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Abstract

In this paper, we explore the application of
large language models (LLMs) for generating
code-tracing questions in introductory program-
ming courses. We designed targeted prompts
for GPT4, guiding it to generate code-tracing
questions based on code snippets and descrip-
tions. We established a set of human evalua-
tion metrics to assess the quality of questions
produced by the model compared to those cre-
ated by human experts. Our analysis provides
insights into the capabilities and potential of
LLMs in generating diverse code-tracing ques-
tions. Additionally, we present a unique dataset
of human and LLM-generated tracing ques-
tions, serving as a valuable resource for both
the education and NLP research communities.
This work contributes to the ongoing dialogue
on the potential uses of LLMs in educational
settings1.

1 Introduction and Background

The teaching of introductory programming courses
continues to be a challenging endeavor, despite the
global uptake and popularity of such courses. High
enrollment rates often result in diverse student pop-
ulations, with a wide range of programming experi-
ence from those just starting their journey to others
with prior exposure (Lopez et al., 2008). Ensuring
an effective learning experience that accommodates
this wide disparity presents a daunting task, making
the teaching of these courses complex.

One critical component in teaching introductory
programming is the focus on code tracing, a skill
identified as instrumental in enhancing code writ-
ing abilities (Lister et al., 2009; Venables et al.,
2009; Kumar, 2013). Current educational method-
ologies encourage code tracing through a variety of
means, such as practice questionnaires (Lehtinen
et al., 2023), direct teaching strategies (Xie et al.,

1Our data and code are available at https:
//github.com/aysafanxm/llm_code_tracing_
question_generation

Human-created Tracing
Questions:
What are we printing?

Code snippet:
  int n = 365;
  int sum = 0;
  while (n > 0)
    {
       int digit = n % 10;
       sum = sum + digit;
       n = n/10;
    }
  System.out.println(sum);

Description: Identify the reverse
digits on a credit card.

Collected Data

LLM-generated Tracing Questions:
1. Based on the given code, what will be
the output if the value of 
...
8. If the requirement was to identify the
reverse digits on a credit card and then
return them as a single integer, how
would you modify the code to
accomplish this?

Evaluation

Are the qualities of
quetions comparable?

Who creates more
diverse questions?

Which tracing
questions are better?

Can experts distinguish between the
authors (LLM or human)?

Figure 1: We aim to assess the Large Language Models’
(LLMs’) capability to generate code tracing questions,
pivotal in computer science education. The accompa-
nying illustration outlines our approach, where GPT4
is employed to generate questions based on given code
snippets and descriptions. Subsequent comparative anal-
ysis with human-created questions aids in exploring
critical aspects, such as the quality and diversity of gen-
erated questions, discernibility between human and AI
authors, and the relative superiority in question quality.

2018), and tracing quizzes (Sekiya and Yamaguchi,
2013). These strategies consistently utilize code-
tracing questions aimed at fostering and developing
a student’s understanding and skills.

However, the preparation of code-tracing ques-
tions poses challenges. Manual question creation
by instructors (Sekiya and Yamaguchi, 2013; Has-
san and Zilles, 2021) is time-consuming and lacks
scalability. Automatic generation using program
analysis saves time, yet is limited by the analyzer’s
capabilities and lacks question diversity (Zavala
and Mendoza, 2018; Thomas et al., 2019; Russell,
2021; Lehtinen et al., 2021; Stankov et al., 2023).
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In light of the increasing potential of Large Lan-
guage Models (LLMs) in sectors like code summa-
rization and explanation (Chen et al., 2021; Siddiq
et al., 2023), the question arises: Can LLMs gener-
ate high-quality code-tracing questions? Our study
explores this query using GPT4 (OpenAI, 2023),
leveraging prompts to guide its question generation
based on given code snippets and descriptions. To
assess the LLM’s capability in this pivotal aspect of
computer science education, we devised a set of hu-
man evaluation metrics. This allowed for an objec-
tive appraisal of the LLM-generated questions, and,
through a comparative analysis with human-created
counterparts, critical aspects such as question qual-
ity, diversity, discernibility between human and AI
authors, and relative superiority in quality were ex-
plored (Figure 1). These analyses have enhanced
our understanding of the potential roles of LLMs
in computer science education.

This investigation provides a foundation for con-
sidering the potential inclusion of LLMs in learning
platforms, which could offer new possibilities for
enhancing the learning experience in introductory
programming courses. Given these advancements,
our study contributes to the field as follows:

• The curation of a high-quality dataset consist-
ing of human and LLM-generated code trac-
ing questions and associated code snippets.

• An exploration and evaluation of GPT4’s ca-
pability in question generation, including com-
parisons with both GPT3.5-turbo and human-
authored questions, and an examination of
few-shot and zero-shot scenarios.

• The introduction of a human evaluation
methodology and a comprehensive assess-
ment of the quality of LLM-generated ques-
tions, offering valuable insights into the po-
tential of LLMs in educational contexts.

2 Related Work

Question Generation: Early Question Genera-
tion (QG) research primarily focused on multiple-
choice questions (Mitkov et al., 2006; Agarwal and
Mannem, 2011) and questions with specific inter-
rogatives (Heilman and Smith, 2010). With the
emergence of the SQuAD dataset (Rajpurkar et al.,
2016), context-dependent QG gained momentum
(Du et al., 2017; Yuan et al., 2017; Subramanian
et al., 2018; Puri et al., 2020). This extended to

complex tasks like generating unanswerable ques-
tions (Choi et al., 2018; Zhu et al., 2019; Reddy
et al., 2019) and multi-hop reasoning (Pan et al.,
2020, 2021; Shridhar et al., 2022). Our work, focus-
ing on generating code tracing questions in CS Edu-
cation domain, addresses unique challenges around
code, natural language, and pedagogical compre-
hension, inadequately covered by previous methods
due to a lack of specialized datasets.

Code LLMs for CS Education: Recent ad-
vances in code large language models (LLMs)
(Chen et al., 2021; Wang et al., 2021; Le et al.,
2022; Wang et al., 2023) have enabled various
downstream applications, including code comple-
tion, retrieval, summarization, explanation, and
unit test generation (Lu et al.; Siddiq et al., 2023;
Tian et al., 2023). Studies have showcased the
LLMs’ ability to generate novice programming
content comparable to humans (Finnie-Ansley
et al., 2022; Piccolo et al., 2023). LLMs have been
utilized in classroom environments (Kazemitabaar
et al., 2023), to generate coding exercises and ex-
planations (Sarsa et al., 2022), and to create coun-
terfactual questions (Narayanan et al., 2023). Our
study represents the first exploration of LLMs for
code tracing question generation, a critical compo-
nent of CS Education, thus underscoring the po-
tential of these models for generating educational
content.

3 Our Approach

3.1 Task Definition

In automatic tracing question generation, given a
description (optional) d ∈ D∪∅, detailing the code
context, and a code snippet c ∈ C provided by an
instructor or student, the aim is to generate a set
of relevant questions Q′ for student practice. This
task can be formally defined as a function:

f : (d, c) 7→ Q′ (1)

where D represents all possible descriptions, C all
possible code snippets, and Q′ is a subset of all
possible questions Q.

3.2 Curating the Code-Tracing Question
Dataset

For our experiment, we curated a unique dataset re-
flecting the range of tracing questions encountered
by beginner programmers. We sourced 158 unique
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Figure 2: Comparison of the BERTScore on all LLM-
generated questions and human-authored questions.

questions from CSAwesome2, a recognized online
Java course aligned with the AP Computer Science
A curriculum. To enhance diversity, we added 18
questions extracted from relevant YouTube videos.
Other platforms and sources were also examined
but didn’t fit due to a lack of explicit tracing ques-
tions. Our final dataset consists of 176 unique code
snippets and question pairs, allowing a fair eval-
uation of LLMs’ ability to generate introductory
programming tracing questions.

3.3 Prompt Engineering and Model Selection
In our iterative approach to prompt engineering
and model selection, we first refined prompts and
then generated tracing questions using GPT-3.5-
turbo and GPT-4. Using BERTScore, we assessed
question diversity and similarity. Based on these
insights, we combined the optimized prompt with
the chosen model to determine the most effective
generation approach, be it few-shot or zero-shot.
Our final prompt, refined iteratively from (Brown
et al., 2020), positioned in Appendix B, adopts an
expert instructor’s perspective, encourages deep
understanding via code-tracing questions, and max-
imizes the inherent versatility of LLMs.

Next, we considered GPT-3.5-turbo and GPT-4
for model selection, and investigate the generated
tracing questions diversity by BERTScore (Zhang*
et al., 2020). Regarding the automatic evaluation
of the diversity in generated questions, we adopted
the following methodology: For each code snip-
pet, we utilize a singular human-authored tracing
question as the reference. Both GPT3.5-turbo and
GPT4 are then tasked with generating multiple trac-
ing questions for every snippet. Following this,

2https://runestone.academy/ns/books/
published/csawesome/index.html

we employ regular expressions in a postprocess-
ing step to segment the generated content, isolat-
ing individual tracing questions. Subsequently,
for each generated prediction p, its BERTScore
is computed in relation to the reference, denoted as
BERTScore(reference, p).

The boxplot in Figure 2 displays the Precision,
Recall, and F1 scores for both models. From the
graph, it’s clear that GPT-3.5-turbo has a median
Precision score around 0.45, Recall slightly above
0.6, and an F1 score hovering around 0.5. In
comparison, GPT-4 shows a more balanced perfor-
mance with a median Precision score close to 0.6,
Recall near 0.55, and F1 just above 0.5. Notably,
the variability in scores, particularly for GPT-4,
highlights the diverse outcomes in its results. Based
on our results, we chose GPT4 for subsequent eval-
uations. Enhanced performance examples from
GPT4 are in Appendix C.

Next, we hypothesized that the few-shot ques-
tion generation approach, which feeds the model
with three tracing question examples and their re-
spective code snippets, would yield higher-quality
questions than the zero-shot generation that relies
solely on the prompt. Contrary to our expectations,
the experiment showed that the few-shot method
introduced a significant bias towards the example
questions, thus narrowing the diversity in the gen-
erated questions. Consequently, we opted for the
zero-shot generation in our tests, which fostered a
broader spectrum of question types. Detailed ex-
amples of outcomes from both the zero-shot and
few-shot approaches are available in Section 4.4.

3.4 Human Evaluation

Next, we conducted a human evaluation compar-
ing the quality of GPT4-generated and human-
authored tracing questions. The expert evaluators
were meticulously screened based on specific cri-
teria: they had to be computer science graduate
students with at least one year of programming
teaching or tutoring experience. Four such experts,
meeting these criteria, participated in the evalua-
tion.

Each evaluator was assigned a set of 44 ran-
domly selected code snippets from a pool of 176
human-authored tracing questions. For each snip-
pet, evaluators received a pair of questions (one
human-authored and one GPT4-generated) in a ran-
domized order to mitigate potential ordering bias.
Evaluators unawareness of question authorship was
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Criteria Label

Relevance to Learning Objectives 1-5
Tracing or not Yes/No
Clarity of the Question 1-5
Difficulty Level 1-5
Relevance to the Given Code Snippet 1-5
Ability to Distinguish Source Human-created/

AI-generated
Preference for Better Question Check preferred

Table 1: Criteria used for expert evaluation.

Human GPT4

Mean Median Mean Median

Relevance to Learning 4.78 5.00 4.62 5.00
Question Clarity 4.72 5.00 4.42 5.00
Appropriate Difficulty 4.75 5.00 4.43 5.00
Relevance to Code 4.72 5.00 4.64 5.00

Table 2: Comparative statistics for human and GPT4
generated questions.

ensured.
The evaluators rated each question based on five

criteria shown in Table 1. They also guessed the
question’s authorship and expressed their prefer-
ence between the pair. Detailed evaluation criteria
and labels can be found in Table 1.

4 Analyses and Results

This section details our analysis and highlights the
results, encompassing quality ratings, expert per-
ceptions, and textual similarities in question gener-
ation.

4.1 Comparative Analysis of Quality Ratings

U-val p

Relevance to learning objectives 3688.0 0.047
Question Clarity 3392.0 0.011
Difficulty Appropriateness 3540.5 0.015

Relevance to the given code snippet 3918.5 0.595

Table 3: Results of Mann-Whitney U tests compar-
ing human evaluations of LLM-generated and human-
authored code-tracing questions. U-values and p-values
are provided for four criteria. Significant differences
for three criteria indicate varying performance, while
no difference in ’relevance to the given code snippet’
suggests similar performance.

To assess the quality disparity between LLM-
generated and human-authored questions, we ap-
plied Mann-Whitney U tests (Mann and Whitney,
1947) to the median ratings of four evaluation cri-

teria in Table 3. Significant differences emerged
in three criteria: relevance to learning objectives,
clarity, and difficulty appropriateness. However,
the relevance to the given code snippet showed no
significant difference, indicating comparable per-
formances.

Despite U-tests highlighting significant differ-
ences in some criteria, the practical quality differ-
ence was minimal. As further detailed in Table 2,
LLM-generated questions had slightly lower mean
ratings, yet their median ratings closely mirrored
those of human-authored questions.

Considering these two analyses together, it is
apparent that despite some statistical differences,
LLM-generated questions still maintain a high ped-
agogical standard effectively. Consequently, LLM,
while underlining areas for potential enhancement,
demonstrates proficiency in generating questions
that align closely in quality and course relevance
with those crafted by humans.

4.2 Expert Perception of Question Authorship

We further evaluated the discernibility of LLM-
generated questions from human-authored ones
using a Confusion Matrix (Table 5). Approxi-
mately 56% (99 out of 176) of GPT4-generated
questions were mistakenly identified by experts as
human-generated, and about 20% (35 out of 176)
of human-authored questions were misattributed to
the GPT4. This overlap signifies the high quality
of the generated questions and GPT4’s proficiency
in producing pedagogically relevant tracing ques-
tions. Moreover, the matrix reveals an evaluator
bias toward attributing higher-quality questions to
human authorship.

4.3 Textual Similarity between Questions

Table 6 presents BLEU (Post, 2018), ROUGE-
1/2/L (Lin, 2004), and BERTScores (Zhang* et al.,
2020), comparing the similarity between the ran-
domly selected GPT4 generated questions and cor-
responding human-authored questions. The low
BLEU and ROUGE scores suggest that GPT4 is
generating distinct, non-verbatim questions com-
pared to human-authored questions. A moderate
BERTScore, reflecting semantic similarity, sug-
gests that GPT4-generated questions align with
the context of human-authored ones. This further
underscores GPT4’s capability to independently
generate relevant and diverse code-tracing ques-
tions, distinct from those crafted by humans.
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GPT-4: Few-Shot vs. Zero-Shot Results

Zero-Shot Prompt: Few-Shot Prompt:
Your task ... Craft tracing questions for: {requirement}
{code_snippet}

Your task ... Examples: {requirement1}
{code_snippet1} {tracing_question1} ... Craft
for: {requirement} {code_snippet}

Zero-Shot Result: Few-Shot Result:
1. What is the purpose of this function? What does it
aim to accomplish?

Tracing question 1: What is the output of the method
redo(9, 3)?

2. What is the base case for this recursive function?
What happens when the base case is reached?

Tracing question 2: What is the output of the method
redo(0, 5)?

3. If the input values are i = 8 and j = 2, what will be
the output of the function? Please trace through the
code step-by-step and explain your reasoning.

Tracing question 3: What is the output of the method
redo(27, 3)?

... ...
6. What happens if both input values are negative,
such as i = -8 and j = -2? Does the function handle this
case correctly according to the requirement? Explain
your reasoning.

Table 4: Illustrative comparison between GPT-4’s code-tracing question generation in Few-Shot and Zero-Shot
settings, showcasing the diversity and specificity of generated questions.

Predicted GPT4 Predicted Human

Actual GPT4 77 99
Actual Human 35 141

Table 5: Confusion Matrix indicating experts’ attribu-
tions of code-tracing questions. The table displays the
number of actual GPT-4 generated and human-authored
questions and how they were predicted by the experts,
underscoring the challenge in distinguishing between
the two.

Combining with the previous analyses, the LLM,
such as GPT4, thus exhibits substantial promise
in generating high-quality, course-relevant code-
tracing questions, illustrating its utility as a teach-
ing aid.

4.4 Few-shot vs Zero-shot Generation Results

Few-shot generation biased our model towards the
provided examples, largely reducing question di-
versity. In contrast, zero-shot generation yielded
more diverse questions, prompting us to favor it
for broader question variety in our experiment. De-
tailed examples of the generated results for both
0-shot and few-shot methods can be found in Ap-
pendix D.

Table 4 provides a side-by-side comparison of
GPT-4’s performance in few-shot and zero-shot set-
tings. The zero-shot results exhibit a broader range
of question types, while the few-shot results seem
to be more templated, reflecting the bias introduced
by the provided examples.

Possible reasons for these observations include

Metric Score
BLEU 0.02
ROUGE-1 F-score 0.215
ROUGE-2 F-score 0.051
ROUGE-L F-score 0.199
BERTScore Precision 0.274
BERTScore Recall 0.341
BERTScore F1 0.303

Table 6: Comparing the similarity between human-
authored questions and the random choiced GPT4 ques-
tion.

the influence of training data and model design in
zero-shot scenarios, allowing GPT-4 to tap into its
vast training experience. In contrast, in few-shot
scenarios, the model might overly adhere to the
provided examples, interpreting them as stringent
templates, which can compromise output diversity.
The balance between the nature of the task and
the examples becomes pivotal in few-shot settings,
potentially leading to outputs that may sacrifice
accuracy or diversity. These hypotheses warrant
further investigation in future work.

5 Conclusion

This study explored the capability of GPT-4 in gen-
erating code-tracing questions that rival the quality
of those crafted by human educators. The findings
illuminate the potential of LLMs to bolster pro-
gramming education, marking a significant stride
in the domain of code-tracing question generation
and LLM application. This sheds light on scalable,
high-quality automated question generation.
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Limitations and Future Work

This study marks a step closer in evaluating LLMs
for code tracing question generation, but it is not
without its limitations. Our research was primarily
anchored to GPT-4, raising concerns about the gen-
eralizability of our findings to other LLMs, such as
CodeT5+. Moreover, the study did not delve into
the personalization of tracing questions based on
individual student submissions, a facet that could
greatly enhance the learning experience. Further-
more, the real-world educational efficacy of the
LLM-generated questions remains an open ques-
tion, given that our study did not involve actual
students.

Several avenues beckon for further exploration.
Evaluations with a broader range of models will
offer a more comprehensive perspective on LLM
capabilities. While our study centered on intro-
ductory Java tracing questions, assessing LLM ver-
satility across different programming domains is
imperative. The potential of LLMs extends beyond
mere question generation; by tailoring questions
to student needs, we can amplify the educational
relevance. Our roadmap includes the development
of an educational platform integrated with LLM
questions, followed by classroom experiments and
usability testing. To ensure broader applicability,
expanding our dataset is crucial. Lastly, our find-
ings on few-shot and zero-shot learning necessitate
further investigation into model adaptability, bi-
ases in question generation, and the potential of
intermediate-shot learning.

These directions not only underscore the trans-
formative potential of LLMs in AI-driven education
but also emphasize the importance of comprehen-
sive evaluations.

Ethical Statement

Our exploration of Large Language Models
(LLMs) in introductory programming education
was conducted ethically. We sourced public data
and maintained evaluator anonymity and data confi-
dentiality through secure storage. Evaluators were
informed of the objectives and participated volun-
tarily. All evaluation results, as committed in the
IRB forms, are securely stored. We strived for ed-
ucational fairness by properly compensating the
educators involved in our evaluation. We are mind-
ful of the societal impacts of LLM integration in
education. While acknowledging their promise, we
believe careful consideration of pedagogical goals

within the educational ecosystem is vital. Our fu-
ture work will be guided by these ethical principles
of privacy, informed consent, secure data handling,
inclusivity, and conscientious progress focused on
students’ best interests.
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A Questionare

Description: (blank)
Code:

int[][] m = {{1,1,1,1},{1,2,3,4},{2,2,2,2},{2,4,6,8}};
int sum = 0;
for (int k = 0; k < m.length; k++) {

sum = sum + m[m.length-1-k][1];
}

Question 1: Given the following code segment, what is the value of sum after this code executes?
Question 2: What is the role of the expression ‘m[m.length-1-k][1]’ in the code?
Annotation
1. Relevance to Learning Objectives: The question is relevant to the learning objectives of an
introductory programming course. (Label: 1-5)
2. Tracing or not: Is this a tracing question? (Label: Yes or No)
3. Clarity of the Question: The question presented is clear and the language used in the question is
easy to understand. (Label: 1-5)
4. Difficulty Level: The difficulty level of the question is appropriate for an introductory programming
course. (Label: 1-5)
5. Relevance to the Given Code Snippet: The question is appropriately related to the code snippet
provided in the question. (Label: 1-5)
6. Ability to Distinguish Human-Authored from Automatically Generated Questions: Can you tell if
the question is human-authored or automatically generated? (Label: Human-created or AI-generated)
7. I think this is a better tracing question. (Check the box under the better question)

This is an example of our questionnaire sent to annotators.

B Prompts

The final prompt we employed offers LLMs a detailed context: it requests the generation of questions
from an expert instructor’s perspective within a defined pedagogical setting. It outlines the merits of
code-tracing questions, gives an insight into their typical structure, and highlights their educational aim,
specifically, promoting in-depth understanding rather than just assessing knowledge. Unlike the data
collection process, where each code snippet is linked to a single question, the prompt is designed to
produce multiple valid tracing questions for the same snippet, which leverages the inherent diversity and
breadth potential of LLMs.
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User Prompt: In your role as an education expert in an introductory Java programming course, you
are equipped with a deep understanding of Java and teaching methodologies. Your aim is to shape
the minds of young learners, paving their path to becoming proficient programmers. One of your
potent teaching techniques involves providing students with real-world coding practice requirements
and letting them craft working code snippets.
Consider a scenario where you have presented your students with a requirement to develop a
basic calculator program in Java, performing fundamental arithmetic operations like addition,
subtraction, multiplication, and division. Enthusiastically, the students pour their effort into crafting
varied solutions, reflecting their unique approach to the problem and their understanding of Java
programming.
But your task doesn’t end with the generation of code. It’s now time for the students to delve deeper,
and here comes the importance of tracing in programming. Code tracing is the process of manually
going through the execution of code, step-by-step, to understand its flow and logic. It’s a fundamental
practice in learning programming, aiding students in debugging their programs and developing a
stronger understanding of code behavior.
One of the best ways to encourage code tracing is by generating tracing questions. Such questions
stimulate the students to analyze their code at a granular level, fostering their problem-solving skills
and enhancing their understanding of the Java language.
Remember, your questions should stem from two sources - the initial Requirement and the Code the
students have produced. For example, given a code snippet, you might ask ’What is the output of
this code if the user inputs two and three and chooses to multiply?’ or ’Can this code handle the
division by zero scenario, according to the requirement?’.
Your goal is not just to evaluate their coding skills, but to instill a deep, lasting understanding of
Java programming in them. By asking relevant tracing questions, you’re helping to nurture a new
generation of critical thinkers, problem solvers, and proficient programmers.
You will ask many relevant tracing questions given 1. Requirement, 2. Code, as below:
Requirement: (blank) Code:

int x = 3;
int y = 2;
if (x > 2)

x++;
if (y > 1)

y++;
if (x > 2)

System.out.print("first ");
if (y < 3)

System.out.print("second ");
System.out.print("third");

This is an example of our prompt.

C GPT3.5 vs GPT4

Prompt ... Requirement: (blank) Code:
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int x = 3;
int y = 2;
if (x > 2)

x++;
if (y > 1)

y++;
if (x > 2)

System.out.print("first ");
if (y < 3)

System.out.print("second ");
System.out.print("third");

GPT-3.5 Result:
Tracing Questions:
1. What are the initial values of x and y in this code?
2. Does the if statement on line 3 execute? Why or why not?
3. Does the if statement on line 5 execute? Why or why not?
4. What is the value of x after line 4 has executed?
5. What is the value of y after line 6 has executed?
6. Which System.out.print statement(s) will execute in this code?
7. What is the output of this code?
8. What happens if the initial value of x is 1? How does the output change?
9. What happens if the initial value of y is 3? How does the output change?
10. Can this code handle other arithmetic operations besides addition and subtraction, according to
the requirement?

GPT-4 Result: 1. What will be the values of x and y after executing the first two if statements?
2. What is the output of the code snippet as it is?
3. If we change the initial value of x to 1, what will be the output of the code snippet?
4. If we change the initial value of y to 0, what will be the output of the code snippet?
5. What will happen if both x and y are initialized with values less than or equal to 2? What will be
the output in that case?
6. How would you modify the code to include an additional condition where it checks if x is equal to
y and prints "equal" if it’s true?
7. If we swap the positions of the second and third if statements, would the output change? Why or
why not? 8. Can you explain the flow of the code execution given the initial values of x and y? What
are the key decision points in the code?
9. What happens if we change the second if statement to "if (y == 1)"? How does that change the
output of the code snippet?
10. How would you modify the code to print "none" if none of the conditions are met in the if
statements?

This is an example of GPT3.5-turbo v.s. GPT4 for tracing question generation on a simple java problem.

Prompt ... Requirement: (blank) Code:
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Requirement: (blank)
Code:
public static int redo(int i, int j)
{

if (i==0)
return 0;

else
return redo(i/j, j)+1;

}

GPT-3.5 Result:
1. What is the purpose of the redo() method?
2. What is the return type of the redo() method?
3. What is the initial value of i and j when the redo() method is called?
4. What happens if the value of i is 0?
5. What happens if the value of j is 0?
6. What happens if the value of i is negative?
7. What happens if the value of j is negative?
8. What happens if the value of i is greater than j?
9. What is the output of the redo() method if the values of i and j are 8 and 2 respectively?
10. What is the output of the redo() method if the values of i and j are 10 and 3 respectively?

GPT-4 Result:
1. What is the base case for this recursive function, and what does it return?
2. How is the recursion progressing towards the base case in this code?
3. What will be the output of this function if the inputs are i=16 and j=2?
4. What will be the output of this function if the inputs are i=81 and j=3?
5. How will the function behave if both i and j are equal to 0? Will it cause any issues?
6. How will the function behave if i is less than j? Is the output as expected according to the
requirement?
7. How does the function handle the scenario when j is 1? Is the output as expected according to the
requirement?
8. Can this function handle negative inputs for i and j? If not, how can it be modified to handle such
cases?
9. What is the maximum recursion depth for this function, and how does it depend on the input
values i and j?
10. Are there any edge cases or scenarios that this function might not handle well? If so, can you
suggest any modifications to improve the code?

This is an example of GPT3.5-turbo v.s. GPT4 for tracing question generation on a recursion java problem.

D Zero-Shot vs Few-Shot in GPT4

Zero-Shot Prompt ... Requirement: (blank) Code:
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Requirement: (blank)
Code:
public static int redo(int i, int j)
{

if (i==0)
return 0;

else
return redo(i/j, j)+1;

}

Few-Shot Prompt ... Here are some more examples of tracing questions based on code snippet:
1.

Requirement: (blank)
Code:
for (int i = 3; i <= 9; i++)
{

System.out.print(""*"");
}
Tracing question:
How many times does the following method print a *?

2.

Requirement: (blank)
Code:
//precondition: x >=0
public static void mystery (int x)
{

System.out.print(x % 10);

if ((x / 10) != 0)
{

mystery(x / 10);
}
System.out.print(x % 10);

}
Tracing question:
Given the following method declaration, which of the following is

↪→ printed as the result of the call mystery(1234)?

3.
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Requirement: (blank)
Code:
public static int product(int n)
{

if (n <= 1)
return 1;

else
return n * product(n - 2);

}
Tracing question:
Given the following method declaration, what value is returned as

↪→ the result of the call product(5)?

Your goal is not just to evaluate their coding skills, but to instill a deep, lasting understanding of
Java programming in them. By asking relevant tracing questions, you’re helping to nurture a new
generation of critical thinkers, problem solvers, and proficient programmers. You will ask many
relevant tracing questions given 1. Requirement, 2. Code, as below. You don’t have to strictly follow
the examples, and we encourage you to be creative when thinking about the tracing questions:
Requirement: (blank) Code:

Requirement: (blank)
Code:
public static int redo(int i, int j)
{

if (i==0)
return 0;

else
return redo(i/j, j)+1;

}

Zero-Shot Result:
1. What is the purpose of this function? What does it aim to accomplish?
2. What is the base case for this recursive function? What happens when the base case is reached?
3. If the input values are i = 8 and j = 2, what will be the output of the function? Please trace through
the code step-by-step and explain your reasoning.
4. If the input values are i = 27 and j = 3, what will be the output of the function? Please trace
through the code step-by-step and explain your reasoning.
5. What happens if the input values are i = 0 and j = 5? Does the function handle this case correctly?
Explain your reasoning.
6. What happens if the input values are i = 5 and j = 0? Does the function handle this case correctly
according to the requirement? Explain your reasoning.
7. What happens if both input values are negative, such as i = -8 and j = -2? Does the function handle
this case correctly according to the requirement? Explain your reasoning.
8. Are there any edge cases or potential issues with the current implementation of the function? If
so, what are they and how can they be addressed?

Few-Shot Result:
Tracing question 1: What is the output of the method redo(9, 3)?
Tracing question 2: What is the output of the method redo(0, 5)?
Tracing question 3: What is the output of the method redo(27, 3)?
Tracing question 4: How many times does the method redo call itself when i = 16 and j = 2?
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Tracing question 5: Can this method handle cases where either i or j is a negative number? If so,
what would be the output for redo(-6, 2)?

This is an example GPT4 in Few-Shot setting v.s. Zero-Shot Setting.
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