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Abstract

Most previous few-shot Spoken Language Un-
derstanding (SLU) models typically need to
be trained on a set of data-rich source domains
and adapt to the target domain with a few exam-
ples. In this paper, we explore a more practical
scenario for few-shot SLU, in which we only
assume access to a pre-trained language model
and a few labeled examples without any other
source domain data. We concentrate on under-
standing how far the few-shot SLU could be
pushed in this setting. To this end, we develop
a prompt-based intent detection model in few-
shot settings, which leverages the BERT orig-
inal pre-training next sentence prediction task
and the prompt template to detect the user’s
intent. For slot filling, we propose an approach
of reconstructing slot labels, which reduces the
training complexity by reducing the number
of slot labels in few-shot settings. To evaluate
the few-shot SLU for a more practical scenario,
we present two benchmarks, FewShotATIS and
FewShotSNIPS. And a dynamic sampling strat-
egy is designed to construct the two datasets ac-
cording to the learning difficulty of each intent
and slot. Experiments on FewShotATIS and
FewShotSNIPS demonstrate that our proposed
model achieves state-of-the-art performance.

1 Introduction

Spoken Language Understanding (SLU) is one of
the fundamental modules for task-oriented dialogue
systems, which mainly includes two sub-tasks, in-
tent detection and slot filling. The remarkable suc-
cess of most neural SLU models typically relies on
a large quantity of training data (Chen et al., 2019;
Qin et al., 2020, 2021; Wang et al., 2022). How-
ever, acquiring large amounts of annotated data for
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domain-specific is arduous and expensive in prac-
tical applications. Situations like few or even no
training data may happen in a brand-new applica-
tion, which motivates us to address the challenge
of the SLU module in few-shot settings.

The previous few-shot SLU studies mainly fo-
cused on semi-supervised learning (Basu et al.,
2021; Gaspers et al., 2021; Kumar et al., 2022)
and metric learning (Hou et al., 2020a; Krone et al.,
2020a; Yang and Katiyar, 2020; Hou et al., 2021a;
Yu et al., 2021; Yang et al., 2022; Gao et al., 2022;
Hou et al., 2022; Yang et al., 2022). The models
need to be trained on source domains with abundant
data and then adapt to the data-scarce target domain.
Straying from the pattern by making minimal as-
sumptions about available resources, we explore a
more practical scenario for few-shot SLU, in which
we only use moderately sized pre-trained models,
such as BERT (Devlin et al., 2018) or RoBERTa
(Liu et al., 2019), and only a tiny amount of anno-
tated examples to fine-tune the pre-trained model.
The settings are pretty attractive as (1) the few-shot
settings conform more to real application scenar-
ios, as it is straightforward to get a few annotated
data (e.g., 10 examples); (2) such models are not
demanding hardware resources for training; and (3)
the development of prompt tuning has brought a
novel paradigm for few-shot learning, and updating
parameters of the pre-trained model typically leads
to better performance (Nigam et al., 2019; Han
et al., 2021, 2022; Zhu et al., 2022a). We focus
on exploring what the performance of the few-shot
SLU model can achieve without any other source
domain data.

We revisit existing few-shot SLU benchmarks
(Larson et al., 2019; Hou et al., 2020a,b; Yu et al.,
2021) and find that the settings of them tend to devi-
ate more from practical application scenarios. The
main reasons are as follows. (1) These benchmarks
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Figure 1: Prompt tuning for different pre-training tasks.

provide data-rich source domains for training, such
as SNIPS (Hou et al., 2020a) and CLINC (Larson
et al., 2019). However, in practical applications,
there might be little or even no training data avail-
able. (2) Some benchmarks typically uniformly
random sample k examples for each intent and slot.
However, in practical applications, the learning
complexity varies with different intents and slots
and may necessitate different amounts of training
data. To fill these gaps, we construct two multi-
domain few-shot SLU benchmarks, FewShotATIS
and FewShotSNIPS, without any source domain
data, which are based on ATIS (Price, 1990) and
SNIPS (Coucke et al., 2018), respectively. In ad-
dition, we design a dynamic sampling strategy
that allocates the number of samples depending
on the evaluation metrics of each intent and slot.
The sampling strategy is more reasonable and ad-
heres to practical scenarios since slight variations
in the training data can have a major impact on
the model’s performance in few-shot settings. The
proposed benchmarks provide a fair comparison
between various methods on common ground and
measuring progress in practical scenarios.

Recently, prompt tuning achieved competitive
results with only a limited amounts of training data,
such as prompt tuning based on BERT with the
masked language model (as shown in Figure 1(a)),
which has been proven to be effective for text clas-
sification (Gao et al., 2020; Hu et al., 2021; Zhu
et al., 2022b). However, it suffers from the follow-
ing challenges when employed for intent detection.
(1) The candidate vocabulary for each intent must
be manually constructed based on natural language
templates. (2) The semantics of intent are complex
and difficult to represent with fixed-length tokens.

Moreover, there are some challenges for the slot
filling task in few-shot settings. (1) The BIO label-
ing format (Huang et al., 2015) is typically utilized

to.citynameto.city_namefrom.city_namefrom.city_name

B-from.

city_name

I-from.

city_name

(a) 
I-to.

city_name

B-to.

city_name
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OOOOO OS

 (b) 
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OOOOS

E-T OOOOO O

B-from.

city_name

I-from.

city_name
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city_name

B-to.
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Figure 2: The BIO labeling format and reconstructing
slot labels format. W is token of the dialogue. S and
E-T denote slot and entity type.

in standard datasets for slot filling, as shown in
Figure 2(a). In the case of sufficient data, the be-
ginning labeling ‘B-’ of the entity provides super-
vised information to the model to detect the entity
boundaries. Nevertheless, in few-shot settings, the
excessive amount of slot labels in the labeling for-
mat exacerbates the difficulty of the model training.
(2) As the training sample decreases, it becomes in-
creasingly difficult for the model to differentiate be-
tween similar slot labels, such as “from.city_name”
vs. “to.city_name” in Figure 2.

To address the aforementioned challenges, we
proposed a BERT-NSP-Prompt model for intent
detection and a reconstructing slot labels approach
for slot filling. In particular, BERT-NSP-Prompt
leverages the next sentence prediction (NSP) task
of BERT and a constructed prompt template, to
complete intent detection in the few-shot or even
zero-shot settings, as shown in Figure 1(b). It is
used to assess which intent description text is the
most “fluent” following sentence of the user’s di-
alogue. Moreover, an approach of reconstructing
slot labels is proposed to reduce the model training
complexity by reducing the number of slot labels
in few-shot settings, as shown in Figure 2(b). We
convert the BIO slot labeling format to slot entity
labeling format, which resulted in the slot category
cutting in half. Furthermore, we introduce the fo-
cal loss function (Lin et al., 2017) to distinguish
between similar slot labels.

To sum up, our key contributions are as follows.
(1) We investigate more practical scenarios for

few-shot SLU and propose the BERT-NSP-Prompt
model and a reconstructing slot labels approach.

(2) We construct two multi-domain few-shot
SLU benchmarks, FewShotATIS and FewShot-
SNIPS, to encourage the research community to
create algorithms that can demonstrate generaliza-
tion capabilities with minimal data.

(3) We conduct extensive experiments to demon-
strate the effectiveness of our model, and the ex-
perimental results reflect that our models achieve
state-of-the-art performance on the two datasets.
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2 Related work

Most works use semi-supervised learning or metric
learning to implement few-shot SLU tasks (Hou
et al., 2020a; Zhu et al., 2020; Krone et al., 2020b;
Zhang et al., 2020; Hou et al., 2021b; Yu et al.,
2021). Hou et al. (2020a) adopted the TapNet and
label dependency transferring to complete the slot-
filling task. Krone et al. (2020b) used a prototype
network to complete a few-shot SLU task. Han
et al. (2021) further extend the prototypical net-
work to achieve joint learning, which guarantees
that two tasks can mutually enhance each other. Yu
et al. (2021) adopted the retrieval framework to
match the token spans in the input with the most
similar labeled spans in the retrieval index. Cui
et al. (2021) leverages prompts for few-shot NER.
However, these models still require a set of data-
rich source domains. Recently, prompt tuning has
taken advantage of the powerful generalization abil-
ity of pre-trained language models and dramati-
cally reduces the reliance on supervised data for
downstream tasks (Liu et al., 2021; Lester et al.,
2021; Gu et al., 2021). The paradigm narrows
the gap between the pre-trained model and down-
stream tasks, which provides a novel insight into
few-shot learning. We propose a simple and effec-
tive method based on pre-trained models to accom-
plish few-shot SLU tasks. The proposed model
does not have a transfer from the source domain
to the target domain, nor does it use any additional
data resources. It will serve as an essential base-
line for future exploration. In addition, we believe
the constructed FewShotATIS and FewShotSNIPS
datasets can comprehensively evaluate the models
and inspire the research of the few-shot SLU.

3 Datasets: FewShotATIS and
FewShotSNIPS

In few-shot SLU, existing benchmarks usually uni-
formly random sample k examples for each intent
and slot, such as SNIPS (Hou et al., 2020a), and
CLINC (Larson et al., 2019). However, a reason-
able and conform to practical scenarios sampling
strategy is: suppose the total number of samples
is limited; for easy-to-classify intents or slots, it
will sample less than k samples; in contrast, it will
sample more than k samples for hard-to-classify
intents and slots. Thus, we design a dynamic sam-
pling strategy to simulate the “sampling-iterative”
process, which assigns the number of samples ac-
cording to the evaluation metrics of each intent

Figure 3: Architecture of the dynamic sampling strategy.

and slot. Since small changes in the training data
may significantly affect the model’s performance
in few-shot settings, the advantages of the strategy
will be magnified further. Finally, we adopt the
dynamic sampling strategy to build two new multi-
domain few-shot SLU benchmarks, FewShotATIS
and FewShotSNIPS1, respectively.

3.1 Dynamic Sampling Strategy

In the few-shot settings, the models are suscep-
tible to subtle variations of training data. Small
changes in the training set may significantly affect
the model’s performance. More importantly, the
pre-experimental results show that some intents and
slots are easy to predict correctly only by keywords.
In contrast, some intents and slots are difficult to
predict correctly, and they need to predict based
on context and syntactic information. Experiments
reflect that different types of intents and slots have
different learning difficulties and may require dif-
ferent training numbers of samples.

Based on the above discussion and better simu-
lating practical application, we propose a dynamic
sampling strategy when constructing a few-shot
dataset, as shown in Figure 3. Specifically, suppose
the number of samples is fixed in the iteration pro-
cess (i.e., limiting the total sum of samples for each
iteration). In that case, the dynamic sampling strat-
egy assigns the number of samples for each intent
and slot based on the evaluation metrics at each
iteration. The dataset is built through a “sampling-
iterative” process. Compared to random sampling,
the dynamic sampling strategy can more reasonably
sample data with different intents and slots.

More specifically, in the experiment of few-
shot learning, multiple sets of comparative experi-
ments usually sample K samples of each category
uniformly, called K−shot experiment (Dong and
Xing, 2018). K ∈ {k1, k2, · · · , kn} is a parame-
ter. k1-shot, k2-shot, · · · , kn-shot experiments are
independent of each other. However, in the dy-
namic sampling strategy, for a knshot experiment,

1https://github.com/wyf401/Few-shot-SLU-Dataset
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Statistic FewShotATIS FewShotSNIPS

# Domian 1 7
# Intent 18 7
# Slot 128 76
# K-shot for intent 2-shot 4-shot 6-shot 8-shot 10-shot 2-shot 4-shot 6-shot 8-shot 10-shot
# Training instances for intents 33 67 101 130 161 14 27 40 54 67
# K-shot for slot 5-shot 10-shot 20-shot 30-shot 40-shot 5-shot 10-shot 20-shot 30-shot 40-shot
# Training instances for slots 336 639 1,212 1,675 1,998 195 391 787 1,185 1,584
# Testing instances 878 700

Table 1: Detail Statistics of FewShotATIS and FewShotSNIPS.

Algorithm 1 Dynamic Sampling Strategy
Setting: The sampling process can be regarded as an iterative
process. The sum of the samples is limited to M ∗ N at
each iteration, where M ∈ {m0,m1, · · · ,mKmax}. N is the
number of label categories. M denotes number of samples
taken per iteration and Kmax is the iteration times, maximize
the models performance of the mKmax time.
Parameter: Optional list of parameters M,N,Kmax.
Output: Dynamic sampling results.
1: //Initialize array.
2: for i = 0 to N do
3: //num_samp is a 1-d array storing number of data need

to be sampled for each class.
4: num_samp[i]← 0.
5: //F1 is a 2-d array storing F1 score for each class at

each iteration.
6: F1[0][i]←1.
7: end for
8: for k = 0 to Kmax − 1 do
9: //Total number of samples taken per iteration.

10: if k = 0 then
11: ∆← m0 ∗ N
12: else
13: ∆← (mk+1 −mk) ∗ N
14: end if
15: for j = 0 to N do
16: //Sampling for each category.
17: temp ←

(
1− k

Kmax

)
∗(mk+1 −mk)+

k
Kmax

∗
∆ ∗ (1−F1[k][j])∑i=N

i (1−F1[k][j])

18: num_sampled[j]← num_samp[j]+ temp;
19: end for
20: Sample data based on num_sampled[0, · · · , N ] and

training modelk;
21: Evaluate modelk on F1 score metric.
22: Update F1[k][0, · · · , N ] based on evaluation result
23: end for

we treat it as an n-iteration experiment. For the
(i + 1)-th iteration, the total number of samples
is increased by (ki+1 − ki) ∗ N , where N is the
number of categories.

For easy-to-classify intents or slots, it will sam-
ple less than (ki+1 − ki) samples, while it will
sample more than (ki+1 − ki) samples for hard-
to-classify intents and slots. The pseudo-code is
shown in Algorithm 1. It is worth noting that
the number of samples per sampling is stored in
the variable temp (line 17), and we use BERT to
calculate the F1 score (line 21).

3.2 Datasets

Table 1 reports the details of FewShotATIS and
FewShotSNIPS. k samples are sampled on each
intent and slot to form the k-shot dataset. Due to
the differences between the intent detection and
slot filling tasks, we take different sampling spans
in constructing the datasets. During the experi-
ment, we adopt finer-grained and larger-range sam-
pling. Experimental results show that the intent
detection task in 10-shot and the slot filling task
in 40-shot achieve decent performance, as shown
in Appendix A. Therefore, we construct datasets
ranging from 2-shot to 10-shot for the intent detec-
tion task and ranging from 5-shot to 40-shot for the
slot-filling task. It is worth noting that the test set
in the two datasets is consistent with the standard
dataset. Thus, the two datasets can measure the
model’s performance more comprehensively and
solidly. The datasets are constructed to simulate
real applications and encourage the community to
build algorithms capable of generalizing with only
a few intents and slots.

4 Methodology

4.1 Task Definition

Task-oriented dialogue systems are usually ori-
ented to a specific domain, in which the intents
and slots are typically predefined and limited in
number. Thus, intent detection is considered a
text classification task, and the slot filling task is
considered a sequence labeling task. In few-shot
settings, the number of samples that can be used
for training is much smaller than the number of
samples in a standard dataset. Learning both tasks
simultaneously maybe increases the complexity of
model training. Furthermore, it is difficult to unify
the few-shot sampling method of two tasks in K-
shot sampling (Dong and Xing, 2018). For a given
dialogue X = {x1, x2, x3, · · · , xm}, the intent de-
tection task is to learn a model MI to get the intent
I; the slot filling task is to learn a model MS to get
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[CLS]    Since he says,   book a table for 2 at a restaurant in folleet.   [SEP]   I guess that   he is booking a restaurant.[CLS]    Since he says,   book a table for 2 at a restaurant in folleet.   [SEP]   I guess that   he is booking a restaurant.

···

···

H[CLS] H[1] H[2] H[3] H[4] H[5] H[6] H[7] H[n]H[i] H[n-1]

BERT
···

···

H[CLS] H[1] H[2] H[3] H[4] H[5] H[6] H[7] H[n]H[i] H[n-1]

BERT

Sentence A template Input X Sentence B template Intent description

NSP Head

Is or Not

(Book restaurant)

Figure 4: Illustration of the BERT-NSP-prompt model.
For each dialogue, the input with the prompt template
is constructed according to each intent in the dataset.

the slots S = {s1, s2, s3, · · · , sm}.

4.2 Prompt-based Intent Detection Model

In few-shot settings, we proposed a BERT-NSP-
prompt model, which utilizes the next sentence pre-
diction (NSP) task of BERT pre-training to detect
the intent of the dialogue. No new parameters are
introduced to the whole model. The architecture of
the BERT-NSP-prompt is shown in Figure 4. The
NSP task aims to predict whether the relationship
between two sentences is contextual. Therefore,
the NSP task can evaluate whether two sentences
are related to the same topic and contain similar
semantics. We transform intent detection into the
NSP task by building a prompt to unify the BERT
pre-training and intent detection tasks.

The input of the BERT-NSP-prompt consists of
four parts: the sentence template TA, the origi-
nal dialogue A, the sentence template TB , and the
natural language text description of the intent la-
bel B. TA and TB are manually designed prompt
templates. The format of the input sequence is as
follows:

X′ = ([CLS], TA, XA, [SEP], TB , XB , [EOS]) , (1)

where XA is sentence A, XB is sentence B. TA

and TB denote the templates. [CLS] is the special
identifier used to complete the next prediction task,
and [SEP] and [EOS] are the special identifiers
for sentence segmentation and sentence ending.

For example, there are a total of seven intents
in the SNIPS dataset. For an original dialogue x,
the final intent is predicted by constructing seven
inputs X ′ with prompt. Appendix B shows the de-
scription text of each intent in the SNIPS dataset.
After the construction of input X ′, the representa-
tion of each input token E = (e0, · · · , en) consists
of Token Embedding, Segment Embedding, and
Position Embedding. n is the length of the inputs
X ′. And then, the input sequence E is encoded by
BERT to obtain the hidden state (h0, · · · , hn) of

···

···

H[CLS] H[1] H[2] H[3] H[4] H[5] H[6] H[7] H[n]H[i] H[n-1]

O

BERT

CLS Find Comedies By James Cameron

genre O director director

o B-genre B-director I-director

Entity Type

Slot o

Figure 5: Illustration of slot filling model based on
reconstructing slot label.

the final layer output:

(h0, · · · , hn) = BERT (E), (2)
where h0 is the hidden state vector of [CLS].

The output layer uses the BERT pre-trained NSP
task classifier to determine the relationship between
sentence A and sentence B. Then, the most relevant
text descriptions of intent to the user’s dialogue are
determined by comparing the “IsNext” tags scores
of the NSP task. Finally, the intent is predicted.
The probability distribution of the intent is shown
in Equation (3).

P I = Softmax (Wnsph0 + bnsp) , (3)
where Wnsp and bnsp are learnable parameters.

The loss function for intent detection is calcu-
lated by:

LI = −lI logP
I , (4)

where lI is the intent label.

4.3 Slot Filling Via Reconstructing Slot Labels
The slot filling task is generally solved as a se-
quence labeling task. The slot filling uses the BIO
labeling format in standard datasets. The begin-
ning of the entity with ‘B-’ and the interior of the
entity with ‘I-’. In the case of sufficient data, the
beginning labeling ‘B-’ of the entity provides su-
pervised information for the model to detect the
entity boundaries. However, in few-shot settings,
the excessive number of slot labels increases the
difficulty of model training.

To address this issue, we adopt a two-step ap-
proach to reconstructing slot labels. First, the se-
quence labeling task in BIO labeling format is trans-
formed into a predicting slot entity task. The model
predicts the entity types of all tokens in dialogue.
Second, the prediction results are reconstructed
into BIO format by rules for evaluation according
to the order of natural language from left to right.
The reconstructing slot labels approach is shown in
Figure 5. Applying the approach in the slot filling
task can reduce the number of slots by half. Thus,
half of the classifier parameters are reduced, ulti-
mately reducing the difficulty of training models.
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Model FewShotATIS FewShotSNIPS

Zero-shot 2-shot 4-shot 6-shot 8-shot 10-shot Zero-shot 2-shot 4-shot 6-shot 8-shot 10-shot

BERT-ID 0 20.29±2.56 30.58±1.91 59.90±2.41 71.73±1.99 85.75±1.68 0 59.02±2.24 76.36±2.21 79.87±2.31 85.44±2.22 87.30±1.42

RoBERTa-ID 0 5.33±2.1 7.45±2.46 74.47±4.11 77.58±2.17 85.37±1.33 0 22.14±2.51 75.28±1.49 77.64±1.55 85.77±1.52 86.07±1.81

BERT-NSP-Prompt 75.42 77.55±±2.04 81.94±1.90 87.30±1.76 88.77±1.71 91.12±1.66 79.57 80.21±2.08 82.64±1.70 86.77±1.25 89.14±1.51 90.78±1.41

Table 2: Intent accuracy on FewShotATIS and FewShotSNIPS. “BERT-ID” and “RoBERTa-ID” are fine-tuned on
BERT and RoBERTa for intent detection.

Model FewShotATIS FewShotSNIPS

5-shot 10-shot 20-shot 30-shot 40-shot 5-shot 10-shot 20-shot 30-shot 40-shot

BERT-SF(BIO) 22.76±2.17 41.79±1.88 66.64±1.84 76.02±1.46 82.86±1.43 2.86±0.80 40.14±1.73 69.42±1.66 74.72±1.75 81.39±1.84

BERT-SF(ET) 27.17±1.88 49.34±1.63 78.43±1.45 86.85±1.53 90.22±1.20 12.50±2.40 57.33±2.00 76.16±2.11 80.62±2.07 83.48±1.02

BERT-SF(ET+FL) 29.05±1.57 57.44±4.41 83.84±1.44 89.43±1.12 90.50±1.23 15.02±1.80 59.61±1.34 78.51±1.44 82.15±2.10 84.94±1.14

RoBERTa-SF(BIO) 28.12±2.47 64.23±2.71 78.21±1.67 83.27±3.02 88.65±1.05 14.51±1.56 41.09±1.38 66.21±1.13 75.25±1.16 76.71±1.31

RoBERTa-SF(ET) 28.96±1.75 70.85±3.65 82.99±2.00 86.26±1.99 89.71±0.95 22.61±2.25 46.23±2.44 68.08±1.27 77.13±1.72 78.77±1.03

RoBERTa-SF(ET+FT) 31.10±1.76 72.27±3.39 83.59±1.49 87.05±1.84 90.58±1.24 22.54±2.21 49.99±3.49 71.02±2.05 79.91±2.35 80.75±2.47

Table 3: Performance of slot filling on FewShotATIS and FewShotSNIPS (F1-score). “BIO” is the model labeled
with BIO format, “ET” denotes the model with reconstructed slot labels, and “ET+FL” represents the model with
reconstructing slot labels and the focal loss function.

In addition to the problems mentioned above,
in low-resource scenarios, semantically similar
slots are often more difficult to distinguish, e.g.,
from.city_name vs. to.city_name slots in the ATIS
dataset. The reasons are as follows. (1) Due to
a small number of samples, it is difficult for the
model to learn the features of the text structure of
the dialogue, such as from location A to location
B. (2) Both are slots of location type entities, and
the encoded representations are closer in the se-
mantic space. To address the problem that similar
labels are difficult to distinguish, we introduce the
focal loss function to replace the typically used
cross-entropy loss function.

FL (pt) = − (1− pt)
γ log (pt) , (5)

where pt is the probability that the model predicts
the correct, γ is a non-negative hyperparameter
that regulates the balance of the loss values of the
easy-to-classify and hard-to-classify samples, and
when γ is 0, the focal loss is consistent with the
calculated result of cross entropy.

The focal loss function introduces the coefficient
term (1 − pt)

γ to the cross entropy for reducing
the relative loss of easily-to-classify samples (pt >
0.5) so that the model focuses more on the hard-
to-classify samples. When pt→1, the loss value
of easily-to-classify samples is toned down; when
pt→0, the coefficient term (1− pt)

γ→1, which is
not much different compared to the cross entropy
loss. As γ increases, the term (1− pt)

γ decreases
the contribution of loss values for easy-to-classify
samples, and the weights of hard-to-classify sam-
ples are relatively elevated, increasing the impor-
tance of hard-to-classify samples.

5 Experiments

As stated in the paper, the few-shot SLU setting
assumes access to a moderately sized pre-trained
language model and a few labeled data, without the
data from any other source domain. As such, mod-
erately sized pre-trained models, namely BERT
and RoBERTa, are employed as the baseline mod-
els. The details of implementation and evaluation
metrics can be found in Appendix C. The main rea-
sons for not considering metric learning models as
baseline models are as follows. (1) These models
necessitate training on source domains with a vo-
luminous dataset to adapt to the data-scarce target
domain, which is not feasible in our few-shot SLU
setting. (2) The two presented benchmarks are with
limited annotation and without source domain data,
making it difficult for the previous metric learn-
ing models to be trained efficiently. As such, it
is impossible to fairly compare the performances
of the proposed and previous models on proposed
two datasets. To further compare with the previous
few-shot SLU models, we attempt to conduct com-
parative experiments following the dataset setting
of Hou et al. (2020a). The results are presented in
Appendix D.

5.1 Main Results

We compare the proposed models with previous
pre-trained BERT and RoBERTa models on a range
of training data amounts in few-shot settings. The
results concerning intent detection and slot filling
on FewShotATIS and FewShotSNIPS are presented
in Table 2 and Table 3 2, respectively. To mitigate

2https://github.com/wyf401/Few-ID-BERT-Prompt
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the potential impact of randomness on the experi-
ment, we conducted it five times with different ran-
dom seeds and reported the average performance
with standard deviation. It is evident that the pro-
posed BERT-NSP-Prompt and BERT-SF(ET+FL)
outperform the baseline models. It is noteworthy
that the proposed model’s performance is signifi-
cantly improved in a more practical scenario.

In particular, BERT-NSP-Prompt has revealed
exceptionally competitive results in zero-shot set-
tings. The results verify that BERT-NSP-Prompt
can well motivate the knowledge related to the in-
tent detection task in the pretrained model. Even
in the absence of training data, intent detection
can still leverage the knowledge contained in the
pre-trained model to achieve satisfactory perfor-
mance. BERT-SF (ET+FL) has also demonstrated
remarkable performance. Notably, reconstructing
slot labels has yielded a remarkable improvement
in the model. We attribute the improvement to the
method that reduced the complexity of the training
process for the slot filling task. In contrast, in-
tent detection performs better and shows a marked
improvement in the few-shot settings. The main
reasons are outlined below. (1) The intent detection
task is relatively straightforward. (2) The features
and patterns of intent are easier to capture. It in-
dicates that reducing the classification difficulty
of the model is a beneficial idea for few-sample
learning. The results demonstrate that the proposed
model is stable in terms of performance and brings
values of practical applications.

5.2 Effects of Intent Detection Model

Table 2 shows that BERT-NSP-Prompt achieves
intent accuracy of 75.42% and 79.57% in zero-shot
settings on FewShotATIS and FewShotSNIPS re-
spectively, which indicates that BERT-NSP-Prompt
is capable of accurately detecting the user’s intent
by using prompt and a priori information from
the NSP task, even without domain-specific la-
beled data for training. It justifies that our de-
signed prompt template reduces the gap between
the BERT pre-training task and the intent detection
task, so as to effectively utilize the knowledge ac-
quired by BERT during the pre-training stage. As
the number of samples increases, both BERT-NSP-
Prompt and BERT-ID steadily increase in intent ac-
curacy. In the 10-shot setting, BERT-NSP-Prompt
still outperforms BERT-ID on FewShotATIS and
Few-ShotSNIPS by 5.37% and 3.48%, respectively.

Experimental results demonstrate the effectiveness
of the proposed model in a variety of amounts of
training data. Furthermore, FewShotATIS and Few-
ShotSNIPS can effectively be used to assess the
model’s generalizability.

Table 2 reports that intent detection using BERT-
ID yields an accuracy of only 20.29% on Few-
ShotATIS but 59.02% on Few-ShotSNIPS in the
2-shot setting. An obvious reason is that Few-
ShotATIS contains only samples of the flight do-
main with relatively high similarity between intent
labels, making intent detection more challenging.
In contrast, FewShotSNIPS includes more domains.
Thus, thereby making the boundaries of different
intents more conspicuous. Moreover, the perfor-
mance of RoBERTa-ID is slightly lower than that
of BERT-ID in the few-shot setting. The higher
number of RoBERTa parameters may necessitate
more training data to adequately fit the downstream
task. As the quantity of training data increases, the
size of the model plays a dominant factor in per-
formance, and the performance of RoBERTa will
continue to improve. Our preliminary analysis is
due to the higher number of RoBERTa pre-trained
model parameters, which require more training
data to fit the downstream task. With more training
data, however, the model size plays a dominant
factor in model performance, and the performance
of RoBERTa will keep improving. An additional
advantage of the proposed model is that it can be ef-
fortlessly transferred to a multi-intent SLU without
any modifications.

5.3 Effects of Reconstructing Slot Labels

Table 3 shows that slot label reconstructing can
bring about 4.41% and 7.64% improvement on
FewShotATIS in 5-shot and 40-shot settings, re-
spectively. Similarly, it shows that the improve-
ment yields 9.64% and 2.08% respectively in 5-
shot and 40-shot settings on FewShotSNIPS. The
most significant improvement is observed in the
10-shot setting. The experimental results of BERT-
SF (ET+FL) are similar to RoBERTa (ET+FL). It
illustrates the effectiveness of the proposed slot la-
bel reconstructing approach for slot filling across
varying training data ranges. We believe that it
is mainly due to the lack of training data in the
few-shot setting and that reducing the training com-
plexity of the model is beneficial to its training.
Comparing the results of BERT-SF(ET) with BERT-
SF(ET+FL) (in Table 3), it has been found that
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Sample Strategy ATIS K-shot

2-shot 4-shot 6-shot 8-shot 10-shot

Average Sample 74.60 77.33 85.19 89.64 90.21
Dynamic Sample 74.60 83.49 90.32 89.98 91.34

Sample Strategy Snips K-shot

2-shot 4-shot 6-shot 8-shot 10-shot

Average Sample 81.29 87.86 86.29 89.43 90.71
Dynamic Sample 81.29 83.57 88.71 90.29 91.43

Table 4: Intent accuracy of BERT-NSP-Prompt under
different sampling strategies.

replacing the cross-entropy function with the fo-
cal loss function can improve by 8.10% on Few-
ShotATIS and 2.28% on FewShotSNIPS in 10-shot
settings. It indicates that introducing focal loss
can balance the “hard-to-classify” and “easy-to-
classify” slots. In addition, the slot filling task
requires more training data for higher performance
in comparison to the sentence-level intent detection
task. The primary reason is that the slot filling task
can be regarded as a word-level classification task,
which is more complex.

The results indicate that slot label reconstructing
contributes more significantly to the improvement
of the proposed model than introducing the focal
loss function. It is an exciting exploration to re-
duce the complexity of slot labels, thereby neces-
sitating a lesser number of samples for training.
That means the approach can be extended to other
sequence labeling tasks for use in scenarios with
limited resources.

5.4 Effects of Dynamic Sampling Strategy

To further assess the effectiveness of the proposed
dynamic sampling strategy, we compare the results
of applying the dynamic sampling strategy with
the average sampling strategy on two datasets in
each iteration. Both sampling approaches ensure
that the training set of the previous experiment is a
subset of the training set of the latter experiment,
e.g., the 2-shot training data is encompassed within
the 4-shot training data.

The results of applying different sampling strate-
gies on BERT-NSP-Prompt and BERT-SF(ET+FL)
for the intent detection and slot filling tasks are
shown in Table 4 and 5, where k-shot represents
the K samples of each intent. The results of the Dy-
namic Sampling (DS) strategy are better than the
Average Sampling (AS) strategy in the majority of
settings on both FewShotATIS and FewShotSNIPS,
which indicates that the Dynamic Sampling strat-
egy can effectively sample according to the perfor-
mance of different intents and slots.

Sample Strategy ATIS K-shot

5-shot 10-shot 20-shot 30-shot 40-shot

Average Sample 29.26 49.36 82.01 89.93 91.90
Dynamic Sample 29.26 62.76 85.57 90.65 92.01

Sample Strategy Snips K-shot

5-shot 10-shot 20-shot 30-shot 40-shot

Average Sample 15.54 60.81 76.69 79.93 83.06
Dynamic Sample 15.54 59.11 80.03 84.56 85.52

Table 5: Performance of BERT-SF(ET+FL) for slot
filling under different sampling strategies.

Comparing BERT-NSP-Prompt(AS) with BERT-
NSP-Prompt(DS) in the 4-shot and 6-shot set-
tings on FewShotATIS, an improvement of 6.16%
and 5.13% was observed, respectively. Addition-
ally, comparing BERT-SF(ET+FL+AS) with BERT-
SF(ET+FL+DS) in the 10-shot and 20-shot settings
on FewShotATIS, an improvement of 13.4% and
3.56% in intent accuracy was observed, respec-
tively. It verifies that the smaller the number of
labeled data within a specific range, the more sig-
nificant the model performance improvement with
the dynamic sampling strategy. It reflects that the
SLU model is susceptible to the amount of data
due to the limited amounts of training data.

The experimental results for each intent on both
datasets are in Appendix E. The experimental re-
sults report that the model with a dynamic sampling
strategy has a smaller variance than the model with
an average sampling strategy. It further demon-
strates the effectiveness of the dynamic sampling
strategy from fine-grained intent categories.

In addition, we compare the two sampling meth-
ods on the pre-trained model RoBERTa. More
experiment results are in Appendix F. The exper-
imental results are consistent with the results on
BERT. It reflects that the BERT model can sample
data according to the difficulty of each intent in the
process of dynamic sampling rather than overfitting
the BERT model. We believe the dynamic sam-
pling strategy significantly enhances the model’s
performance in few-shot settings and effectively
extends to other data sampling tasks.

5.5 Effects of γ in Focal Loss Function
The setting of γ in the focal loss function signifi-
cantly affects the model’s performance. Therefore,
a sensitivity analysis of γ is conducted. We conduct
experiments on Few-ShotATIS and FewShotSNIPS
for BERT-SF(ET+FL) with the values of γ of 0.25,
0.5, 1, 2, 4. Figure 6 illustrates a sensitivity analy-
sis of γ. In focal loss function, the larger the value
of γ, the higher weight the loss function assigns
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Figure 6: Hyperparameter analysis of γ on Few-
ShotATIS and FewShotSNIPS for slot filling.

to the “hard-to-classify” samples and the model
pays more attention to the “hard-to-classify” sam-
ples. On both datasets, the F1 scores of slot filling
show a trend of increasing and then decreasing
with increasing γ, indicating that when assigning
too much weight to the “hard-to-classify” samples
affects the overall performance of the model. Based
on the results, we set γ as 2 in our experiments.

6 Conclusion

In this paper, we explore a more realistic scenario
for the few-shot SLU. There are two main con-
tributions toward developing a few-shot SLU. (1)
We built two benchmarks, FewShotATIS and Few-
ShotSNIPS, to simulate the few-shot SLU task in
a more realistic scenario. (2) We develop BERT-
NSP-Prompt, which utilizes BERT’s NSP task with
a prompt template to detect user intent. In addition,
we proposed a reconstructing slot label approach
to reduce the difficulty of training the classifier by
reducing the number of labels. Experimental re-
sults indicate that the proposed model achieves the
SOTA performance and endows the SLU module
with solid generalization ability. There are two in-
teresting directions for future work in the few-shot
setting. (1) Fully explore the close relationship be-
tween intent and slot to improve the performance of
SLU. (2) It is an idea worth exploring that reduces
the complexity of training models.
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limitations

In this paper, we explore a more realistic scenario
for a few-shot SLU and propose the BERT-NSP-
Prompt model and a reconstructing slot labels ap-
proach. In fact, intent detection and slot filling are
highly tied. This paper under-explores fully ex-
ploiting the connection between intents and slots to
improve the performance of SLU in low-resource
settings. In the future, we will explore how to cap-
ture the shared knowledge across the two tasks in
low-resource settings, which improves the perfor-
mance of intent detection and slot filling.

References
Samyadeep Basu, Karine lp Kiun Chong, Amr Sharaf,

Alex Fischer, Vishal Rohra, Michael Amoake, Hazem
El-Hammamy, Ehi Nosakhare, Vijay Ramani, and
Benjamin Han. 2021. Semi-supervised few-shot in-
tent classification and slot filling.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue Zhang.
2021. Template-based named entity recognition us-
ing BART. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1835–1845, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Nanqing Dong and Eric P Xing. 2018. Few-shot seman-
tic segmentation with prototype learning. In BMVC,
volume 3.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Yingying Gao, Junlan Feng, Chao Deng, and Shilei
Zhang. 2022. Meta auxiliary learning for low-
resource spoken language understanding. arXiv
preprint arXiv:2206.12774.

Judith Gaspers, Quynh Do, Daniil Sorokin, Patrick
Lehnen, and AI Amazon Alexa. 2021. The impact of

13516

https://doi.org/10.48550/ARXIV.2109.08754
https://doi.org/10.48550/ARXIV.2109.08754
https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.18653/v1/2021.findings-acl.161


intent distribution mismatch on semi-supervised spo-
ken language understanding. In Interspeech, pages
4708–4712.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu,
and Maosong Sun. 2021. Ptr: Prompt tuning
with rules for text classification. arXiv preprint
arXiv:2105.11259.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2022. Ptr: Prompt tuning with rules
for text classification. AI Open.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020a. Few-
shot slot tagging with collapsed dependency transfer
and label-enhanced task-adaptive projection network.
arXiv preprint arXiv:2006.05702.

Yutai Hou, Cheng Chen, Xianzhen Luo, Bohan Li, and
Wanxiang Che. 2022. Inverse is better! fast and
accurate prompt for few-shot slot tagging. arXiv
preprint arXiv:2204.00885.

Yutai Hou, Yongkui Lai, Cheng Chen, Wanxiang Che,
and Ting Liu. 2021a. Learning to bridge metric
spaces: Few-shot joint learning of intent detection
and slot filling. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3190–3200, Online. Association for Computa-
tional Linguistics.

Yutai Hou, Yongkui Lai, Cheng Chen, Wanxiang Che,
and Ting Liu. 2021b. Learning to bridge metric
spaces: few-shot joint learning of intent detection
and slot filling. arXiv preprint arXiv:2106.07343.

Yutai Hou, Jiafeng Mao, Yongkui Lai, Cheng Chen,
Wanxiang Che, Zhigang Chen, and Ting Liu. 2020b.
Fewjoint: A few-shot learning benchmark for joint
language understanding.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Juanzi Li, and Maosong Sun. 2021. Knowl-
edgeable prompt-tuning: Incorporating knowledge
into prompt verbalizer for text classification. arXiv
preprint arXiv:2108.02035.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Jason Krone, Yi Zhang, and Mona Diab. 2020a. Learn-
ing to classify intents and slot labels given a handful
of examples.

Jason Krone, Yi Zhang, and Mona Diab. 2020b. Learn-
ing to classify intents and slot labels given a handful
of examples. arXiv preprint arXiv:2004.10793.

Ayush Kumar, Rishabh Kumar Tripathi, and Jithendra
Vepa. 2022. Low resource pipeline for spoken lan-
guage understanding via weak supervision.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A
Laurenzano, Lingjia Tang, et al. 2019. An evalua-
tion dataset for intent classification and out-of-scope
prediction. arXiv preprint arXiv:1909.02027.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Zihan Liu, Genta Indra Winata, Peng Xu, and Pas-
cale Fung. 2020. Coach: A coarse-to-fine ap-
proach for cross-domain slot filling. arXiv preprint
arXiv:2004.11727.

Amber Nigam, Prashik Sahare, and Kushagra Pandya.
2019. Intent detection and slots prompt in a closed-
domain chatbot. In 2019 IEEE 13th international
conference on semantic computing (ICSC), pages
340–343. IEEE.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Libo Qin, Tailu Liu, Wanxiang Che, Bingbing Kang,
Sendong Zhao, and Ting Liu. 2021. A co-interactive
transformer for joint slot filling and intent detection.
In ICASSP 2021-2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 8193–8197. IEEE.

Libo Qin, Xiao Xu, Wanxiang Che, and Ting Liu. 2020.
Agif: An adaptive graph-interactive framework for
joint multiple intent detection and slot filling. arXiv
preprint arXiv:2004.10087.

Chengyu Wang, Suyang Dai, Yipeng Wang, Fei Yang,
Minghui Qiu, Kehan Chen, Wei Zhou, and Jun
Huang. 2022. Arobert: An asr robust pre-trained
language model for spoken language understanding.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 30:1207–1218.

13517

https://doi.org/10.48550/ARXIV.2109.04332
https://doi.org/10.48550/ARXIV.2109.04332
https://doi.org/10.18653/v1/2021.findings-acl.282
https://doi.org/10.18653/v1/2021.findings-acl.282
https://doi.org/10.18653/v1/2021.findings-acl.282
https://doi.org/10.48550/ARXIV.2009.08138
https://doi.org/10.48550/ARXIV.2009.08138
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.2004.10793
https://doi.org/10.48550/ARXIV.2004.10793
https://doi.org/10.48550/ARXIV.2004.10793
https://doi.org/10.48550/ARXIV.2206.10559
https://doi.org/10.48550/ARXIV.2206.10559
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.1109/TASLP.2022.3153268
https://doi.org/10.1109/TASLP.2022.3153268


Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Fengyi Yang, Xi Zhou, Yi Wang, Abibulla Atawulla,
and Ran Bi. 2022. Diversity features enhanced proto-
typical network for few-shot intent detection.

Yi Yang and Arzoo Katiyar. 2020. Simple and effective
few-shot named entity recognition with structured
nearest neighbor learning.

Dian Yu, Luheng He, Yuan Zhang, Xinya Du, Panupong
Pasupat, and Qi Li. 2021. Few-shot intent classifica-
tion and slot filling with retrieved examples. arXiv
preprint arXiv:2104.05763.

Jian-Guo Zhang, Kazuma Hashimoto, Wenhao Liu,
Chien-Sheng Wu, Yao Wan, Philip S Yu, Richard
Socher, and Caiming Xiong. 2020. Discriminative
nearest neighbor few-shot intent detection by trans-
ferring natural language inference. arXiv preprint
arXiv:2010.13009.

Su Zhu, Ruisheng Cao, Lu Chen, and Kai Yu. 2020.
Vector projection network for few-shot slot tagging
in natural language understanding. arXiv preprint
arXiv:2009.09568.

Yi Zhu, Xinke Zhou, Jipeng Qiang, Yun Li, Yunhao
Yuan, and Xindong Wu. 2022a. Prompt-learning for
short text classification.

Yi Zhu, Xinke Zhou, Jipeng Qiang, Yun Li, Yunhao
Yuan, and Xindong Wu. 2022b. Prompt-learning for
short text classification.

13518

https://doi.org/10.48550/ARXIV.1910.03771
https://doi.org/10.48550/ARXIV.1910.03771
https://doi.org/10.48550/ARXIV.1910.03771
https://doi.org/10.48550/ARXIV.2010.02405
https://doi.org/10.48550/ARXIV.2010.02405
https://doi.org/10.48550/ARXIV.2010.02405
https://doi.org/10.48550/ARXIV.2202.11345
https://doi.org/10.48550/ARXIV.2202.11345
https://doi.org/10.48550/ARXIV.2202.11345
https://doi.org/10.48550/ARXIV.2202.11345


A The Results of BERT

To simulate intent detection and slot-filling tasks in
low-resource scenarios, we sample few-shot data
from the ATIS and Snips datasets and conduct k-
shot experiments. We set fine-grained k values in
the experiment to observe how the model’s perfor-
mance changes as the training data increases. The
k-shot settings for intent detection and slot filling
are shown in Table 6 and Table 7. We can reason-
ably set the k value according to the experimental
results when constructing the k-shot dataset. In this
way, the model’s performance can be thoroughly
evaluated through only a few k-shot experiments.

B Description of each intent in the Snips
dataset

Table 8 shows the description text of each intent in
the SNIPS dataset, which contains seven intents.

Intent Description Text

AddToPlaylist He is adding something to playlist.
PlayMusic He wants to play some music.
BookRestaurant He is booking a restaurant.

SearchCreativeWork
He is searching for something like
game, videos or TV shows.

RateBook He is rating a book with a score.

GetWeather
He wants to know the weather
information.

SearchScreeningEvent He is searching for a movie.

Table 8: Description of each intent in the SNIPS dataset.

C Implementation Detail and Evaluation
Metrics

We implement BERT (Devlin et al., 2018), and
RoBERTa (Liu et al., 2019) models based on
Hugging-face Pytorch Transformers (Wolf et al.,
2019). The pre-trained model BERT is initialized

with Bert-base-uncased. The pre-trained model
RoBERTa is initialized with RoBERTa-base. It
contains a 12-layer Transformer encoder, a multi-
headed attention mechanism containing 12 atten-
tion heads on each layer, and a hidden layer size of
768. The initial learning rate of the model is 5e-5.
The sentence length is 80. The model parameters
are optimized using Adam (Kingma and Ba, 2014)
with a weight decay optimizer. The dropout is 0.1.
With the above experimental environment and pa-
rameter settings, the experiment requires 4,776M
memory and spends 145s of each epoch training
time. To overcome the randomness of the experi-
ment, we ran it 5 times with different random seeds
and reported average performance and standard de-
viation for the experiments. The intent accuracy
is used as the evaluation metric of the intent de-
tection task, while the slot F1 score is used as the
evaluation metric of the slot filling task.

D The Result of SNIPS dataset

We evaluate our models following the k-shot
dataset provided by Hou et al. (2020a) on
SNIPS (Coucke et al., 2018). SNIPS con-
tains seven intents: GetWeather (We), PlayMusic
(Mu), AddToPlaylist (PI), RateBook (Bo), Search-
ScreeningEvent(Se), BookRestaurant (Re), and
SearchCreativeWork (Cr). The previous few-shot
SLU methods train models on five source domains,
use the sixth one for development, and test on the
seventh domain. And then, we complete the test-
ing of all seven domains by cross-validation seven
times. In comparison, our model is only fine-tuned
in the testing domain. Table 9 summarizes the
experiment results on the SNIPS dataset. Transfer-
BERT and SimBERT results are reported in Hou
et al. (2020a). Moreover, the ProtoToken result

Model K-shot

1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot 9-shot 10-shot

ATIS 8.93 18.11 25.73 31.55 39.87 59.57 67.92 72.44 80.61 87.70
SNIPS 32.49 59.29 64.26 78.71 79.64 82.29 83.06 86.71 85.81 87.86

Table 6: Performance of BERT for intent detection.

Model K-shot

5-shot 10-shot 15-shot 20-shot 25-shot 30-shot 35-shot 40-shot

ATIS 22.21 41.21 52.17 66.23 70.14 78.06 78.92 82.21
SNIPS 1.8 41.98 50.80 69.63 72.04 75.46 77.93 80.38

Table 7: Performance of BERT for slot filling.

13519



Model We Mu PI Bo Se Re Cr Avg.

TransferBERT 59.41 42.00 46.07 20.74 28.20 67.75 58.61 46.11
SimBERT 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96
ProtoToken 67.82 55.99 46.02 72.17 73.59 60.18 66.89 63.24
Coach (Liu et al., 2020) 73.56 45.85 47.23 61.61 65.82 69.99 57.28 60.19
TapNet (Hou et al., 2020a) 53.03 49.80 54.90 83.36 63.07 59.84 67.02 61.57
TapNet+CDT (Hou et al., 2020a) 66.48 66.36 68.23 85.76 73.60 64.20 68.47 70.44
L-WPZ+CDT (Hou et al., 2020a) 74.68 56.73 52.20 78.79 80.61 69.59 67.46 68.58
L-TapNet+CDT (Hou et al., 2020a) 71.64 67.16 75.88 84.38 82.58 70.05 73.41 75.01
Retriever (Yu et al., 2021) 82.95 61.74 71.75 81.65 73.10 79.54 51.35 71.72

Ours 79.70 78.09 76.64 90.04 82.87 79.91 63.88 78.73

Table 9: F1 Scores on 5-shot dialogue language understanding task on SNIPS dataset.

is reported in Yu et al. (2021). Experiments re-
flect that the proposed model achieves competitive
performance compared to previous few-shot SLU
models even though it does not use source domains.

It is worth noting that our model is only fine-
tuned on the testing domain without training on any
source domains. The main reason for the model
performance improvement is that the reconstruct-
ing slot label approach reduces the complexity of
model training. Specifically, the test set has only
one domain. Thus there are few categories of slots.
Moreover, reconstructing slot labels reduces the
number of slot types in half. Therefore, it extremely
reduces the search space of the model. Experiments
demonstrate that the reconstructing slot label ap-
proach is simple and effective in the few-shot SLU.

E Intent Accuracy on FewShotSNIPS and
FewShotATIS

The results of BERT-NSP-Prompt on the FewShot-
SNIPS and FewShotATIS (6-shot) are reported in
Table 10 and Table 11. The experimental results
report that the model with a dynamic sampling
strategy has a smaller variance than the model with
average sampling. The main reason for the model
performance improvement may be that the dynamic
sampling strategy can assign a different number of
samples according to the learning difficulty of each
intent. It further demonstrates the effectiveness
of the dynamic sampling strategy. This sampling
method is more in line with the practical scenario
and improves the overall performance of intent de-
tection.

F The Results of RoBERTa in Different
Sampling Strategies

The results of different sampling strategies on the
RoBERTa models for the intent detection and slot
filling task are shown in Table 12 and Table 13.
With the increase in the total number of samples,

the experimental results of the dynamic sampling
strategy show a steady improvement trend. The ex-
perimental results are consistent with the results on
BERT. It reflects that the BERT model can sample
data according to the difficulty of each intent in the
process of dynamic sampling rather than overfitting
the BERT model. We believe the dynamic sam-
pling strategy significantly enhances the model’s
performance in few-shot settings and effectively
extends to other data sampling tasks.
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Intent 6-shot Average Sample 6-shot Dynamic Sample Samples

Precision Recall F1 Precision Recall F1

AddToPlaylist 97.00 78.23 86.61 99.10 88.71 93.62 124
PlayMusic 64.96 88.37 74.88 72.32 94.19 81.82 86
BookRestaurant 96.81 98.91 97.85 95.83 1.00 97.87 92
SearchCreativeWork 71.03 71.03 71.03 73.17 84.11 78.26 107
RateBook 98.75 98.75 98.75 98.59 87.50 92.72 80
GetWeather 97.09 96.15 96.62 96.19 97.12 96.65 104
SearchScreeningEvent 85.86 79.44 82.52 93.90 71.96 81.48 107

Table 10: The results of different intents in a 6-shot setting on FewShotSNIPS.

Intent 6-shot Average Sample 6-shot Dynamic Sample Samples

Precision Recall F1 Precision Recall F1

atis_flight 99.07 84.34 91.11 98.11 90.51 94.16 632
atis_ground_fare 60.00 85.71 70.59 50.00 71.43 58.82 7
atis_flight_time 25.00 1.00 40.00 25.00 1.00 40.00 1
atis_quantity 0.00 0.00 0.00 0.00 0.00 0.00 3
atis_distance 81.82 90.00 85.71 1.0000 1.0000 1.0000 10
atis_city 19.35 100.00 32.43 66.67 66.67 66.67 6
atis_capacity 100.00 85.71 92.31 100.00 100.00 100.00 21
atis_aircraft 56.25 100.00 72.00 87.50 77.78 82.35 9
atis_flight_no 88.89 100.00 94.12 100.00 100.00 100.00 8
atis_cheapest 0.00 0.00 0.00 0.00 0.00 0.00 0
atis_airline 55.88 100.00 71.70 61.67 97.37 75.51 38
atis_abbreviation 100.00 78.79 88.14 91.18 93.94 92.54 33
atis_restriction 0.00 0.00 0.00 0.00 0.00 0.00 0
atis_airport 90.00 100.00 94.74 94.74 100.00 97.30 18
atis_meal 42.86 100.00 60.00 31.25 83.33 45.45 6
atis_airfare 74.00 77.08 75.51 83.67 85.42 84.54 48
atis_ground_service 100.00 86.11 92.54 100.00 86.11 92.54 36
atis_day_name 50.00 100.00 66.67 66.67 100.00 80.00 2

Table 11: The results of different intents in a 6-shot setting on FewShotATIS.

Model ATIS K-shot Snips K-shot

2-shot 4-shot 6-shot 8-shot 10-shot 2-shot 4-shot 6-shot 8-shot 10-shot

RoBERTa-ID(AS) 4.55 4.67 71.75 72.83 85.42 20.14 75.57 75.71 82.02 83.71
RoBERTa-ID(DS) 4.55 7.57 81.32 73.87 86.64 20.14 77.00 77.86 84.43 85.57

Table 12: Intent accuracy of different sampling strategies. “AS” is the Average Sample, and “DS” denotes the
Dynamic Sample.

Model ATIS K-shot Snips K-shot

5-shot 10-shot 20-shot 30-shot 40-shot 5-shot 10-shot 20-shot 30-shot 40-shot

RoBERTa-SF(BIO+AS) 29.08 59.89 77.03 83.46 87.39 14.35 42.33 65.42 73.63 77.28
RoBERTa-SF(BIO+DS) 29.08 67.96 80.16 87.26 90.35 14.35 42.48 67.52 76.28 77.32

RoBERTa-SF(ET+AS) 29.11 65.00 80.59 88.61 88.65 22.42 49.58 67.59 76.61 77.61
RoBERTa-SF(ET+DS) 29.11 77.03 85.94 86.09 90.48 22.42 43.51 67.63 74.67 78.12

RoBERTa-SF(ET+FL+AS) 31.51 65.24 81.07 86.78 89.53 24.10 54.39 68.25 75.25 78.16
RoBERTa-SF(ET+FT+DS) 31.51 77.09 83.77 88.24 91.02 24.10 45.99 70.97 78.12 78.42

Table 13: The performance of different sampling strategies for slot filling (F1). “BIO” is the model labeled with
BIO format, “ET” denotes the model with reconstructed slot labels, and “ET+FL” represents the model with
reconstructing slot labels and the focal loss function. “AS” is the Average Sample, and “DS” denotes the Dynamic
Sample.
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