
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 9299–9317
December 6-10, 2023 ©2023 Association for Computational Linguistics

Compositional Generalization for Data-to-Text Generation

Xinnuo Xu1, Ivan Titov1,2 and Mirella Lapata1

1ILCC, School of Informatics, University of Edinburgh
2ILLC, University of Amsterdam

xxu3@ed.ac.uk, {ititov, mlap}@inf.ed.ac.uk

Abstract
Data-to-text generation involves transforming
structured data, often represented as predicate-
argument tuples, into coherent textual descrip-
tions. Despite recent advances, systems still
struggle when confronted with unseen com-
binations of predicates, producing unfaithful
descriptions (e.g., hallucinations or omissions).
We refer to this issue as compositional gen-
eralisation, and it encouraged us to create
a benchmark for assessing the performance
of different approaches on this specific prob-
lem. Furthermore, we propose a novel model
that addresses compositional generalization by
clustering predicates into groups. Our model
generates text in a sentence-by-sentence man-
ner, relying on one cluster of predicates at a
time. This approach significantly outperforms
T5 baselines across all evaluation metrics. No-
tably, it achieved a 31% improvement over T5
in terms of a metric focused on maintaining
faithfulness to the input.1

1 Introduction

Data-to-text generation (DTG) (Gardent et al.,
2017; Dušek et al., 2020) aims to accurately gener-
ate textual descriptions from input tuples; the tuples
should encompass all the information needed for
generating the description regardless of the narra-
tive order. Typically, as shown in Figure 1, each
tuple consists of two arguments and one predi-
cate that conveys their relationship.2 Given the
large number of pre-defined predicates, it is time-
consuming to collect human-annotated training ex-
amples for each potential combination of them.
Thus, models must have the ability to generalize
and handle examples with previously-unseen predi-
cate combinations. We refer to this generalization
scenario as compositional generalization.

Prior research (Mehta et al., 2022; Xu et al.,
2021; Kale and Rastogi, 2020a; Peng et al., 2020;

1Code available at: github.com/XinnuoXu/CG_DTG.
2We follow the format specified in Gardent et al. (2017).

Figure 1: An example from WebNLG dataset (Gardent
et al., 2017). DTG aims at transforming the input struc-
tured data (left) into coherent textual description (right).

Chen et al., 2020) has focused on evaluating the
compositional generalization (CG) abilities of DTG
models. These studies created few-shot training
splits using established benchmarks by reducing
the number of training examples or limiting the
number of distinct predicate combinations in the
training set through random selection. However,
these arbitrary selections overlook the practical ef-
fort required for annotating different examples. For
example, annotating examples with a larger number
of input tuples requires more time and effort.

We introduce a test environment based on Gar-
dent et al. (2017). During training, models are
exposed to examples with fewer input tuples, while
in the testing phase, examples with more input
tuples are presented. To make it even more chal-
lenging, we combine CG with few-shot learning by
reducing the number of training examples for each
predicate combination to one. We also incorporate
CG with domain adaptation by evaluating the mod-
els on unseen domains. Our results demonstrate
that the SoTA pre-trained language models (LMs;
Raffel et al. 2020; Kale and Rastogi 2020b) fail to
generalize effectively in our experimental setup.

To tackle this issue, we propose a clustering-
based method (Figure 2) that utilize the graph
weights learned from training data to decompose
unfamiliar predicate compositions into smaller
groups during inference. Each group consists of
predicate combinations encountered by the model

9299

github.com/XinnuoXu/CG_DTG

Figure 2: Framework of our proposed inference procedure. We introduce a set of clustering-based methods that
leverage the graph weights learned during training to decompose the unseen predicate compositions into familiar
groups. For each group, we gather the input tuples associated with predicates in that group, and generate a sentence
to describe them. The final text description is created by combining the generated sentences from all the groups.

during training. Then, individual sentence descrip-
tions are generated separately for each group, and
combined to form the final description for the input.
In contrast to previous studies that primarily rely
on self-training to improve CG in DTG (He et al.,
2020; Heidari et al., 2021; Li et al., 2021; Mehta
et al., 2022), as well as using data augmentation
to improve CG in various tasks such as seman-
tic parsing (Andreas, 2020; Qiu et al., 2022; Fang
et al., 2023), our method solely relies on small
training sets and does not require any additional
human-annotated, automatically labeled, or unla-
beled data. In the CG-centric testing scenario,
we observe significant improvements across all
metrics in the benchmark compared to the vanilla
T5 model (Raffel et al., 2020; Kale and Rastogi,
2020b). A faithfulness-based metric (Dušek and
Kasner, 2020) shows an impressive gain of 31%
over T5. A similar trend is seen when combin-
ing the CG challenge with few-shot learning and
domain adaptation. Our contributions are:

• We create a benchmark to assess the CG ability
of DTG models and generate four testing scenarios
of varying difficulty by combining CG with few-
shot learning and domain adaptation.

• We present an innovative architecture that uses
a clustering algorithm to decompose the text de-
scription generation for unfamiliar input predicate
combinations into smaller, familiar ones.

• We show that our method produces outputs
that are not only more faithful but also exhibit a
greater resemblance to human-written references
compared to vanilla pre-trained LMs while tested
on the proposed benchmark.

• We also introduce an intrinsic evaluation
framework for inspecting input decomposition.

Figure 3: Four evaluation scenarios.

2 CG focused Benchmark

Existing benchmarks (Ratnaparkhi, 2000; Liang
et al., 2009; Mairesse et al., 2010; Banik et al.,
2013; Wen et al., 2015; Lebret et al., 2016; Wen
et al., 2016; Gardent et al., 2017; Wiseman et al.,
2017; Novikova et al., 2017; Parikh et al., 2020)
have provided an important test-bed for DTG mod-
els. We specifically choose WebNLG 20173 (Gar-
dent et al., 2017) to build our benchmark upon
(reasons are shown in Appendix B) and primarily
focus on assessing the models’ capability for CG.
We present two sets of training splits and create
four distinct testing scenarios with different diffi-
culty levels by incorporating the training splits with
the seen and unseen test sets offered in WebNLG.

2.1 Training Sets
CGFULL consists of a set of independent train-
ing splits {CGFULL-k}, k ranging from 2 to 7.
CGFULL-k exclusively consists of examples where
the number of input tuples is equal to or less than
k. We excluded CGFULL-5 and -6 here due to
the marginal increase in the amount of data within
these two sets. Note that, CGFULL-7 represents
the full training set of WebNLG 2017.

3https://github.com/ThiagoCF05/webnlg/tree/
master/data/v1.6.

9300

https://github.com/ThiagoCF05/webnlg/tree/master/data/v1.6
https://github.com/ThiagoCF05/webnlg/tree/master/data/v1.6

Training Splits CGONESHOT CGFULL
-2 -3 -4 -5 -6 -7 -2 -3 -4 -7

Examples 553 987 1477 1867 2043 2203 7712 11350 14744 18101
% of WebNLG2017 train 3% 5% 8% 10% 11% 12% 43% 63% 81% 100%

Table 1: The amount of examples within splits in collection CGFULL and CGONESHOT.

CGONESHOT is a one-shot version of CGFULL.
We define predicate composition as a combination
of the input predicates that is order agnostic. In
CGFULL, the same predicate composition is found
in multiple training examples paired with different
arguments. To present a more challenging situation,
we generate split CGONESHOT-k by randomly se-
lecting one example for each predicate composition
in the corresponding CGFULL-k split.

The statistical details are presented in Table 1.
Models will undergo separate training on each indi-
vidual splits in both CGFULL and CGONESHOT.

2.2 Validation and Test Sets

The validation and test set in the original WebNLG
2017 remain unchanged. The test set consists of
two categories: The seen category includes exam-
ples from 9 domains present in training, while the
unseen category consists of examples from 5 new
domains with newly defined predicates and unseen
entities not present in training. Note that, both vali-
dation and test sets contain examples with different
numbers of input tuples, ranging from 1 to 7.

2.3 Evaluation Scenarios

We create four evaluation scenarios (Figure 3) by
pairing training splits with test sets. When trained
on CGFULL-k, the models are exposed to numer-
ous examples with predicate combinations of up to
k predicates. When tested on the WebNLG seen
category, their CG abilities are evaluated as they en-
counter novel combinations consisting of a greater
number of predicates. To further intensify the chal-
lenge, the models are tested on the unseen cate-
gory, requiring them to demonstrate both CG and
adaptability to predicate combinations from new
domains. They also need to handle newly intro-
duced arguments. On the other hand, the models
trained on CGONESHOT-k have only seen one ex-
ample for each combination of up to k predicates.
When tested on the seen set, their CG abilities are
assessed with few-shot learning skills. When eval-
uated on the unseen set, the examination of their
capabilities further extends to domain adaptation.

2.4 Evaluation Metrics

Generation Evaluation focuses on evaluating
the generated text w.r.t. its similarity to human-
authored reference sentences. We adopt BLEU
(Papineni et al., 2002), a token-level exact matching
metric that is incorporated in the WebNLG.

Faithfulness Evaluation tests if the generated
text is faithful to the input tuples (Wen et al., 2015;
Reed et al., 2018; Dušek and Kasner, 2020). Un-
faithful generations contain hallucinations (genera-
tions with extra or incorrect information) or omis-
sions (generations missing important input infor-
mation) (Dušek et al., 2019). We adopt PARENT
(Dhingra et al., 2019), an entailment-based met-
ric, where a higher score indicates a lower occur-
rence of hallucinations; and OK-percent (Dušek
and Kasner, 2020), a natural language inference-
based metric representing the proportion of system
generations free from hallucinations or omissions.

3 Clustering based CG Methods

The framework of our approach is shown in
Figure 2. For clarity, we denote the input tu-
ples and their corresponding predicates as X =
{X1, X2, · · ·XN} and P = {P1, P2, · · ·PN} re-
spectively, where Pi is the predicate of the ith tuple
Xi. N represents the total number of tuples. The
output text is denoted as Y = {Y1, Y2, · · ·YM},
where Yj represents the jth sentence in the output.

Fine-tuning pre-trained LMs (Kale and Rastogi,
2020b; Ribeiro et al., 2021), aim to maximize the
log likelihood of generating the ground truth text
Y given the linearized input tuples X, denoted as
log p (Y|X), during training. However, these mod-
els face challenges in generalizing to unseen predi-
cate combinations. To overcome this, an intuitive
approach is to decompose these unseen combina-
tions into smaller groups, ensuring that the combi-
nation in each group has been seen during training;
then, generate a sentence from each group individu-
ally and combine them to form the final description.

We denote the decomposition as C =
{C1,C2, · · ·CM}, where Cj represents the jth

predicate group responsible for generating sentence
Yj . Since DTG tasks require to include all the input

9301

information in the output without repetition, the de-
composition must fulfill C1 ∪ C2, · · · ∪ CM = P
and ∀i, j : 1 ⩽ i < j ⩽ M , Ci ∩ Cj = ∅. The
text generation is then broken down into a set of
parallel steps. Each step aims at creating a single
sentence to describe the tuples associated with the
predicates in one of the groups:

p (Y|C,X) =
M∏

j=1

p
(
Yj |XCj

)
(1)

where XCj is a subset of X. The tuple Xi ∈ XCj

iff its predicate Pi ∈ Cj .4 An alternative represen-
tation of a predicate decomposition involves the
use of a matrix. Given a set of tuples with their
corresponding predicates, we construct a fully con-
nected undirected graph, denoted as G = (V,E),
where the predicates are represented as nodes in V .
In turn, a decomposition can be considered as a par-
titioned graph derived from the original graph G.
We encode the partitioned graph as a binary matrix
M, where Mij = 1 signifies that the predicates Pi

and Pj belong to the same group, while Mij = 0
indicates that they belong to different groups.

Unfortunately, the annotated ground truth de-
compositions are unavailable in the majority of
DTG training sets. Therefore, the training objective
becomes maximizing the marginal log likelihood
of the output text Y w.r.t. the latent M.

log p (Y|X) = logEM∼p(M|X)p (Y|M,X) (2)

As the number of input tuples increases, exploring
all possible decompositions for each example is
intractable. Following Kim et al. (2017); Deng et al.
(2018), we approximate the marginal likelihood as:

logEM∼p(M|X)p (Y|M,X) ≈ log p
(
Y|EM∼p(M|X)M,X

)

This results in the stochastic decomposition vari-
able M being replaced with the deterministic value
M̄ = EM∼p(M|X)M. Assuming that M follows
a Bernoulli distribution B(γ), with each element
within the matrix being independent, we can rep-
resent the distribution of M as Mij ∼ B(γij).
Thus, the expectation of the binary matrix M̄ is the
Bernoulli parameter matrix γ. In Section 3.1 we
demonstrate two training methods to predict γ.

3.1 Training
Inspired by Su et al. (2021) and Moryossef et al.
(2019), we propose an automatic way for creating

4For the input tuple subsets, we also have XC1∪XC2 , · · ·∪
XCM = X and ∀i, j : 1 ⩽ i < j ⩽ M , XCi ∩ XCj = ∅.

silver annotations for the training of γ. For each
training example in DTG5, we calculate the BLEU
score for each input tuple w.r.t. each sentence in the
reference output. Afterwards, the tuple is aligned
with the sentence that achieves the highest BLEU
score. This process yields a collection of tuple
groups, where tuples within a group are described
in the same sentence. By removing the arguments
from each tuple, we obtain an annotated predicate
decomposition from each DTG training example.
Now, we introduce two methods to obtain matrix γ
using these annotated predicate decompositions:

Numerical Weight Prediction determines γij by
analyzing individual occurrence vs. co-occurrence
of two predicates Pi, Pj in the training data:

γij =
#(Pi, Pj)

(Pi) + # (Pj)

where #(Pi, Pj) denotes the frequency of both
predicate Pi and Pj being mentioned in the same
sentence throughout the corpus. #(P∗) represents
the frequency of predicate P∗ appearing in the cor-
pus6. However, this approach has a limitation: if
either predicate is not included in the training set,
the weight will always be zero. This becomes chal-
lenging when transitioning to a new domain, since
most weights in the matrix γ will be zero.

Neural Network based Prediction solves this
problem by introducing a small scale transformers-
based neural network7. The model takes two tok-
enized predicates concatenated as input, including
a "[CLS]" token attached to the beginning. The
embedding of the "[CLS]" token from the final
transformer layer is then fed into a classification
head. This head predicts whether the two predi-
cates should be described in the same sentence (1)
or not (0). Elements in γ can be written as:

γij = sigmoid(W (Transformers (Pi, Pj)) + b)

where W is a linear transformation. b is the bias.
For classifier training, synthetic data is generated
using the automatically annotated predicate decom-
position. Positive examples are formed by pairing
any two predicates within the same group, while
negative examples consist of pairs from different
groups. In cases where there is only one predicate

5Check Appendix C for the data preprocessing details.
6To calculate #(P∗), we discard the examples with only

a single tuple as input.
7Appendix D shows the hyper-parameters.

9302

Algorithm 1 DTG with Predicate Decompostion
Require: Input tuples X; Their predicates P; Trained predi-

cate clustering model PC; Fine-tuned generator T5.
1: for k ← 1 to |X| do
2: C← PC(P, k)
3: if EffectiveCluster(C) then
4: C̄← C and k̄ ← k; Break
5: end if
6: end for
7: C̄← Sort(C̄)
8: for j ← 1 to k̄ do
9: Yj ← T5({XC̄j})

10: end for
11: Y ← {Yj}

group in the input, indicating a single-sentence out-
put, each input predicate is randomly paired with a
predicate from the dataset that is not part of the in-
put for the negative examples’ creation. The model
is trained with the Cross Entropy loss.

To train the text generation model, we use the
annotated tuple groups introduced earlier in this
section instead of relying on the predicate decompo-
sitions predicted by the introduced models. Since
each tuple group is aligned to a sentence, we take
the tuples as input and the sentence as output to
fine-tune a setence-level T5 8 for text generation.

3.2 Testing

The testing procedure is outlined in Algorithm 1.
Initially, we aim to obtain a predicate decomposi-
tion C̄ for a given set of input tuples. To accom-
plish this, we begin by estimating the expectation
of the binary matrix M, i.e. γ, using the models
introduced in Section 3.1. Afterwards, we iter-
ate through all possible values for the number of
predicate groups k (ranging from 1 to |X|) and em-
ploy a clustering algorithm (specifically, spectral
clustering in this study) over the matrix γ9. If the
minimum weight between two predicates within
the same cluster exceeds a threshold ϵ10, we halt
the exploration. Our objective is to minimize the
number of predicate clusters and ensure that each
cluster does not contain unfamiliar predicate pairs.

To enhance the coherence of the generated text,
we implement a simple method to arrange the pred-

8In our experiments, we observed a decrease in the BLEU
metric when using sentence-level T5 models for text genera-
tion. Consequently, we substitute them with standard tuples-
to-paragraph T5 models that are fine-tuned on unaligned input-
output data in each training split.

9To improve the coherence of the generated texts, we adjust
γ by assigning 0 to γij if the corresponding triples of predicate
Pi and Pj do not share any arguments.

10The threshold ϵ is determined using the validation set.

icate clusters. For each cluster, we calculate the
occurrence of its predicates being described in the
first sentence across all training examples, and
choose the one with the highest frequency as the
first cluster. Next, we select the subsequent cluster
by identifying the one with the highest number of
unique arguments observed in the previous cluster.
We repeat this step until all clusters are sorted. Fi-
nally, we utilize the fine-tuned T5 model to produce
a sentence for each cluster following the order, and
concatenate these generated sentences to form the
final output describing the input tuples.

3.3 REINFORCE-enhanced Decomposition
Deterministic approaches heavily rely on automat-
ically annotated predicate decompositions. How-
ever, the annotator based on exact token match-
ing is weak at detecting paraphrasing, resulting in
misalignment of tuples to the wrong sentence. To
address this, we propose a REINFORCE (Glynn,
1990; Williams, 1992) based approach that reduces
reliance on silver annotations.

We first simplify the marginal distribution in
Eq 2 using Jensen’s Inequality. Since the logarithm
function is concave, we have:

logEM∼p(M|X)p (Y|M,X) ⩾ EM∼p(M|X) log p (Y|M,X)

Our goal is to train the parameters ϕ in pϕ (M|X)
to optimize this lower bound. The gradient of ϕ is:

EM∼pϕ(M|X) [log p (Y|M,X)▽ϕ log pϕ (M|X)]

However, directly sampling a binary matrix from
the Bernoulli distribution M ∼ B(γ) does not guar-
antee that the matrix can be transformed into a
valid set of clusters C. Therefore, we propose
a method to replace the sampling process in the
forward pass. We first sample a binary matrix M
from the Bernoulli distribution B(γ). Next, we
perform element-wise multiplication between this
matrix and γ, denoted as M⊙ γ. Finally, we apply
the spectral clustering algorithm to the resulting
matrix to obtain discrete clusters C.11 As this pro-
cess is not differentiable, akin to the concept of
the straight-through estimator (Bengio et al., 2013),
we perform a backward pass through the sampling
step by computing the probability pϕ(M|X) using
the sampled predicate decomposition C:

pϕ(M|X) =
N∏

i=1

N∏

i=1

γ
kij

ij (1− γij)
1−kij

11The number of clusters corresponds to the number of
sentences in the ground truth text description.

9303

where kij ∈ {0, 1}. kij = 1 means that predicate
Pi and Pj belong to the same cluster in C, while
kij = 0 indicates that they are assigned to different
clusters. By using this approach, the gradients can
be propagated through the Bernoulli distribution.
We compute γij ∈ (0, 1) using the transformers
classifier structure discussed in Section 3.1. In
order to speed up convergence, we initialize the
parameters using the classifier that has been trained
in the deterministic approach.

In turn, we align each cluster in the sampled
decompositon C with a sentence from the ground
truth text description utilizing the Hungarian al-
gorithm (Kuhn, 1955). The cost matrix for the
algorithm is derived from the negative BLEU score
between a tuple group and a sentence. Then, we
employ the fine-tuned T5 generator (Section 3.1) as
the reward model to evaluate the sampled predicate
decomposition. The reward is calculated based
on Eq 1, which involves multiplying the likeli-
hood of generating each sentence in the ground
truth, conditioned on its corresponding aligned tu-
ple group. Since REINFORCE is prone to high
variance (Zaremba and Sutskever, 2015; Li et al.,
2016), we propose a baseline log p(Y|C̃,X), to the
reward model. C̃ denotes a randomly generated
predicate decomposition. We achieve this by ran-
domly assigning each tuple to a cluster.12

4 Experiments and Results

We compare our methods (CG-Numerical, CG-NN,
CG-RL) against fine-tuning T513 (Kale and Ras-
togi, 2020b) using the benchmarks introduced in
Section 2. Additionally, we include another base-
line called CG-Random. It determines the number
of groups, ranging from 1 to X and assigns each
predicate to one of the groups randomly. Compar-
ing to CG-Random allows us to gain insights into
the impact of our methods on predicate decomposi-
tion and how it affects the text generation quality.
To enhance readability given the large number of
experiments conducted, we present a portion of
the results that will be thoroughly discussed in this
section. Table 2 and 3 show models performance
in testing scenario 2 and 4 (refer to Figure 3), re-
spectively. For scenario 1 and 3, the results can be

12If any clusters end up without tuples, we repeat the pro-
cess until all clusters contain at least one tuple.

13Mehta et al. (2022) found that simply increasing the
model size does not effectively bridge the CG gap. Due to
resource constraints, we specifically focus on T5-base. Hyper-
parameters for fine-tuning is shown in the released code.

CGONESHOT
-2 -3 -4 -5 -6 -7

T5

B
L

E
U 44.94 49.43 54.39 56.86 58.49 58.98

CG-Ra 47.01 49.03 49.32 51.06 50.39 51.08
CG-Nu 47.46 52.91 55.37 57.81 56.32 58.07
CG-RL 47.58 53.17 57.06 57.41 58.08 58.44
T5

PA
R

E
N

T 46.03 50.61 53.75 54.33 55.14 56.12
CG-Ra 50.43 53.14 55.37 55.39 56.04 56.75
CG-Nu 52.23 53.26 55.24 55.39 55.90 56.92
CG-RL 52.11 52.84 54.33 55.24 55.47 56.52
T5

O
K

-p
er 36.56 47.79 64.16 68.07 74.46 78.37

CG-Ra 59.22 68.38 77.34 79.09 81.26 81.15
CG-Nu 64.88 62.92 71.68 73.02 79.92 80.23
CG-RL 63.65 61.28 68.92 74.67 77.24 79.40

Table 2: Performance of models evaluated in scenario 2
(refer to Figure 3), i.e. trained on CGONESHOT-k and
tested on SEEN category. The top-performing system
is highlighted in bold, while the second best system for
Ok-percent is underlined. CG-Ra, CG-Nu are short for
CG-Random and CG-Numerical, respectively.

CGONESHOT
-2 -3 -4 -5 -6 -7

T5

B
L

E
U 35.80 39.79 44.57 45.06 47.43 47.69

CG-Ra 39.19 40.00 40.57 41.51 42.46 41.87
CG-Nu 35.31 36.83 37.66 38.21 39.83 39.13
CG-RL 36.06 37.94 39.86 40.73 42.38 42.84
T5

PA
R

E
N

T 37.79 40.18 44.96 46.59 47.86 48.14
CG-Ra 41.90 43.41 46.19 48.25 48.30 48.12
CG-Nu 44.48 44.15 46.78 48.17 48.82 48.58
CG-RL 44.67 43.87 46.64 48.72 49.22 49.19
T5

O
K

-p
er 34.34 41.19 53.42 55.22 57.46 64.31

CG-Ra 52.41 55.33 63.86 64.76 66.55 70.15
CG-Nu 70.82 69.02 71.38 71.49 71.60 72.62
CG-RL 67.90 68.01 68.24 71.16 69.25 72.50

Table 3: Performance of models evaluated in scenario 4
(refer to Figure 3), i.e. trained on CGONESHOT-k and
tested on UNSEEN category. CG-Ra, CG-Nu are short
for CG-Random and CG-Numerical, respectively.

found in Table 10 and 11 in Appendix F.

4.1 Case Study on Pre-trained LMs

In all four testing scenarios, we observe a signif-
icant decline in both generation performance and
faithfulness when T5 is trained on the splits with
fewer input tuples. This suggests that pre-trained
LMs are not well-suited for CG tasks. Additionally,
we highlight the performance of T5 models trained
using CGONESHOT-7, CGFULL-2 and -7 in Ta-
ble 4. Comparing CGFULL-7 and CGONESHOT-7,
we observe that limiting the number of training ex-
amples for each predicate combination to one does
not significantly hurt the performance. However,
when comparing CGFULL-7 with CGFULL-2, a
significant decrease in performance is observed.
This drop occurs even though there is a smaller
reduction in training data. These findings highlight
the difficulty of our benchmark and emphasizes the

9304

T5 ONESHOT-7 FULL-2 FULL-7
#Example 2203 7712 18101
BLEU

Se
en

58.98 52.54 65.01
PARENT 56.12 54.31 62.17
OK-per 78.37 43.87 78.27
BLEU

U
ns

ee
n 47.69 44.94 58.98

PARENT 48.14 46.03 56.12
OK-per 64.31 36.56 78.37

Table 4: Performance of T5 models trained on
CGONESHOT-k (short as ONESHOT) and CGFULL-
k (short as FULL). # Example represents the number of
training examples in each training splits.

importance of models possessing CG abilities.

4.2 Results of Proposed Approaches
Our objective is to identify methods that excel
across all of the four distinct testing scenarios in-
troduced in Section 2.3.

Our approaches vs. T5 Our approaches demon-
strate superior performance compared to T5 in all
four testing scenarios (refer to Figure 3), measured
across all three metrics, except for BLEU in the
domain adaptation scenario (Table 3). This is due
to the presence of new predicates in the out-of-
domain test set. Our approaches tend to decompose
unseen predicate compositions into smaller groups
for text generation, which deviates from human an-
notations. On average, the number of sentences in
the descriptions generated by humans, T5, and our
approaches are 1.35, 1.4, and 2.0 respectively (see
Table 16 in Appendix I). This divergence is penal-
ized when evaluating with reference-based metrics
like BLEU. However, our study encourages the
decomposition behavior as it allows for the genera-
tion of faithful texts while maintaining a reasonable
level of similarity to the human-written references.
Another observation is that, across all four scenar-
ios, when trained solely on examples with fewer
input tuples, the performance advantage of our ap-
proaches over T5 becomes more pronounced. For
example, when trained with CGFULL-2 and tested
on the seen set (Table 10 in Appendix F), the best
performed CG-based approach outperform T5 2
points on BLEU, 4.2 points on PARENT and 31.2
points on OK-percent. These findings highlight the
effectiveness of our approaches in enhancing the
CG capability of vanilla pre-trained LMs, partic-
ularly when trained on a very limited number of
examples with simple predicate compositions.

Our approaches vs. CG-random Our ap-
proaches generally outperform CG-random, par-
ticularly in terms of BLEU scores. However, there

is a noticeable decrease in the OK-percent scores
when tested using the seen set (Table 2). This is
because predicate compositions in the in-domain
test set are more likely to have been seen in the
training set. Thus, our models tend to decompose
input predicates into fewer groups. However, CG-
random selects the number of groups randomly,
resulting in a higher average group number (Ta-
ble 16 in Appendix I). This allows CG-random to
achieve slight gains in OK-percent but comes at
the cost of an 8-point decrease in BLEU compared
to our approaches. Our study does not promote
this unnecessary decompositions that may lead to
unnatural text descriptions. These findings indi-
cate that breaking down predicate compositions
into smaller groups generally results in more faith-
ful generations. However, when compared to the
random approach, learned decompositions produce
texts that are closer to human expressions.

CG-Numerical vs. CG-RL In this section, we
directly compare CG-Numerical to CG-RL since
CG-RL is an extension of CG-NN. The comparison
between CG-NN and CG-RL can be found in Ap-
pendix F. CG-RL exhibits better performance than
CG-Numerical in terms of BLEU score across all
scenarios, particularly when evaluated on out-of-
domain examples (Table 3 and 11). The results
for metrics PARENT and OK-percent are com-
parable between the two approaches, except that
CG-Numerical consistently outperforms CG-RL
in terms of OK-percent when tested in unseen do-
mains (Table 3). The reason for this is that CG-RL
utilizes neural networks to encode tokenized pred-
icates, enabling some level of knowledge transfer
when encountering out-of-domain predicates that
consist of tokens seen in the in-domain predicates.
However, CG-Numerical is unable to process out-
of-domain predicates, resulting in a higher number
of decomposed clusters. In fact, this number (2.4)
is even higher than that of CG-random (1.8) (see
Table 16 in Appendix I). Consequently, this con-
tributes to a decrease in BLEU.

5 In-depth Analysis and Discussion
5.1 Qualitative Evaluation
For the qualitative evaluation, we randomly se-
lected 30 inputs from the seen test set, each contain-
ing five or more tuples. All models were trained
using CGFULL-2 and tasked with generating text
descriptions for these inputs. Building upon the
metrics used in prior works (Mehta et al., 2022;

9305

CGFULL-2 Gr Re Ha Om
T5 2.0 2.0 1.8 0.13
CG-Random 2.0 1.17 1.8 1.17
CG-RL 2.0 1.1 1.93 1.67

Table 5: Human evaluation with the metrics of Grammar,
Repetition, Hallucination, and Omission. A higher score
indicates better performance. Models are trained using
CGFULL-k and tested on the SEEN set.

CGFULL -2 -3 -4 -7
CG-Random 0.4087 0.3859 0.4355 0.3602
CG-Numerical 0.4487 0.5235 0.5703 0.6064
CG-RL 0.4755 0.6217 0.6251 0.6433
Human 0.7006

Table 6: Predicate decomposition performance evalu-
ated using NMI. Models are tested under scenario 1, i.e.
trained using CGFULL-k and tested on the SEEN set.

Chen et al., 2020), we introduced four metrics:
grammar (Gr), repetition (Re), hallucination (Ha),
and omission (Om). Each system was rated on a
scale of 0 (bad), 1 (moderate), and 2 (good) for
each metric. Detailed evaluation standards can be
found in Appendix E. The results are presented in
Table 5. CG-RL outperforms T5 and CG-Random
in hallucination and omission, showcasing its abil-
ity to generalize from 2-tuple examples to multiple
tuples with accurate and faithful descriptions. In
contrast, the generated texts from CG-RL exhibit
more repetition compared to T5. One prominent
issue observed in CG-RL is the repetitive sentence
structure, such as generating multiple sentences
that start with the same entity. On the other hand,
the majority of texts generated by T5 are single-
sentence, indicating that it suffer less from the rep-
etition problem. In principle, we have the option
to reintroduce conditional relationships between
the generated sentences to mitigate the repetition
of entities in the proposed CG-RL. Cherry-picked
examples are shown in Table 8. Randomly-picked
examples can be found in 9 in Appendix A.

5.2 Predicate Decomposition Performance

The WebNLG 2017 v1.6 test sets include human-
annotated decompositions. For each input example,
we randomly select two annotated decompositions
from its references, ensuring they have an equal
number of predicate clusters. One of them is cho-
sen as the reference, while the other becomes the
hypothesis. Examples with only one predicate clus-
ter as output are excluded, resulting in a total of 160
testing examples. We evaluate the decomposition
correlation among human annotators by measur-

Few-shot 0.5% 1% 5% 10%
BART

B
L

E
U 38.29 40.77 50.30 54.23

FT-KGPT∗ 22.30 25.60 41.20 47.90
CBST∗ 38.74 44.40 54.98 58.78
CG-RL 39.31 42.74 51.05 52.96
BART

PA

33.08 31.95 38.98 40.03
CG-RL 37.31 34.75 40.12 41.20
BART

O
K 29.50 31.56 44.75 48.63

CG-RL 47.19 48.44 50.94 52.35

Table 7: Models performance on few-shot settings. Sys-
tems marked with * are from previous work. To ensure
a fair comparison with CBST, for this set of experiments
CG-RL is trained on BART. Note that the numbers in
this table cannot be directly compared to those in the
previous tables due to the inclusion of additional do-
mains in the WebNLG 2020 training set.

ing the Normalized Mutual Information (NMI)14

between the hypothesis and the reference.
Additionally, we require each model to generate

predicate decompositions for every input example
based on the number of clusters present in the se-
lected reference. We evaluate the generated clusters
by computing the NMI metric w.r.t. the reference.
The results are shown in Table 6. When the models
are trained using CGFULL-k and tested on the in-
domain dataset, both of the proposed methods show
superior performance compared to CG-Random,
with CG-RL outperforming CG-Numerical. How-
ever, while not falling too far behind, none of these
models achieve the same level of correlation as hu-
mans. Similar trends can be observed in the results
for the other three testing scenarios, which can be
found in Table 17 in Appendix I.

5.3 Test on Existing Few-shot Benchmarks
Chen et al. (2020) proposed few-shot splits for
WebNLG 2020 by randomly selecting a certain
portion of examples from the training set. We com-
pare the performance of our best-performed sys-
tem CG-RL with pre-trained BARG and two prior
works, FT-KGPT (Chen et al., 2020) and CBST
(Ke et al., 2022), on these splits.15 FT-KGPT fine-
tunes a Knowledge-grounded Language Model that
has been pre-trained on 7M tuples-to-sentence data
collected from Wikipedia pages. CBST is a BART-
based approach that is tuned using a self-training
style, on 0.37M structured data without paired texts
collected from GenWiki. The results in Table 7

14NMI quantifies the mutual information between clusters
and is normalized to a value between 0 and 1. A score of 0
indicates no mutual information, while a score of 1 signifies
perfect correlation.

15Additionally, we present the results of our other proposed
approaches in Table 18 in Appendix I.

9306

Input

<SUB> acharya institute of technology <PRED> president <OBJ> "b.m. reddy";
<SUB> acharya institute of technology <PRED> city <OBJ> bangalore;
<SUB> acharya institute of technology <PRED> established <OBJ> 2000;
<SUB> acharya institute of technology <PRED> country <OBJ> "india";
<SUB> acharya institute of technology <PRED> campus <OBJ> "in soldevanahalli, acharya dr. sarvapalli
radhakrishnan road, hessarghatta main road, bangalore – 560090.";
<SUB> acharya institute of technology <PRED> affiliation <OBJ> visvesvaraya technological university

T5 acharya institute of technology in india has its campus in soldevanahalli, acharya dr. sarvapalli radhakrishnan
road, hessarghatta main road, bangalore - 560090.

CG-RL acharya institute of technology in india was established in 2000. it is affiliated with visvesvaraya technological
university. acharya institute of technology’s campus is located in soldevanahalli, acharya dr. sarvapalli
radhakrishnan road, hessarghatta main road, bangalore – 560090. bm reddy is the president of the acharya
institute of technology.

Input

<SUB> turkey <PRED> leaderName <OBJ> ahmet davutoğlu;
<SUB> turkey <PRED> capital <OBJ> ankara;
<SUB> turkey <PRED> largestCity <OBJ> istanbul;
<SUB> atatürk monument (izmir) <PRED> material <OBJ> "bronze";
<SUB> turkey <PRED> currency <OBJ> turkish lira;
<SUB> atatürk monument (izmir) <PRED> inaugurationDate <OBJ> "1932-07-27";
<SUB> atatürk monument (izmir) <PRED> location <OBJ> turkey;

T5 the atatürk monument, made of bronze, is located in istanbul, turkey, where ahmet davutoglu is the leader.
CG-RL the atatürk monument (izmir) is located in turkey where ahmet davutoglu is the leader. the inauguration date

of the atatürk monument (izmir), made of bronze, is 1932-07-27. ankara is the capital of turkey where the
currency is the turkish lira. istanbul is the largest city in turkey.

Input

<SUB> spain <PRED> language <OBJ> spanish language;
<SUB> ajoblanco <PRED> region <OBJ> andalusia;
<SUB> andalusia <PRED> leaderName <OBJ> susana díaz;
<SUB> ajoblanco <PRED> country <OBJ> spain;
<SUB> spain <PRED> ethnicGroup <OBJ> spaniards

T5 ajoblanco is from andalusia where spaniards are an ethnic group.
CG-RL ajoblanco originates from the country of spain where spaniards are an ethnic group. susana diaz is the leader

of andalusia where ajoblanco is from. spanish is a language spoken in spain.

Table 8: Cherry-picked examples of input and system-generated texts. Models are trained on CGFULL-2

show that CG-RL outperforms BART across all
splits and metrics, except for BLEU on the 10%
split. FT-KGPT and CBST only reported BLEU
scores. In the 1%, 5%, and 10% splits, CBST
outperforms our approach. However, we acknowl-
edge that leveraging task-specific pretraining and
self-training-based tuning techniques on our text
generator can potentially enhance the few-shot gen-
eration performance.

6 Limitations and Future Work
We have constructed our benchmark exclusively us-
ing WebNLG 2017, as it exhibits several favorable
characteristics (see Appendix B). Nonetheless, it
would be advantageous to expand the benchmark to
include data from a more diverse range of resources.
Additionally, we recognize the importance of in-
cluding multiple languages in the benchmark. The
multilingual divisions introduced in WebNLG 2022
were not included in our benchmark due to the pres-
ence of training data generated automatically using
translation models, which resulted in noisy data.
In the future, we aim to expand our benchmark to
include high-quality multilingual data resources.
Recent work (Axelsson and Skantze, 2023; Yuan
and Färber, 2023) explored the zero-shot ability

of LLMs on DTG. Across benchmarks including
WebNLG, both studies find that GPT-3 and Chat-
GPT achieve lower BLEU scores compared to fine-
tuned smaller scale models. In addition, LLMs
still face challenges in comprehending the seman-
tic relationships between entities, and the generated
text often includes hallucinations. Thus, we did not
include LLMs in this study. Due to the limited com-
putational resources, we focused our performance
testing on T5-base. However, it is important to eval-
uate the models in different sizes, including LLMs.
We anticipate that tasks with longer inputs/outputs,
such as multi-document summarization, may derive
even greater benefits from the proposed “solving
CG through learning to decompose” idea. In the
future, we aim to extend this idea to other tasks.

Acknowledgments
Lapata gratefully acknowledges the support of the
UK Engineering and Physical Sciences Research
Council (grant EP/W002876/1). Titov is supported
by the Dutch National Science Foundation (NWO
Vici VI.C.212.053). We thank Ido Dagan, An-
dré Martins, Matthias Lindemann, Antonio Miceli-
Barone, Parag Jain, Laura Perez-Beltrachini, Yao
Fu, Xue Gong, for inspiring discussions.

9307

References
Jacob Andreas. 2020. Good-enough compositional data

augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Agnes Axelsson and Gabriel Skantze. 2023. Using
large language models for zero-shot natural language
generation from knowledge graphs. arXiv preprint
arXiv:2307.07312.

Eva Banik, Claire Gardent, and Eric Kow. 2013. The
KBGen challenge. In Proceedings of the 14th Eu-
ropean Workshop on Natural Language Generation,
pages 94–97, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion. ArXiv, abs/1308.3432.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang
Wang. 2020. KGPT: Knowledge-grounded pre-
training for data-to-text generation. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 8635–
8648, Online. Association for Computational Lin-
guistics.

Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and
Alexander Rush. 2018. Latent alignment and vari-
ational attention. Advances in neural information
processing systems, 31.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884–4895, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ondřej Dušek, David M. Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 421–426, Tokyo, Japan. Association for Com-
putational Linguistics.

Ondřej Dušek and Zdeněk Kasner. 2020. Evaluating
semantic accuracy of data-to-text generation with nat-
ural language inference. In Proceedings of the 13th
International Conference on Natural Language Gen-
eration, pages 131–137, Dublin, Ireland. Association
for Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge.
Comput. Speech Lang., 59(C):123–156.

Yihao Fang, Xianzhi Li, Stephen W Thomas, and Xi-
aodan Zhu. 2023. Chatgpt as data augmentation for

compositional generalization: A case study in open
intent detection. arXiv preprint arXiv:2308.13517.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for NLG micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 179–188, Vancouver, Canada. Association for
Computational Linguistics.

Peter W Glynn. 1990. Likelihood ratio gradient estima-
tion for stochastic systems. Communications of the
ACM, 33(10):75–84.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation. In International Conference on
Learning Representations.

Peyman Heidari, Arash Einolghozati, Shashank Jain,
Soumya Batra, Lee Callender, Ankit Arun, Shawn
Mei, Sonal Gupta, Pinar Donmez, Vikas Bhardwaj,
Anuj Kumar, and Michael White. 2021. Getting to
production with few-shot natural language genera-
tion models. In Proceedings of the 22nd Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 66–76, Singapore and Online.
Association for Computational Linguistics.

Mihir Kale and Abhinav Rastogi. 2020a. Template
guided text generation for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505–6520, Online. Association for Computa-
tional Linguistics.

Mihir Kale and Abhinav Rastogi. 2020b. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102, Dublin, Ireland.
Association for Computational Linguistics.

Pei Ke, Haozhe Ji, Zhenyu Yang, Yi Huang, Jun-
lan Feng, Xiaoyan Zhu, and Minlie Huang. 2022.
Curriculum-based self-training makes better few-shot
learners for data-to-text generation. In Proceedings
of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, pages 4178–4184.
International Joint Conferences on Artificial Intelli-
gence Organization. Main Track.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.
In International Conference on Learning Representa-
tions.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

9308

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://aclanthology.org/W13-2111
https://aclanthology.org/W13-2111
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/P19-1483
https://doi.org/10.18653/v1/P19-1483
https://doi.org/10.18653/v1/W19-8652
https://doi.org/10.18653/v1/W19-8652
https://aclanthology.org/2020.inlg-1.19
https://aclanthology.org/2020.inlg-1.19
https://aclanthology.org/2020.inlg-1.19
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://aclanthology.org/2021.sigdial-1.8
https://aclanthology.org/2021.sigdial-1.8
https://aclanthology.org/2021.sigdial-1.8
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/2020.inlg-1.14
https://doi.org/10.24963/ijcai.2022/580
https://doi.org/10.24963/ijcai.2022/580
https://openreview.net/forum?id=HkE0Nvqlg
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jian-
feng Gao, and Dan Jurafsky. 2016. Deep reinforce-
ment learning for dialogue generation. arXiv preprint
arXiv:1606.01541.

Xintong Li, Symon Stevens-Guille, Aleksandre Maskha-
rashvili, and Michael White. 2021. Self-training for
compositional neural NLG in task-oriented dialogue.
In Proceedings of the 14th International Conference
on Natural Language Generation, pages 87–102, Ab-
erdeen, Scotland, UK. Association for Computational
Linguistics.

Percy Liang, Michael Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 91–99, Suntec, Sin-
gapore. Association for Computational Linguistics.

François Mairesse, Milica Gašić, Filip Jurčíček, Simon
Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2010. Phrase-based statistical language generation
using graphical models and active learning. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1552–
1561, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Sanket Vaibhav Mehta, Jinfeng Rao, Yi Tay, Mihir Kale,
Ankur Parikh, and Emma Strubell. 2022. Improving
compositional generalization with self-training for
data-to-text generation. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4205–
4219, Dublin, Ireland. Association for Computational
Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2267–2277, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201–206, Saarbrücken, Germany. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text

generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186, Online. As-
sociation for Computational Linguistics.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for task-
oriented dialog. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
172–182, Online. Association for Computational Lin-
guistics.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Pawel
Nowak, Tal Linzen, Fei Sha, and Kristina Toutanova.
2022. Improving compositional generalization with
latent structure and data augmentation. In Proceed-
ings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4341–4362, Seattle, United States. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Adwait Ratnaparkhi. 2000. Trainable methods for sur-
face natural language generation. In 1st Meeting of
the North American Chapter of the Association for
Computational Linguistics.

Lena Reed, Shereen Oraby, and Marilyn Walker. 2018.
Can neural generators for dialogue learn sentence
planning and discourse structuring? In Proceedings
of the 11th International Conference on Natural Lan-
guage Generation, pages 284–295, Tilburg Univer-
sity, The Netherlands. Association for Computational
Linguistics.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang,
and Nigel Collier. 2021. Plan-then-generate: Con-
trolled data-to-text generation via planning. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 895–909, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M.
Rojas-Barahona, Pei-Hao Su, David Vandyke, and
Steve Young. 2016. Multi-domain neural network
language generation for spoken dialogue systems. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

9309

https://aclanthology.org/2021.inlg-1.10
https://aclanthology.org/2021.inlg-1.10
https://aclanthology.org/P09-1011
https://aclanthology.org/P09-1011
https://aclanthology.org/P10-1157
https://aclanthology.org/P10-1157
https://doi.org/10.18653/v1/2022.acl-long.289
https://doi.org/10.18653/v1/2022.acl-long.289
https://doi.org/10.18653/v1/2022.acl-long.289
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.findings-emnlp.17
https://doi.org/10.18653/v1/2020.findings-emnlp.17
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://aclanthology.org/A00-2026
https://aclanthology.org/A00-2026
https://doi.org/10.18653/v1/W18-6535
https://doi.org/10.18653/v1/W18-6535
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.findings-emnlp.76
https://doi.org/10.18653/v1/2021.findings-emnlp.76
https://doi.org/10.18653/v1/N16-1015
https://doi.org/10.18653/v1/N16-1015

pages 120–129, San Diego, California. Association
for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Reinforcement learning, pages 5–32.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Xinnuo Xu, Guoyin Wang, Young-Bum Kim, and
Sungjin Lee. 2021. AugNLG: Few-shot natural lan-
guage generation using self-trained data augmenta-
tion. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1183–1195, Online. Association for Computa-
tional Linguistics.

Shuzhou Yuan and Michael Färber. 2023. Evaluating
generative models for graph-to-text generation. arXiv
preprint arXiv:2307.14712.

Wojciech Zaremba and Ilya Sutskever. 2015. Rein-
forcement learning neural turing machines. ArXiv,
abs/1505.00521.

9310

https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.18653/v1/2021.acl-long.95
https://doi.org/10.18653/v1/2021.acl-long.95
https://doi.org/10.18653/v1/2021.acl-long.95

Input

<SUB> agra airport <PRED> location <OBJ> india;
<SUB> agra airport <PRED> runwayLength <OBJ> 1818.0;
<SUB> agra airport <PRED> operatingOrganisation <OBJ> indian air force;
<SUB> agra airport <PRED> elevationAboveTheSeaLevel_(in_metres) <OBJ> 167.94;
<SUB> agra airport <PRED> ICAO_Location_Identifier <OBJ> "viag"

T5 agra airport is operated by the indian air force and has a runway length of 1818.0 metres.
CG-RL agra airport is located in india and its icao location identifier is viag. agra airport, operated by the indian air

force, has a runway length of 1818.0. agra airport is elevated 167.94 metres above sea level.

Input

<SUB> attica, indiana <PRED> isPartOf <OBJ> united states;
<SUB> attica, indiana <PRED> areaTotal <OBJ> 4.14 (square kilometres);
<SUB> attica, indiana <PRED> elevationAboveTheSeaLevel <OBJ> 166.0;
<SUB> attica, indiana <PRED> isPartOf_1 <OBJ> logan township, fountain county, indiana;
<SUB> attica, indiana <PRED> populationDensity <OBJ> 783.1 (inhabitants per square kilometre);

T5 attica, indiana, is part of logan township, fountain county, indiana, which has a population of 783.1 inhabitants
per square kilometre.

CG-RL attica, indiana is part of the united states. attica, indiana, is part of logan township, fountain county, indiana.
attica, indiana has a population density of 783.1 inhabitants per square kilometre. attica, indiana is located at
166.0 above sea level. the total area of attica, indiana is 4.14 square kilometres.

Input

<SUB> denmark <PRED> leaderName <OBJ> lars løkke rasmussen;
<SUB> european university association <PRED> headquarters <OBJ> brussels;
<SUB> school of business and social sciences at the aarhus university <PRED> country <OBJ> denmark;
<SUB> denmark <PRED> leaderTitle <OBJ> monarchy of denmark;
<SUB> school of business and social sciences at the aarhus university <PRED> affiliation <OBJ> european
university association;
<SUB> denmark <PRED> religion <OBJ> church of denmark;

T5 the school of business and social sciences at the aarhus university is affiliated with the european university
association which has its headquarters in brussels.

CG-RL the school of business and social sciences at the aarhus university is affiliated with the european university
association and is located in denmark. the leader of denmark is lars lokke rasmussen. denmark’s leader title
is the monarchy of denmark. the headquarters of the european university association are in brussels. the
religion of denmark is church of denmark.

Input

<SUB> buzz aldrin <PRED> birthPlace <OBJ> glen ridge, new jersey;
<SUB> buzz aldrin <PRED> nationality <OBJ> united states;
<SUB> buzz aldrin <PRED> was_selected_by_NASA <OBJ> 1963;
<SUB> buzz aldrin <PRED> was_a_crew_member_of <OBJ> apollo 11;
<SUB> buzz aldrin <PRED> occupation <OBJ> fighter pilot;
<SUB> buzz aldrin <PRED> almaMater <OBJ> "massachusetts institute of technology, sc.d. 1963"

T5 buzz aldrin, who was a member of the apollo 11 crew, was born in glen ridge, new jersey.
CG-RL buzz aldrin, who was born in glen ridge, new jersey, was selected by nasa in 1963. buzz aldrin, a us citizen,

graduated from massachusetts institute of technology, sc.d. 1963. buzz aldrin, a fighter pilot, was a crew
member of apollo 11.

Input

<SUB> turkey <PRED> leaderTitle <OBJ> president of turkey;
<SUB> turkey <PRED> leader <OBJ> ahmet davutoğlu;
<SUB> atatürk monument (izmir) <PRED> designer <OBJ> pietro canonica;
<SUB> turkey <PRED> capital <OBJ> ankara;
<SUB> atatürk monument (izmir) <PRED> material <OBJ> "bronze";
<SUB> atatürk monument (izmir) <PRED> inaugurationDate <OBJ> "1932-07-27";
<SUB> atatürk monument (izmir) <PRED> location <OBJ> turkey;

T5 the atatürk monument in turkey, made of bronze, was inaugurated on 27th july, 1932.
CG-RL the atatürk monument (izmir) is located in turkey where ahmet davutoglu is the leader. the atatürk monument

in izmir, made of bronze, was inaugurated on 27th july 1932. ankara is the capital of turkey. the leader of
turkey is known as the president of turkey.

Input

<SUB> buzz aldrin <PRED> birthPlace <OBJ> glen ridge, new jersey;
<SUB> buzz aldrin <PRED> was_a_crew_member_of <OBJ> apollo 11;
<SUB> buzz aldrin <PRED> status <OBJ> "retired";
<SUB> buzz aldrin <PRED> nationality <OBJ> united states;
<SUB> buzz aldrin <PRED> almaMater <OBJ> "massachusetts institute of technology, sc.d. 1963";
<SUB> apollo 11 <PRED> backup_pilot <OBJ> william anders;
<SUB> apollo 11 <PRED> operator <OBJ> nasa;

T5 buzz aldrin, who was a crew member of nasa’s apollo 11, was born in glen ridge, new jersey.
CG-RL buzz aldrin was born in glen ridge, new jersey. buzz aldrin is from the united states. buzz aldrin, who

graduated from massachusetts institute of technology in 1963 with a doctorate in science, is now retired.
buzz aldrin was a crew member of apollo 11. apollo 11 was operated by nasa. the backup pilot of apollo 11
was william anders.

Table 9: Randomly-picked examples of input and system-generated texts. Models are trained on CGFULL-2 and
tested with examples equal or more than 5 tuples as input.

9311

A Examples of system outputs

B Reasons of choosing WebNLG

We choose WebNLG because it offers examples with different input/output sizes. The training set covers
multiple domains with diverse predefined predicates. It also includes out-of-domain test examples,
allowing us to create challenging scenarios that involve both compositional generalization and cross-
domain generalization. Moreover, several faithfulness evaluation metrics have been shown to be highly
correlated with human judgments on the WebNLG dataset.

C Data Preprocess for Tuple-to-Sentence Alignment

Concretely, we first preprocess the training examples by tokenizing the predicates in the input tuples16,
resolving coreferences in the output texts17, and splitting the texts into sentences18.

D Transformer-based Weight Predication

The dimension of the model is 128; the dimension of the feedforward is 256; number of heads is 4; number
of layers is 2; dropout is 0.1. Other details will be shared with the code.

E Human Evaluation Standards

16https://pypi.org/project/wordsegment/.
17https://github.com/huggingface/neuralcoref.
18https://www.nltk.org/api/nltk.tokenize.html.

9312

https://pypi.org/project/wordsegment/
https://github.com/huggingface/neuralcoref
https://www.nltk.org/api/nltk.tokenize.html

F Extended Main Experiment Results

This section presents an overview of the experimental results. The performance of all models can be
found in Table 10 and Table 11. The results for testing scenario 1 and 2 can be found in the left and right
sections of Table 10, respectively. Similarly, the results for testing scenario 3 and 4 can be found in the
left and right sections of Table 11, respectively.

CG-NN vs. CG-RL CG-NN and CG-RL show similar performance overall. CG-RL tends to outperform
CG-NN on faithfulness metrics when trained on examples with more input tuples, and on BLEU when
trained on examples with fewer tuples. This trend is particularly evident when trained on CGONESHOT

(right part of Table 10 and 11).

SEEN CGFULL CGONESHOT
-2 -3 -4 -7 -2 -3 -4 -5 -6 -7

T5

B
L

E
U

52.54 58.70 62.63 65.01 44.94 49.43 54.39 56.86 58.49 58.98
CG-Random 53.27 53.20 54.15 54.77 47.01 49.03 49.32 51.06 50.39 51.08
CG-Numerical 53.40 59.21 62.03 64.77 47.46 52.91 55.37 57.81 56.32 58.07
CG-NN 53.87 61.36 62.75 65.04 47.28 52.79 55.73 57.60 58.68 59.14
CG-RL 54.56 61.02 61.78 65.01 47.58 53.17 57.06 57.41 58.08 58.44
T5

PA
R

E
N

T 54.31 60.26 61.67 62.17 46.03 50.61 53.75 54.33 55.14 56.12
CG-Random 56.95 59.00 60.02 60.31 50.43 53.14 55.37 55.39 56.04 56.75
CG-Numerical 58.75 60.40 61.39 60.93 52.23 53.26 55.24 55.39 55.90 56.92
CG-NN 58.44 60.39 60.67 60.75 52.09 52.87 54.96 55.54 55.40 56.39
CG-RL 58.52 60.47 61.07 60.68 52.11 52.84 54.33 55.24 55.47 56.52
T5

O
K

-p
er

ce
nt 43.87 68.07 76.52 78.27 36.56 47.79 64.16 68.07 74.46 78.37

CG-Random 69.00 78.58 81.67 82.39 59.22 68.38 77.34 79.09 81.26 81.15
CG-Numerical 74.97 79.61 79.92 79.30 64.88 62.92 71.68 73.02 79.92 80.23
CG-NN 75.08 76.93 78.78 78.78 65.09 63.54 71.27 74.25 76.11 79.20
CG-RL 74.25 76.00 79.81 78.99 63.65 61.28 68.92 74.67 77.24 79.40

Table 10: Models performance on seen category. The top-performing system is highlighted in bold, while the
second best system for Ok-percent is underlined.

UNSEEN CGFULL CGONESHOT
-2 -3 -4 -7 -2 -3 -4 -5 -6 -7

T5

B
L

E
U

40.83 47.14 48.64 50.01 35.80 39.79 44.57 45.06 47.43 47.69
CG-Random 43.17 44.20 42.24 44.00 39.19 40.00 40.57 41.51 42.46 41.87
CG-Numerical 38.78 40.46 39.39 40.52 35.31 36.83 37.66 38.21 39.83 39.13
CG-NN 39.78 43.99 44.81 47.69 35.65 37.42 39.81 40.99 43.23 42.95
CG-RL 40.42 43.61 41.81 46.21 36.06 37.94 39.86 40.73 42.38 42.84
T5

PA
R

E
N

T 42.92 49.46 49.60 51.75 37.79 40.18 44.96 46.59 47.86 48.14
CG-Random 46.33 49.16 49.17 49.60 41.90 43.41 46.19 48.25 48.30 48.12
CG-Numerical 48.60 49.25 49.20 49.67 44.48 44.15 46.78 48.17 48.82 48.58
CG-NN 48.19 49.98 49.68 50.85 44.40 44.14 46.85 48.65 48.94 48.84
CG-RL 48.22 50.01 49.30 50.75 44.67 43.87 46.64 48.72 49.22 49.19
T5

O
K

-p
er

ce
nt 43.43 56.90 68.07 67.68 34.34 41.19 53.42 55.22 57.46 64.31

CG-Random 64.09 67.56 73.40 76.32 52.41 55.33 63.86 64.76 66.55 70.15
CG-Numerical 77.22 74.97 77.55 78.90 70.82 69.02 71.38 71.49 71.60 72.62
CG-NN 76.66 74.07 72.84 74.41 70.03 69.02 69.36 70.93 66.67 70.48
CG-RL 74.19 75.08 73.51 76.99 67.90 68.01 68.24 71.16 69.25 72.50

Table 11: Models performance on unseen category.

9313

G T5-Large Results

SEEN CGFULL CGONESHOT
-2 -3 -4 -7 -2 -3 -4 -5 -6 -7

T5

B
L

E
U

52.54 58.70 62.63 65.01 44.94 49.43 54.39 56.86 58.49 58.98
CG-Random 53.27 53.20 54.15 54.77 47.01 49.03 49.32 51.06 50.39 51.08
CG-Numerical 53.40 59.21 62.03 64.77 47.46 52.91 55.37 57.81 56.32 58.07
CG-NN 53.87 61.36 62.75 65.04 47.28 52.79 55.73 57.60 58.68 59.14
CG-RL 54.56 61.02 61.78 65.01 47.58 53.17 57.06 57.41 58.08 58.44
T5

PA
R

E
N

T 54.31 60.26 61.67 62.17 46.03 50.61 53.75 54.33 55.14 56.12
CG-Random 56.95 59.00 60.02 60.31 50.43 53.14 55.37 55.39 56.04 56.75
CG-Numerical 58.75 60.40 61.39 60.93 52.23 53.26 55.24 55.39 55.90 56.92
CG-NN 58.44 60.39 60.67 60.75 52.09 52.87 54.96 55.54 55.40 56.39
CG-RL 58.52 60.47 61.07 60.68 52.11 52.84 54.33 55.24 55.47 56.52
T5

O
K

-p
er

ce
nt 43.87 68.07 76.52 78.27 36.56 47.79 64.16 68.07 74.46 78.37

CG-Random 69.00 78.58 81.67 82.39 59.22 68.38 77.34 79.09 81.26 81.15
CG-Numerical 74.97 79.61 79.92 79.30 64.88 62.92 71.68 73.02 79.92 80.23
CG-NN 75.08 76.93 78.78 78.78 65.09 63.54 71.27 74.25 76.11 79.20
CG-RL 74.25 76.00 79.81 78.99 63.65 61.28 68.92 74.67 77.24 79.40

Table 12: T5-Large based models performance on seen category. The top-performing system is highlighted in bold,
while the second best system for Ok-percent is underlined.

UNSEEN CGFULL CGONESHOT
-2 -3 -4 -7 -2 -3 -4 -5 -6 -7

T5

B
L

E
U

40.83 47.14 48.64 50.01 35.80 39.79 44.57 45.06 47.43 47.69
CG-Random 43.17 44.20 42.24 44.00 39.19 40.00 40.57 41.51 42.46 41.87
CG-Numerical 38.78 40.46 39.39 40.52 35.31 36.83 37.66 38.21 39.83 39.13
CG-NN 39.78 43.99 44.81 47.69 35.65 37.42 39.81 40.99 43.23 42.95
CG-RL 40.42 43.61 41.81 46.21 36.06 37.94 39.86 40.73 42.38 42.84
T5

PA
R

E
N

T 42.92 49.46 49.60 51.75 37.79 40.18 44.96 46.59 47.86 48.14
CG-Random 46.33 49.16 49.17 49.60 41.90 43.41 46.19 48.25 48.30 48.12
CG-Numerical 48.60 49.25 49.20 49.67 44.48 44.15 46.78 48.17 48.82 48.58
CG-NN 48.19 49.98 49.68 50.85 44.40 44.14 46.85 48.65 48.94 48.84
CG-RL 48.22 50.01 49.30 50.75 44.67 43.87 46.64 48.72 49.22 49.19
T5

O
K

-p
er

ce
nt 43.43 56.90 68.07 67.68 34.34 41.19 53.42 55.22 57.46 64.31

CG-Random 64.09 67.56 73.40 76.32 52.41 55.33 63.86 64.76 66.55 70.15
CG-Numerical 77.22 74.97 77.55 78.90 70.82 69.02 71.38 71.49 71.60 72.62
CG-NN 76.66 74.07 72.84 74.41 70.03 69.02 69.36 70.93 66.67 70.48
CG-RL 74.19 75.08 73.51 76.99 67.90 68.01 68.24 71.16 69.25 72.50

Table 13: T5-Large based models performance on unseen category.

9314

H T5-Small Results

SEEN CGFULL CGONESHOT
-2 -3 -4 -7 -2 -3 -4 -5 -6 -7

T5

B
L

E
U

52.54 58.70 62.63 65.01 44.94 49.43 54.39 56.86 58.49 58.98
CG-Random 53.27 53.20 54.15 54.77 47.01 49.03 49.32 51.06 50.39 51.08
CG-Numerical 53.40 59.21 62.03 64.77 47.46 52.91 55.37 57.81 56.32 58.07
CG-NN 53.87 61.36 62.75 65.04 47.28 52.79 55.73 57.60 58.68 59.14
CG-RL 54.56 61.02 61.78 65.01 47.58 53.17 57.06 57.41 58.08 58.44
T5

PA
R

E
N

T 54.31 60.26 61.67 62.17 46.03 50.61 53.75 54.33 55.14 56.12
CG-Random 56.95 59.00 60.02 60.31 50.43 53.14 55.37 55.39 56.04 56.75
CG-Numerical 58.75 60.40 61.39 60.93 52.23 53.26 55.24 55.39 55.90 56.92
CG-NN 58.44 60.39 60.67 60.75 52.09 52.87 54.96 55.54 55.40 56.39
CG-RL 58.52 60.47 61.07 60.68 52.11 52.84 54.33 55.24 55.47 56.52
T5

O
K

-p
er

ce
nt 43.87 68.07 76.52 78.27 36.56 47.79 64.16 68.07 74.46 78.37

CG-Random 69.00 78.58 81.67 82.39 59.22 68.38 77.34 79.09 81.26 81.15
CG-Numerical 74.97 79.61 79.92 79.30 64.88 62.92 71.68 73.02 79.92 80.23
CG-NN 75.08 76.93 78.78 78.78 65.09 63.54 71.27 74.25 76.11 79.20
CG-RL 74.25 76.00 79.81 78.99 63.65 61.28 68.92 74.67 77.24 79.40

Table 14: T5-Small based models performance on seen category. The top-performing system is highlighted in bold,
while the second best system for Ok-percent is underlined.

UNSEEN CGFULL CGONESHOT
-2 -3 -4 -7 -2 -3 -4 -5 -6 -7

T5

B
L

E
U

40.83 47.14 48.64 50.01 35.80 39.79 44.57 45.06 47.43 47.69
CG-Random 43.17 44.20 42.24 44.00 39.19 40.00 40.57 41.51 42.46 41.87
CG-Numerical 38.78 40.46 39.39 40.52 35.31 36.83 37.66 38.21 39.83 39.13
CG-NN 39.78 43.99 44.81 47.69 35.65 37.42 39.81 40.99 43.23 42.95
CG-RL 40.42 43.61 41.81 46.21 36.06 37.94 39.86 40.73 42.38 42.84
T5

PA
R

E
N

T 42.92 49.46 49.60 51.75 37.79 40.18 44.96 46.59 47.86 48.14
CG-Random 46.33 49.16 49.17 49.60 41.90 43.41 46.19 48.25 48.30 48.12
CG-Numerical 48.60 49.25 49.20 49.67 44.48 44.15 46.78 48.17 48.82 48.58
CG-NN 48.19 49.98 49.68 50.85 44.40 44.14 46.85 48.65 48.94 48.84
CG-RL 48.22 50.01 49.30 50.75 44.67 43.87 46.64 48.72 49.22 49.19
T5

O
K

-p
er

ce
nt 43.43 56.90 68.07 67.68 34.34 41.19 53.42 55.22 57.46 64.31

CG-Random 64.09 67.56 73.40 76.32 52.41 55.33 63.86 64.76 66.55 70.15
CG-Numerical 77.22 74.97 77.55 78.90 70.82 69.02 71.38 71.49 71.60 72.62
CG-NN 76.66 74.07 72.84 74.41 70.03 69.02 69.36 70.93 66.67 70.48
CG-RL 74.19 75.08 73.51 76.99 67.90 68.01 68.24 71.16 69.25 72.50

Table 15: T5-Small based models performance on unseen category.

9315

I Extra Experiment Results

Avg #Clusters CGFULL CGONESHOT
-2 -3 -4 -7 -2 -3 -4 -5 -6 -7

T5

SE
E

N

1.07 1.19 1.46 1.38 1.05 1.09 1.26 1.4 1.44 1.42
CG-Random 2.04 2.03 2.00 2.04 1.98 1.98 2.02 2.03 2.00 2.00
CG-Numerical 2.05 1.59 1.25 1.13 2.01 1.53 1.34 1.27 1.23 1.22
CG-NN 2.00 1.36 1.11 1.06 2.01 1.53 1.3 1.28 1.09 1.08
CG-RL 1.91 1.38 1.23 1.07 1.99 1.47 1.22 1.28 1.16 1.13
T5

U
N

SE
E

N 1.02 1.15 1.40 1.32 1.01 1.02 1.26 1.29 1.37 1.4
CG-Random 1.88 1.85 1.87 1.88 1.90 1.89 1.87 1.82 1.87 1.82
CG-Numerical 2.61 2.46 2.43 2.41 2.62 2.47 2.43 2.43 2.42 2.42
CG-NN 2.44 2.00 1.56 1.45 2.58 2.37 2.00 2.05 1.79 1.74
CG-RL 2.34 2.04 1.91 1.63 2.50 2.24 1.96 2.09 1.93 1.84

Table 16: The average number of groups each model generates for test examples. The average number of sentences
for human written references are 1.37 and 1.35 for seen and unseen test set respectively.

NMI CGFULL CGONESHOT
-2 -3 -4 -7 -2 -3 -4 -5 -6 -7

CG-Random

SE
E

N

40.87 38.59 43.55 36.02 39.43 38.43 40.74 39.06 37.20 35.76
CG-Numerical 44.87 52.35 57.03 60.64 46.72 55.71 59.79 62.60 61.81 60.65
CG-NN 47.08 58.87 65.10 66.24 48.03 58.97 65.49 64.40 66.18 66.18
CG-RL 47.55 62.17 62.51 64.33 48.08 56.82 65.21 63.17 64.56 63.39
CG-Random

U
N

SE
E

N 44.18 39.43 40.59 37.01 41.20 39.71 37.21 39.11 38.55 38.34
CG-Numerical 41.78 39.04 41.17 41.83 38.20 45.10 41.19 47.76 42.57 41.63
CG-NN 50.95 53.17 55.30 52.60 52.63 52.26 52.40 54.59 55.57 52.03
CG-RL 47.77 53.19 49.66 47.20 57.28 52.73 53.79 53.57 54.01 49.65

Table 17: Predicate decomposition performance of all models evaluated using NMI. The NMI among human
annotated references are 70.06 and 67.31 for seen and unseen test set respectively. Since we can not control the
amount of sentences the vanilla T5 generates, we discard the T5 for this experiment.

9316

Few-shot 0.5% 1% 5% 10%
BART

B
L

E
U

38.29 40.77 50.30 54.23
FT-KGPT∗ 22.30 25.60 41.20 47.90
CBST∗ 38.74 44.40 54.98 58.78
CG-Random 39.93 42.50 48.31 49.50
CG-Numerical 39.43 43.37 51.12 53.96
CG-NN 39.63 43.96 50.9 53.95
CG-RL 39.31 42.74 51.05 52.96
BART

PA
R

E
N

T 33.08 31.95 38.98 40.03
CG-Random 36.39 33.76 38.80 39.69
CG-Numerical 37.50 34.68 40.22 40.84
CG-NN 37.48 34.59 39.87 40.93
CG-RL 37.31 34.75 40.12 41.20
BART

O
K

-p
er

ce
nt 29.50 31.56 44.75 48.63

CG-Random 41.44 43.56 52.50 51.94
CG-Numerical 47.63 45.31 50.00 51.50
CG-NN 47.31 44.37 50.06 51.25
CG-RL 47.19 48.44 50.94 52.35

Table 18: Models performance on few-shot settings. Systems marked with * are from previous work. To ensure a
fair comparison with CBST, for this set of experiments all CG- models are trained on BART. Note that the numbers
in this table cannot be directly compared to those in the previous tables due to the inclusion of additional domains in
the WebNLG 2020 training set.

9317

