR95 ERR AUROC AUPR

Clima Yelp
SELFOOD 14.7 0.6 98.0 90.8

SELFOOD + Maha 0.8 0.2 99.2 97.2

Yelp NYT
SELFOOD 63.2 19.6 79.4 82.7

SELFOOD + Maha 12.4 4.4 97.4 97.5

tance between a test data point and the distribution
of in-distribution samples using the Mahalanobis
distance metric. Following (Xu et al., 2020), we
consider the intermediate layer encodings of the
OOD classifier trained on in-distribution samples
as its representative distribution. We apply this
post-processing on top of SELFOOD and exper-
iment with two in-distribution, OOD pairs with
BERT classifier. As shown in Table 5, we observe
further improvement in performance, demonstrat-
ing the quality of learned representative distribution
using SELFOOD.

5.7 Qualitative Analysis of SELFOOD
We present a few examples with Yelp as in-
distribution and TREC as OOD where SELFOOD
accurately distinguishes and CE-loss fails to dis-
tinguish between in-distribution and OOD sam-
ples in Table 6. Although the first example has
food-related words like lunch, cork and sentiment-
indicative words such as contemptible scoundrel,
SELFOOD accurately identifies it as OOD and
CE loss model fails to do so. Examples 3 and
4 have questions that revolve around eateries. CE-
Loss model confuses and predicts them as OOD
as TREC dataset contains only questions. How-
ever, SELFOOD was able to rank them higher and
accurately identify them as in-distribution.

6 Conclusion

In this paper, we present SELFOOD, a novel frame-
work for OOD detection that leverages only in-
distribution samples as supervision. Building upon
the insight that OOD samples typically do not be-
long to any in-distribution labels, we formulate
the OOD detection problem as an inter-document
intra-label ranking task. To address this challenge,
we propose IDIL loss which guides the training
process. Through extensive experiments on multi-
ple datasets, we demonstrate the effectiveness of
SELFOOD on OOD detection task. However, we

Table 6: Qualitative analysis of CE-Loss vs SELFOOD
with Yelp as in-distribution and TREC as OOD datasets.
Wrong predictions are in Red and correct predictions
are in Green.

Text CE-Loss SELFOOD

Who said “What contemptible scoundrel
stole the cork from my lunch?” InD OOD

Who said “Give me liberty
or give me death”? InD OOD

Its a tequila house - wouldn’t you
want your staff to be knowledgeable

about tequila? Call me silly.
So Gregg and I are wondering Bourbon

Street, looking for the next "place"...

OOD InD

the pitch reads: "what’s worse than
mean girl cheerleaders? how about

resurrected mean-girl cheerleaders with
supernatural powers?" And if this place
could be farther away from my house,

it’d be in Camden... Oh, the Vomitorium,
everytime i grace the hipster-stained ..

OOD InD

also acknowledge that it comes at the expense of
text classification performance. Future research
can focus on developing techniques that effectively
balance inter-document and intra-document com-
parisons, enabling improved performance in both
OOD detection and text classification tasks.

7 Limitations

As mentioned in the previous sections, the OOD
detection performance of our method comes at the
cost of classification performance. This limitation
needs to be addressed.

8 Ethics Statement

This paper proposes a self-supervised OOD detec-
tion method. The aim of the paper is to minimize
the human effort in annotating OOD documents
and using only in-distribution documents for OOD
detection. OOD detection is helpful in detection
potential harmful content. Hence, we do not antici-
pate any major ethical concerns.
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A Appendix

A.1 Results with NYT & Clima as
in-distribution datasets

We present experimental results on Clima and
NYT as in-distribution datasets with BERT and
RoBERTa classifiers in Table 7.

A.2 Experimental Settings
Training trajectory analysis experiment. We
compare two experiments showcasing empirical
evidence on how the trajectory of CE-loss mod-
els and IDI loss models differ. In 3(b) we plot
the change in validation FPR on BERT-classifiers
optimized on CE-loss and IDIL loss. Here, we cal-
culate the FPR across training steps on a validation
dataset consisting of 500 in-distribution and OOD
data points each to compare the training trajectories
of the two models.

We generate the toy dataset by creating five
isometric Gaussian blobs of 3-dimensional data
points, with each cluster containing 1000 samples.
The centers of all the clusters are bounded by the
range [−10.0, 10.0] and the cluster standard de-
viation is set to 2.0 to account for limited over-
lap between cluster datapoints. We consider four
clusters as being in-distribution and the remain-
ing cluster as OOD. We train a logistic regression
classifier on the in-domain datapoints initialized
with the same weights and minimizing IDIL and
CE-loss. The model is optimized using Stochas-
tic Gradient Descent with a learning rate of 0.01
for 300 epochs. The weights are visualized at the
begining of each epoch. In order to facilitate visual-
ization, the weight matrices of both approaches of
dimension are flattened and Principal Component
Analysis (PCA) is applied to reduce the dimension-
ality of the weight matrix. We plot the top-3 prin-
cipal components after eacch epoch to conclude
that the learned weights of CE-loss and SELFOOD
progress in a different maner.
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BERT RoBERTa

In-dist OOD Method FPR95(↓) ERR(↓) AUROC(↑) AUPR(↑) FPR95(↓) ERR(↓) AUROC(↑) AUPR(↑)

NYT

Clima

LogitNorm 20.6 1.0 96.8 92.3 18.4 1.0 97.3 93.6
OneVsRest 84.7 1.7 87.3 82.6 92.7 1.9 91.1 85.1

RCL 46.9 1.5 94.4 87.5 86.7 2.3 86.7 76.6
Bayes Approx 40.6 1.2 95.4 90.0 80.0 2.4 88.4 76.5

CE Loss 22.1 1.0 96.9 92.5 15.7 1.0 97.3 92.8
CRL 32.3 1.7 95.4 86.5 79.3 3.2 79.8 67.0

SELFOOD 10.5 1.6 98.4 90.5 4.6 1.0 99.3 95.4

TREC

LogitNorm 13.3 5.5 97.2 87.9 17.5 6.4 96.1 84.1
OneVsRest 96.0 6.2 84.0 79.4 97.2 6.3 90.5 82.8

RCL 62.9 6.1 92.2 85.8 73.9 8.8 88.4 73.1
Bayes Approx 38.8 4.5 94.8 89.9 67.5 8.3 88.7 74.7

CE Loss 14.5 5.8 97.0 87.1 21.9 6.7 95.5 83.5
CRL 67.9 6.5 89.9 79.1 85.6 9.6 71.4 61.4

SELFOOD 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0

Yelp

LogitNorm 1.7 0.6 99.3 87.9 1.2 0.6 98.5 87.9
OneVsRest 15.1 0.7 97.4 78.1 8.7 0.6 97.6 78.8

RCL 45.1 0.5 94.9 84.7 76.7 1.0 90.2 60.0
Bayes Approx 28.7 0.4 96.4 86.8 83.0 1.1 87.7 56.6

CE Loss 3.4 0.7 99.2 82.3 1.8 0.6 99.3 85.4
CRL 69.5 0.5 89.3 77.8 73.3 1.0 83.8 58.3

SELFOOD 22.5 1.1 95.7 57.8 0.2 0.2 99.9 97.5

Clima

TREC

LogitNorm 37.8 5.5 94.6 91.9 60.5 7.0 91.6 88.0
OneVsRest 25.5 6.8 95.5 91.8 54.3 15.5 84.5 67.7

RCL 80.1 18.4 75.7 55.3 91.2 18.4 66.6 47.7
Bayes Approx 83.7 15.8 77.5 63.8 65.7 13.9 83.6 70.7

CE Loss 34.9 5.6 94.9 92.2 60.2 9.1 90.4 83.8
CRL 83.0 12.7 82.0 72.2 60.9 12.6 79.2 63.2

SELFOOD 0.3 1.1 99.4 99.4 38.9 8.8 90.1 84.7

Yelp

LogitNorm 57.7 0.8 93.0 81.3 54.7 1.2 92.6 72.3
OneVsRest 43.7 1.0 92.7 72.5 58.8 1.8 73.5 34.7

RCL 91.0 2.3 60.7 12.2 98.0 2.3 56.4 12.7
Bayes Approx 81.4 2.2 76.5 22.7 96.8 2.2 52.3 16.3

CE Loss 46.3 0.9 93.8 80.1 79.5 1.9 86.5 47.2
CRL 98.7 1.4 67.3 53.3 72.9 2.1 50.9 19.0

SELFOOD 14.7 0.6 98.0 90.8 37.6 1.5 72.3 54.9

NYT

LogitNorm 37.6 4.2 94.4 87.3 46.1 4.5 93.1 85.4
OneVsRest 34.6 4.8 94.3 85.3 40.6 9.4 83.1 51.3

RCL 90.3 12.1 64.6 28.8 97.9 12.4 51.5 21.2
Bayes Approx 87.4 11.2 70.4 38.3 96.8 11.3 55.8 29.2

CE Loss 44.9 4.8 93.2 84.4 62.5 6.7 89.6 75.2
CRL 85.6 7.6 78.0 62.5 61.3 9.4 61.8 39.9

SELFOOD 17.2 2.6 97.8 94.5 55.3 6.7 68.6 61.5

Table 7: OOD detection results with BERT & RoBERTa classifiers. Each experiment is repeated with three random
seeds and the mean scores are reported. The false-positive-rate at 95% true-positive-rate (FPR95), minimum
detection error over all thresholds (ERR), the area under the risk-coverage curve (AURC), and the area under the
precision-recall curve (AUPR) using in-distribution samples as the positives are used as evaluation metrics.
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