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Abstract

We propose a new commonsense reasoning
benchmark to motivate commonsense reason-
ing progress from two perspectives: (1) Eval-
uating whether models can distinguish knowl-
edge quality by predicting if the knowledge is
enough to answer the question; (2) Evaluating
whether models can develop commonsense
inference capabilities that generalize across
tasks. We first extract supporting knowledge
for each question and ask humans to anno-
tate whether the auto-extracted knowledge is
enough to answer the question or not. Af-
ter that, we convert different tasks into a uni-
fied question-answering format to evaluate the
models’ generalization capabilities. We name
the benchmark Commonsense Inference with
Knowledge-in-the-loop Question Answering
(CIKQA). Experiments show that with our
learning paradigm, models demonstrate en-
couraging generalization capabilities. At the
same time, we also notice that distinguish-
ing knowledge quality remains challenging for
current commonsense reasoning models.

1 Introduction

Understanding human language requires both lan-
guage knowledge (e.g., grammar and semantics)
and world knowledge, which can be further di-
vided into factual and commonsense knowledge
(Katz and Fodor, 1963). Recently, the commu-
nity has made great progress in helping machines
acquire and apply language and factual knowl-
edge. However, how to help machines acquire
and infer over commonsense is still unclear. To
answer this question, many commonsense rea-
soning datasets (Roemmele et al., 2011; Sak-
aguchi et al., 2020; Talmor et al., 2019; Zellers
et al., 2019; Lin et al., 2020) have been pro-
posed. Even though they target different knowl-
edge types, modalities, and formats, they often

∗ This work was done when the second author was vis-
iting HKUST.

follow a standard supervised learning setting that
aims at helping machines solve a specific task with
training data. However, two limitations of this
learning paradigm have restricted the development
of commonsense reasoning systems.

First, there is no clear separation between
knowledge and inference. As discussed in Elazar
et al. (2021), a common phenomenon is that
larger training data will lead to better perfor-
mance, mainly because richer knowledge is cov-
ered. However, due to the large scale of com-
monsense knowledge, it is infeasible to annotate
a large enough training set for each task, and the
responsibility of the training data should be teach-
ing models how to make inferences rather than
acquire commonsense knowledge. Several recent
works have explored using structured knowledge
for commonsense reasoning tasks (Lin et al., 2019;
Lv et al., 2020; Paul and Frank, 2020). However,
as these works did not clearly analyze the cover-
age of the structured knowledge (i.e., knowledge
graphs (KGs)), it is still unclear what the perfor-
mance means, better knowledge coverage, or bet-
ter inference capability. To investigate what is be-
hind this learning process, we propose to equip
each question with auto-extracted knowledge and
ask humans to annotate whether the knowledge is
sufficient to answer the question. By doing so,
we could evaluate whether models can know if
the provided knowledge is good or not and how
well they can conduct inference over the provided
knowledge to solve the task.

Second, supervised learning may force the
model to learn the distribution of the training data
rather than a universal inference model. As a re-
sult, the model may perform well on the test set
that follows the same distribution but fail to gen-
eralize (Kejriwal and Shen, 2020). Previously, as
different tasks have different formats, it is hard
to evaluate the generalization ability of common-
sense reasoning models. Following the trend of
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Figure 1: CIKQA demonstration. All tasks are converted into a unified format such that we can easily evaluate
the generalization capability of all models. We also equip all questions with auto-extracted knowledge graphs from
existing KGs and ask humans to annotate whether the knowledge is gold or not. In this example, we expect models
to first identify the quality of the knowledge and then conduct inference over the knowledge to solve the question.

using a unified format (i.e., question answering)
for different tasks (Khashabi et al., 2020), we pro-
pose to convert various commonsense reasoning
tasks into a unified QA format such that we can
easily and fairly evaluate the generalization ability
of learned commonsense reasoning models.

Combining these two lines of effort, we pro-
pose a new commonsense inference benchmark
Commonsense Inference with Knowledge-in-the-
loop QA (CIKQA). An example is shown in Fig-
ure 1. We first convert several popular common-
sense reasoning tasks into a unified QA format and
equip them with the relevant knowledge from ex-
isting commonsense knowledge graphs. We lever-
age human annotation to label whether the pro-
vided knowledge is correct and enough1 to answer
the question. The CIKQA benchmark can moti-
vate us to answer two questions: (1) Whether cur-
rent models can distinguish the knowledge is gold
or not; (2) Can current commonsense inference
models generalize across different commonsense
reasoning tasks?

Experiments with several recent knowledge-
based commonsense reasoning models show that
even though current deep models could learn to
conduct simple inferences after training with a
few examples when gold knowledge is provided,
they still cannot learn to distinguish gold knowl-
edge very well. Moreover, although current mod-

1In the rest of the paper, we denote such knowledge as the
gold knowledge.

els demonstrate encouraging generalization abil-
ity across the three tasks we consider, they still
struggle with complex inference (e.g., abductive
reasoning). We hope that our benchmark2 can
motivate more advanced commonsense inference
methods in the future.

2 Dataset Construction

In CIKQA, to encourage a generalizable com-
monsense inference model, we follow previous
work (Khashabi et al., 2020; Cohen et al., 2020;
Wu et al., 2020; Du and Cardie, 2020) to unify
all selected tasks as a binary question answering
problem, and equip each question with a support-
ing knowledge graph G retrieved from existing
commonsense KGs. We leverage crowd-sourcing
workers to annotate whether the knowledge is gold
(i.e., accurate and enough) for answering the ques-
tion. With that, we can evaluate whether mod-
els know how to distinguish gold and knowledge
and whether they can learn the generalizable in-
ference with the help of the knowledge. In total,
CIKQA contains 15 thousand instances from four
kinds of commonsense reasoning tasks. Details
about task selection, format unification, knowl-
edge extraction, and annotation are as follows.

2.1 Task Selection
In CIKQA, we select the following four popular
commonsense reasoning tasks:

2Available at https://github.com/CogComp/CIKQA.
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Task Name Original Assertion Transformed Question Answer

HardPCR The fish ate the worm. It was
hungry.

The fish ate the worm. It was hun-
gry. What was hungry?

(A) Fish; (B) Worm

CommonsenesQA What is a place that someone
can go buy a teddy bear?

What is a place where someone can
go buy a teddy bear?

(A) Toy store; (B) Shelf

COPA I drank from the water fountain. I drank from the water fountain.
What was the cause of this?

(A) I was thirsty.; (B) I felt
nauseous.

ATOMIC PersonX buys the bike. Before PersonX buys the bike, what
did PersonX want?

(A) To be social.; (B) To
have transportation.

Table 1: Demonstration of the original assertion, transformed questions, and answers. Correct and wrong answers
are indicated in blue and red, respectively.

1. HardPCR (Zhang et al., 2021): The hard pro-
noun coreference resolution (HardPCR) task is
one of the most famous commonsense reason-
ing tasks. For each question, a target pronoun
and two candidate mentions are provided, and
the task is to select the correct mention that
the pronoun refers to. Careful expert annota-
tions are conducted to get rid of the influence of
all simple linguistic rules, and the models are
required to solve the problem with common-
sense reasoning. We include instances from
WSC (Levesque et al., 2012), DPR (Rahman
and Ng, 2012), and WinoGrande (Sakaguchi
et al., 2020). To create a question regarding
the target pronoun, we first find the sentence
that contains the target pronoun and then deter-
mine whether the participating pronoun refers
to a person or an object.

2. CommonsenseQA (Talmor et al., 2019) is
a multiple-choice question answering dataset.
For each question-answer pair, four relevant but
wrong concepts are used as the other candi-
dates, and the models are required to select the
correct one out of five candidates. In CIKQA,
we randomly sample a negative answer to make
it a binary choice task, which is consistent with
other datasets.

3. COPA (Roemmele et al., 2011) focuses on eval-
uating the understanding of event causality.
Two follow-up events are provided for a target
event, and models are asked to predict the one
caused by or the reason for the target event.

4. ATOMIC (Sap et al., 2019): is a common-
sense knowledge graph, which we convert into
a completion problem. Given a head concept
(e.g., “eat food”) and a relation (e.g., “cause”),
we want to predict the tail concept, focusing on
predicting the edges of ATOMIC.

In COPA and ATOMIC, where the task is to
predict the relations between two events or states
(e.g., “PersonX eats”-Causes-“PersonX is full”),
for each triplet, we randomly sample another event
or state as the negative tail and ask the model to
select the correct one. To make the task challeng-
ing and avoid sampling irrelevant events or states,
we restrict the sampled negative event or state to
be connected with the head of a different triplet
(e.g., “PersonX is hungry” from the triplet “Per-
sonX eats”-CausedBy-“PersonX is hungry”). For
each relation, we write a pattern to generate the
question. For example, for the “Causes” relation,
we will ask “What can be caused by the event ‘Per-
sonX eats’?”. Examples of instances in the orig-
inal datasets and their transformed questions and
candidate answers are presented in Table 1.

2.2 Supporting Knowledge Extraction

As discussed in Section 1, a limitation of existing
commonsense reasoning benchmarks is that there
is no clear boundary between knowledge and in-
ference. As such, it is unclear what is learned from
the training data, the knowledge, how to perform
inference, or a combination of both. We propose
to equip each question with supporting knowledge
to address this issue and encourage models to learn
inference rather than knowledge from the training
data. The question is selected as part of the dataset
only if we find supporting knowledge to answer
the question. Note that this procedure serves as
an improved evaluation setup than purely super-
vised learning and not as a solution to common-
sense reasoning. This section introduces the se-
lected commonsense knowledge graphs and then
introduces how we extract the corresponding com-
monsense knowledge for each question.
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2.2.1 Commonsense KG Selection
Many commonsense knowledge graphs were de-
veloped to enhance machines’ commonsense rea-
soning abilities, including ConceptNet (Liu and
Singh, 2004), ATOMIC (Sap et al., 2019),
GLUCOSE (Mostafazadeh et al., 2020), and
ASER (Zhang et al., 2020a). Among these four,
ConceptNet, ATOMIC, and GLUCOSE were con-
structed via crowd-sourcing, while ASER was
constructed automatically with information ex-
traction techniques. Besides ATOMIC, which is
used as one of the tasks, we use the other KBs as
supporting knowledge resources.

2.2.2 Supporting Graph Extraction
Here we introduce how to extract the supporting
knowledge from external commonsense knowl-
edge bases. For each question, we need to obtain
a sub-graph from supporting knowledge graphs
to contain the relevant commonsense knowledge
about the question. The sub-graph extraction pro-
cess includes the following three steps: (1) Pre-
processing: Convert each question into several key
sentences; (2) Matching: Match the sentences into
nodes in the KG; (3) Extraction: Retrieve the rel-
evant sub-graphs from the entire KG. In what fol-
lows, we give some more details on each of the
steps.
Data Pre-processing: For each question and the
associated candidate answers, we first replace the
question words (e.g., “What”) with the two candi-
date answers such that they become two declara-
tive sentences. For instance, if the question is “The
fish ate the worm. It was hungry. Who is hun-
gry?” and the candidates are “Fish” and “Worm,”
we will convert the question into the declarative
sentence: “The fish is hungry” and “The worm is
hungry.” As a result, we will get three sentences
for this question: “The fish ate the worm,” “The
fish is hungry,” and “The worm is hungry.”
KG Matching: After getting the declarative sen-
tences containing the question and key answers,
we map them to nodes in knowledge graphs to
extract the relevant knowledge. Considering that
each sentence may have multiple words and it is
often hard to find an exact match, we adopt an
embedding-based fuzzy matching technique. For
each sentence and node in the KG, we treat them
as a sentence and get the corresponding repre-
sentations with SimCSE (Gao et al., 2021). For
each input sentence, SimCSE encodes the sen-
tence into a vector. A close distance between two

vectors indicates that the two sentences are simi-
lar to each other. We use cosine similarity on the
obtained representations to measure the similarity
between two sentences.3 Since there are 287 thou-
sand nodes in GLUCOSE and 194 million nodes
in ASER, it is computationally infeasible to com-
pute the cosine similarity between sentences pair
by pair. Thus we use an approximation. For each
extracted sentence, we first apply Faiss (Johnson
et al., 2017), a large-scale similarity-based match-
ing algorithm that first clusters all KG nodes in the
vector space to increase the matching efficiency
when finding the top N nodes in the KG. We en-
code all the nodes of the graph and index them us-
ing Faiss (Johnson et al., 2017). Then, we can per-
form fast and quick retrieval of the most-similar
nodes with each query sentence. After that, we
sort the N nodes based on the cosine similarity to
find the top K similar nodes. We set N and K
to be 60 and 1, respectively. On average, it takes
25 seconds to retrieve the relevant nodes for each
question.
Graph Extraction: Next, we extract the sub-
graph that contains all the relevant nodes. We de-
note the extracted m nodes as n1, n2, ..., nm, and
for each of them, we find K similar nodes from the
KG. The resulting matched node sets are denoted
as N1,N2, ...,Nm. For any pair of nodes n ∈ Ni

and n′ ∈ Nj (i ̸= j), if there exists a path in the
KG between n and n′, we will keep that path. Af-
ter adding all paths together, we will get the final
sub-graph. On average, constructing a graph for
each question takes less than two seconds.
Knowledge Quality Annotation: Since our ex-
traction method is automatic, some of the sub-
graphs may be irrelevant or insufficient for an-
swering the questions. We use crowdsourcing to
annotate whether the extracted knowledge is gold
(i.e., accurate and enough), five per example. The
average Inter-annotator agreement (Cohen’s kappa
statistic) is 0.83, indicating our annotation’s high
quality. In the end, we apply a strict standard (at
least four of five annotators need to vote for gold)
to select the gold knowledge.

2.3 CIKQA Statistics
We report the dataset statistics in Table 2. In
total, CIKQA contains 14,599 instances, among
which Hard PCR and ATOMIC provide the most

3We also tried other techniques such as string match,
ROUGE (Lin, 2004), and BLEURT (Sellam et al., 2020), but
found them to be either inaccurate or too slow for our scale.
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Task Name # Instance by Knowledge Resource # Total Instance Avg Sub-graph Size # Gold InstanceASER ConceptNet GLUCOSE

HardPCR 2,030 202 2,143 4,375 2.85 670
CommonsenseQA 530 31 37 598 3.19 59
COPA 103 41 149 293 3.03 78
ATOMIC 5,655 212 3,466 9,333 2.67 2,200

Total 8,318 486 5,795 14,599 2.75 3,007

Table 2: CIKQA statistics. “Avg Sub-graph Size” is the average graph size measured by the number of edges.
“# Gold Instance” means the number of instances supported by different knowledge resources and annotated gold
(i.e., Accurate and Enough) knowledge.

questions because their original datasets are much
larger than others. According to the annotation,
20.59% of the instances contain gold knowledge.
Based on our analysis, annotators hold a very strict
standard for selecting the gold knowledge. We
randomly split the dataset into training, develop-
ment, and testing sets for each task with a standard
8:1:1 splitting. As a result, we get 11,678 training,
1,459 development, and 1,462 testing instances.

3 Experiment Setup

We present the performance of the following com-
monsense inference models on CIKQA:
(1) Vanilla LM: We use the language model (LM)
based multiple-choice (MC) model as the basic
baseline. For each candidate answer, we concate-
nate it with the question and feed it to the model.
After getting the sentence representation, a linear
layer is used to obtain a score and trained with a
cross-entropy loss.
(2) KagNet: As one of the pioneering works that
utilized structured knowledge for solving com-
monsense reasoning tasks, KagNet (Lin et al.,
2019) first uses a graph convolution network to
encode the knowledge graph and then apply an
LSTM based hierarchical attention mechanism to
encode the knowledge paths that start with the
nodes corresponding to the question and end with
nodes corresponding to the answer. At the same
time, KagNet encodes the question and answers
with pre-trained LMs. In the end, it concatenates
all representations for the final prediction.
(3) Graph-Based Reasoning (GBR): Instead of
only encoding paths starting with the question
nodes and ending with answer nodes, in GBR (Lv
et al., 2020), they propose to run a depth-first al-
gorithm over the knowledge graph to generate a
sequence of paths as the supporting knowledge
paths.
(4) Multi-Head Knowledge Attention (MHKA):

To further utilize the knowledge, MHKA (Paul
and Frank, 2020) uses a transformer network to
model the paths from the question nodes and an-
swer nodes, then concatenates the knowledge and
context representation for the final prediction.
(5) Graph-to-Text (G2T): In the end, we also
evaluate a simple yet effective approach of com-
bining structured knowledge and language mod-
els: Graph-to-Text (Bian et al., 2021), which first
verbalizes knowledge into a sentence and then
concatenates the knowledge sentence and target
question together. On top of that, a transformer-
based model is used to encode the input sentence
and make the final prediction.

Implementation Details We implement all ex-
periments with Huggingface (Wolf et al., 2019).
We select BERT-base (Devlin et al., 2019) as the
base language model for all models. The batch
size is set to 16. All models are trained for 10,000
steps4, and the best-performing checkpoints on
the dev set are evaluated. For our model, we set
both the number of random walk paths and the
walk length to five. Considering that the auto-
extracted knowledge could contain noise or miss
certain knowledge, we add a “gold knowledge”
setting, where only examples with the gold knowl-
edge are used for training and testing, for all mod-
els as the upper bound of their model. All other
hyper-parameters are the same as the base lan-
guage model. All models are trained with GTX
2080, and the average running time is 12 hours.

4 Result Analysis

We first conduct analysis experiments to evalu-
ate to what extent the provided knowledge could
help existing models. For each model, we train
it with different numbers of training instances and
report the average performance and standard de-

4All models converge at 10,000 steps.
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Figure 2: Learning curves of all evaluated models on
all instances of CIKQA. We evaluate all models with
the full dataset.

viation of five trials. Experiment results with all
instances and the gold subset of CIKQA, where
only instances with gold knowledge are used for
training and testing, are presented in Figure 2
and 3, respectively. From the results, we can make
the following observations. First, when explic-
itly including the knowledge, all inference models
outperform the baseline model with no support-
ing knowledge, especially G2T. When the auto-
extracted and gold knowledge is provided, G2T
outperforms the baseline Vanilla LM model by
4.17 and 15.34 accuracy, respectively. It supports
our assumption that learning all knowledge from
the limited training data is hard, and external struc-
tured knowledge could help. At the same time,
we also notice a significant gap between auto-
extracted knowledge and gold knowledge. For
example, if gold knowledge is available, models
could learn to answer the questions with only a
few examples. This indicates that the knowledge
quality can significantly impact models’ perfor-
mance, which further shows the importance of dis-
tinguishing whether the knowledge is gold or not
automatically. Last but not least, we can see that
G2T outperforms other inference models in most
settings, which shows that with the help of cur-
rent large-scale LMs, jointly encoding questions
and knowledge is more efficient and a more effec-
tive strategy than acquiring them separately. Due
to the simplicity and efficiency of G2T, we will
conduct the rest analysis experiments with G2T.

Figure 3: Learning curves of all evaluated models on
the gold subset of CIKQA, where only instances with
gold knowledge are used for training and testing.

4.1 Distinguishing the Gold Knowledge

Humans can say “I do not know” when they find
out that they cannot answer a question with their
knowledge. To investigate whether current deep
models have a similar capability, we use G2T as
an example to test whether these deep models can
distinguish the gold knowledge. For each (ques-
tion, answer, and knowledge) triplet, we train and
test G2T with annotated knowledge quality la-
bels. To address the imbalanced distribution prob-
lem, we randomly select the same number of “Not
Gold” examples as the “Gold” ones to make the
dataset balanced. From the results in Figure 4,
we can see that the performance of G2T can be
improved slightly with the increase of training
data. However, after seeing thousands of exam-
ples, it still can only achieve 0.65 accuracy on a bi-
nary classification problem. It shows that knowing
when to say “I do not know” is still a challenging
task for current deep models, which is consistent
with the observations in previous literature that
deep models cannot understand the reasons and
knowledge they used to answer questions (Zhang
et al., 2020b; Sanh et al., 2022). We hope that
CIKQA could motivate more future work on this
important research problem.

4.2 Generalization Ability

An important assumption and motivation behind
the unified problem design of CIKQA is that even
though the commonsense could be enormous, the
inference rules over commonsense knowledge can
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Training Task Testing Task
Hard PCR CommonsenseQA COPA ATOMIC

Hard PCR - 37.50 → 52.30 75.00 → 53.24 44.13 → 53.32
CommonsenseQA 50.00 → 50.14 - 62.50 → 56.67 56.34 → 70.56
COPA 45.95 → 51.26 62.50 → 58.33 - 49.77 → 62.96
ATOMIC 39.19 → 50.76 50.00 → 76.67 62.50 → 73.33 -

(a) Full Dataset (Vanilla LM (without knowledge)→ G2T (with knowledge))

Training Task Testing Task
Hard PCR CommonsenseQA COPA ATOMIC

Hard PCR - 46.67 → 51.67 63.33 → 56.67 51.85 → 55.78
CommonsenseQA 49.32 → 50.32 - 50.00 → 75.00 60.39 → 91.08
COPA 52.51 → 54.79 56.67 → 87.50 - 53.01 → 76.06
ATOMIC 50.46 → 51.35 68.33 → 93.75 56.67 → 87.50 -

(b) Gold Subset (Vanilla LM (without knowledge)→ G2T (with knowledge))

Table 3: Generalization ability demonstration. We report the performance on both the full dataset and the gold
dataset (i.e., only questions with gold knowledge are selected for training and testing) to show the generalization
ability. Strong and moderate generalization settings are indicated with the green and orange background, respec-
tively.

Figure 4: The learning curve of G2T on the gold knowl-
edge identification task.

be limited. As a result, even though we could
not learn all the commonsense from limited train-
ing data, we can learn how to conduct inference
with several tasks and then generalize to others.
In this section, we conduct experiments with both
the “Without Knowledge” and “With Knowledge”
models to show that we can gain such generaliza-
tion ability across different tasks with our unified
formulation. We conduct experiments on two set-
tings: (1) Full Set: We train and test the model
with the whole dataset; (2) Gold Subset: We only
train and test the model on questions where the
supporting graph is annotated as gold. We train
the model with questions from a specific task and

test it on all tasks. The results are in Table 3.

From the results, we can see that the knowledge
can help models to generalize well among Com-
monsenseQA, COPA, and ATOMIC. The only ex-
ception is HardPCR. This is mainly because the
inference needed for solving HardPCR is more
complex than the other tasks, where we not only
need to find the relevant knowledge but also need
to replace the target pronouns with the entity in
the provided knowledge. As shown in Figure 5,
two paths can be found relevant to question: (1)
“I am drunk”→Co Occurrence→“I hit someone”;
(2) “I am drunk”→Co Occurrence→“That is not
fair”→Co Occurrence→“You kick me”. For the
correct inference, we need to know when there is
a conflict, we should trust the one-hop inference
more because the additional node in the two-hop
path may introduce extra noise. As a compari-
son, for other tasks, the main inference we need
is to find the relevant paths, which is relatively
easy. How to train a model that can learn to con-
duct such complex reasoning is a problem worth
exploring in the future.

In general, the observed generalization ability
is encouraging because if we can learn a good
model on CIKQA, based on the assumption that
there are limited types of inference, we can po-
tentially solve any commonsense reasoning task
as long as the needed inference types are covered
by CIKQA. At the same time, we also notice that
models typically generate better when gold knowl-
edge is provided, further proving the importance
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Figure 5: CIKQA Case Study. Mapped nodes for the question/answers are in blue/pink. Other nodes are white.
Edge weights are in brackets. We only show the relevant parts of the graphs for clear representation.

of the gold knowledge identification task.

5 Related Work

To help machines understand commonsense, the
community has devoted great efforts to construct-
ing commonsense knowledge bases with either
crowdsourcing (e.g., ConceptNet (Liu and Singh,
2004) and ATOMIC (Sap et al., 2019)) or infor-
mation extraction techniques (e.g., ASER (Zhang
et al., 2020a)). Typically, crowd-sourced knowl-
edge bases are of higher quality, and the auto-
constructed ones have broader coverage. Besides
acquiring commonsense knowledge, the commu-
nity also developed many commonsense reasoning
datasets to train and test models’ commonsense
reasoning abilities. Even though these datasets
may have different formats (e.g., slot fitting in
Winogrande (Sakaguchi et al., 2020) and question
answering in CommonsenseQA (Talmor et al.,
2019)), knowledge types (e.g., causal common-
sense in COPA (Roemmele et al., 2011) and nu-
merical commonsense in NumerSense (Lin et al.,
2020)), or modalities (e.g., visual commonsense
in VCR (Zellers et al., 2019) and textual common-
sense in many others), they follow a standard su-
pervised learning setting, and aim at helping ma-
chines to solve a specific commonsense task in an
end-to-end manner. Given this setting, it is of-
ten difficult to tell what has been learned during
the training. Was it used to acquire commonsense
knowledge, learn to conduct commonsense infer-
ence, or both? Such ambiguity limits our progress
in solving these commonsense reasoning tasks. In
this work, we connect the efforts on common-
sense acquisition and inference by creating a com-
monsense inference benchmark CIKQA , where
models can focus on learning to identify the gold
knowledge and perform inference over the sup-

porting commonsense knowledge.
Answering questions in natural language based

on a knowledge base (KB) is a mature research
topic in the NLP community, which is also known
as the KBQA problem (Clark et al., 1999; Yih
et al., 2015, 2016; Usbeck et al., 2017; Cui et al.,
2017). Previous work mainly focuses on factual
knowledge, which is stored in the triplets format.
The main challenge is to parse the question and
then precisely and effectively identify the correct
path over a large-scale KB to make the inference.
Compared with inference over factual knowledge,
inference over commonsense knowledge brings
the following unique challenges: (1) Common-
sense is a kind of preference rather than fixed
knowledge. As a result, the ideal commonsense
reasoning process could involve the comparison of
multiple candidates. For example, both “drink cof-
fee” and “drink bear” could happen in the morn-
ing, but a normal person will prefer “drink coffee;”
(2) Beyond named entities, commonsense knowl-
edge also covers daily entities and events, and thus
it is difficult to find an exact node from the com-
monsense KB that matches the question, and we
may need to conduct inference based on the partial
match (i.e., the extracted nodes are relevant but not
identical).

6 Conclusion

In this paper, we present CIKQA, a unified com-
monsense inference benchmark. Specifically, we
first convert several popular commonsense tasks
into a unified QA format and then equip each ques-
tion with a supporting commonsense knowledge
graph. We also leverage humans to annotate the
quality of auto-extracted knowledge. Experiments
show that even though models can better learn how
to perform commonsense inference with a few ex-
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amples and significantly outperform the baseline
method that does not use structured knowledge in
the data-scarce setting, identifying the gold knowl-
edge is still a challenging problem. More in-
terestingly, with our unified formulation, models
demonstrate the encouraging generalization abil-
ity across tasks. As both the format unification
and supporting graph extraction are automatic, we
can easily extend to other commonsense reasoning
tasks in the future.
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Limitations

A common limitation of existing semi-parametric
models is the coverage of knowledge resources.
CIKQA also faces this limitation. Based on
our analysis, the largest commonsense knowledge
bases can still cover part of the questions in exist-
ing commonsense benchmarks. How to populate
these commonsense knowledge graphs is an im-
portant research question in the future.
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