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Abstract
Adversarial training is widely acknowledged as
the most effective defense against adversarial
attacks. However, it is also well established
that achieving both robustness and generaliza-
tion in adversarially trained models involves
a trade-off. The goal of this work is to pro-
vide an in depth comparison of different ap-
proaches for adversarial training in language
models. Specifically, we study the effect of pre-
training data augmentation as well as training
time input perturbations vs. embedding space
perturbations on the robustness and general-
ization of transformer-based language models.
Our findings suggest that better robustness can
be achieved by pre-training data augmentation
or by training with input space perturbation.
However, training with embedding space per-
turbation significantly improves generalization.
A linguistic correlation analysis of neurons of
the learned models reveal that the improved
generalization is due to ‘more specialized’ neu-
rons. To the best of our knowledge, this is the
first work to carry out a deep qualitative analy-
sis of different methods of generating adversar-
ial examples in adversarial training of language
models.

1 Introduction

Language Models (LMs) have emerged as the back-
bone of many tasks in AI and have extended their
reach beyond NLP applications into vision and
even reinforcement learning (Brown et al., 2020;
Reed et al., 2022; Ramesh et al., 2022). Thus it is
imperative that the generalizability and robustness
of LMs be carefully assessed and evaluated.

Generalizability is the ability of a model to per-
form well on unseen data. Transformer-based mod-
els that are pre-trained on large unlabeled text have
shown remarkable generalization ability. However,
when confronted with carefully designed adversar-
ial samples, their robustness - the ability to grace-
fully deal with small perturbations, suffers signifi-
cantly. For example, a recent study has shown that

on a classification task on a YELP data set, accu-
racy dropped by almost 90%, when a standard test
set was replaced by an adversarial counterpart (Jin
et al., 2020; Yoo and Qi, 2021; Yuan et al., 2021).

Adversarial training is a pragmatic approach to
attain both generalizability and robustness. The
idea is straightforward. For a given model M , gen-
erate adversarial samples that target M and then
use the samples to incrementally re-train the model.
This can be done either at the pre-training or the
fine-tuning stage (Liu et al., 2020).

Adversarial samples can be generated both in the
input space and in the embedding space. The origi-
nal work on the creation of adversarial samples for
computer vision was in the input space. For exam-
ple, the fast gradient sign method (FGSM) (Good-
fellow et al., 2014) that perturbs a data point x
along the direction of the sign gradient of the loss
function with respect to the input is an example of
a perturbation in the input space. In the context of
natural language inputs, perturbing text is challeng-
ing due to its discrete nature. Unlike continuous
data, there is no systematical way to guarantee an
increase in the loss function when perturbing text.
For instance, if we aim to make a small modifica-
tion to the word “robust” we can choose to replace
a single letter within the word or substitute it with
a near synonym. However, both of these perturba-
tions may seem ad-hoc and not sufficiently prin-
cipled to intentionally increase the loss function.
Therefore, in language settings, it is often more
appropriate to perform perturbations in the embed-
ding space, where continuous representations can
be manipulated in a more structured manner.

Furthermore, despite the widespread use of ad-
versarial training to increase the robustness of mod-
els, it is not clear what their impact is on down-
stream tasks beyond the model’s overall accuracy.
For example, a deeper analysis of language models
has shown that different parts of the network are
responsible for different parts of speech (Belinkov

7828



et al., 2017; Conneau et al., 2018; Liu et al., 2019;
Dalvi et al., 2022; Durrani et al., 2020). In this re-
gard, the change in the network due to adversarial
training has not yet been investigated.

Overall our contributions in this paper are three-
fold. Firstly, we introduce two techniques in
the context of adversarial training in the embed-
ding space, representing the regularization- and
gradient-based approaches commonly used by la-
tent space techniques. We compare these tech-
niques using a simple one-dimensional model and
hypothesize their behavior in adversarial scenarios.
Secondly, we evaluate the effectiveness of input-
and embedding-space adversarial training methods
in terms of their generalization ability and robust-
ness against various types of adversarial attacks
in sentiment analysis. Lastly, we conduct a thor-
ough linguistic analysis of an adversarially trained
model and demonstrate that incorporating robust-
ness through adversarial training leads to more “fo-
cused" neurons that are associated with distinct
Part of Speech (POS) tags.

The rest of the paper is organized as follows. In
Section 2, we discuss adversarial attacks and de-
fenses, with a specific focus on the NLP domain.
Section 3 provides a detailed explanation of em-
bedding space adversarial techniques. In Section
4, we conduct experiments to analyze the trade-off
between robustness and generalization achieved by
data augmentation, input-space training, and em-
bedding space training approaches, considering var-
ious well-known adversarial attacks. Additionally,
we present our findings from linguistic correlation
analysis of neurons in robust models within the
same section. Finally, we finalized the paper in the
concluding section.

2 Related Work

Adversarial Attacks: The purpose of an adversar-
ial attack is to cause a model to output conflicting
decisions for an input and its ‘imperceptibly’ mod-
ified version. An adversarial sample is defined as:

x′ = x+ δ; ||δ|| ≤ ϵ ∧ f(x, θ) ̸= f(x′, θ) (1)

where x′ is the adversarial sample, δ is the pertur-
bation added to the original data x, ||δ|| is a generic
norm, ϵ is the limit of the maximum norm of the
perturbation, and f(x, θ) is the output of the model
parameterized by θ for input x. The quality of an
adversarial sample is typically evaluated depend-
ing on how well δ is minimized, i.e., the minimum

distortion that changes the prediction of the model
on a sample.

Obtaining an exact solution for the perturba-
tion δ is a very challenging problem. Further,
even when close approximations are considered,
the solution gets computationally very expensive
(Szegedy et al., 2013). To solve this problem
more efficiently, gradient-based methods were in-
troduced. Accordingly, the perturbation δ is com-
puted by taking one (Goodfellow et al., 2014) or
more steps iteratively (Madry et al., 2017; Dong
et al., 2018) in the direction of the gradient to max-
imize the loss function. Then, this high loss point
is projected back onto the input space to determine
the norm-bounded perturbation. In practice, pro-
jected gradient descent (PGD) approaches that, take
several small steps in the direction of the gradient,
are used most frequently to create strong adversar-
ial samples (Madry et al., 2017; Papernot et al.,
2016).

Other than gradient based approaches, Jacobian-
based Saliency Map Attack (JSMA) (Papernot
et al., 2016) uses the Jacobian matrix created
from forward derivation of input to identify to
importance of each input component to the target
attack. DeepFool (Moosavi-Dezfooli et al., 2016),
alternatively, iteratively linearizes the classifier
to identify the minimum perturbation that causes
a change in the classification label. Carlini &
Wagner Attack (C&W) proposed defensive distil-
lation strategy (Hinton et al., 2015) based approach.

Adversarial Attacks in NLP: Running adversarial
attacks against Natural language processing (NLP)
models is more challenging than widely used vision
models. The discrete nature of word representa-
tions, combined with the tokenization of words into
word pieces, effectively invalidates any algorithm
that applies differential changes on the model input
when generating an adversarial sample. Moreover,
quantification of the extent to which semantic sim-
ilarity and contextual relations are preserved be-
tween a text input and its modified version is not
trivial.

To circumvent these limitations, many adver-
sarial sample generation algorithms adopted the
approach of substituting one or more words in
the input until a misprediction occurs. The crux
of this attack lies in identification of alternative
words or phrases that retain the semantic intact-
ness of the original input. For this, several meth-
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ods based on word-embedding similarity (Jin et al.,
2020), word synonymity (Ren et al., 2019; Zang
et al., 2019), and masked language model predic-
tions (Li et al., 2020) are proposed. However, find-
ing appropriate word candidates may get computa-
tionally very intensive. For a sentence consisting
of m words with n candidates to substitute each
word, there are (n + 1)m possible combinations
to test. To perform this search efficiently, greedy
search (Ren et al., 2019), genetic algorithm (Alzan-
tot et al., 2018), and particle swarm optimization-
based (PSO) (Zang et al., 2019) approaches are
proposed and incorporated with word importance
as determined by gradient measurements (Yoo and
Qi, 2021) and word deletion (Ren et al., 2019).

An alternative approach to above substitution-
based approach is applying perturbations in the
embedding space directly to word embeddings.
This approach avoids the expensive search step
to identify the best word substitution config-
uration, but it requires devising a mapping
from perturbed embeddings to the text domain
in order to create an adversarial sample. To
realize this, recent work (Yuan et al., 2021)
adapted a gradient-based adversarial sample
generation method to compute perturbations
associated with each word embedding. Perturbed
embeddings are then translated to input domain
using a pre-trained masked-language modeling
(MLM) head, as in (Li et al., 2020; Garg and
Ramakrishnan, 2020), to create an adversarial sam-
ple that is semantically similar to the original input.

Adversarial Defence in NLP: The most com-
monly deployed method for attaining robustness
against an adversarial attack is through addition of
adversarial samples into the training set (Szegedy
et al., 2013). This approach is known to increase
model robustness in both computer vision and NLP
domains. Further, it is also reported that this de-
fence approach decreases the generalization error
of a model in the absence of any attack (Yuan et al.,
2021), which contradicts the commonly held opin-
ion that there is a trade-off between generalization
and robustness E: (Tsipras et al., 2019). This find-
ing can essentially be attributed to the use of a
larger training set enhanced with adversarial sam-
ples. The second approach augments the train-
ing set with newly constructed, synthetic samples.
While this may seem equivalent to adding adver-
sarial samples to the training set, data augmenta-

tion methods do not need to have an adversarial
nature. Common data augmentation methods in-
clude word replacement, i.e., substituting words
with their synonyms or inserting random words,
random word deletions, and swapping of words be-
tween sentences (Wei and Zou, 2019). Rather than
using manually-designed heuristics, the power of
existing NLP models can also be harnessed for data
augmentation. Reverse translation, which involves
re-translation of samples from a target language
back to their source language constitutes one such
method that ideally preserves the semantic simi-
larity of original and augmented samples (Edunov
et al., 2018; Xie et al., 2020). The use of MLM via
masking words in a sentence and replacing them
with model predictions (Ng et al., 2020) is another
augmentation method.

The third approach to adversarial training in-
volves applying perturbations in the latent space
(Zhu et al., 2019; Liu et al., 2020; Li and Qiu, 2021;
Pan et al., 2022). This yields a simpler training
procedure as it removes the need for generating ad-
versarial samples in the input space. In (Zhu et al.,
2019), a model is incrementally fine-tuned on sets
of adversarially perturbed word embeddings com-
puted after each fine-tuning step. Li et al. (2021)
demonstrate that this method performs better when
no constraint on the amount of perturbation is im-
posed. In Li and Qiu (2021), it is observed that
rather than initializing the PGD step with random
noise when computing perturbations for each to-
ken, using a token-dependent random noise that is
fixed across all inputs is more effective. Recently,
Pan et al. (2022) proposed the use of contrastive
objective (Oord et al., 2018) for ensuring invari-
ant representations by forcing the model to learn
the differences between the normal input and its
adversarial version.

In addition to empirical methods, certified de-
fense methods are proposed to identify and elim-
inate adversarial samples. These techniques min-
imize misclassification within an l∞ ball bound,
particularly in the vision domain (Raghunathan
et al., 2018; Wong and Kolter, 2018). In the NLP
domain, two main categories of certified defense
methods have emerged: Interval Bound Propaga-
tion (IBP) (Jia et al., 2019; Huang et al., 2019; Shi
et al., 2020) and randomized smoothing (Ye et al.,
2020; Zeng et al., 2021). IBP techniques estimate
the output range by iteratively applying interval
constraints from the input layer to subsequent lay-
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ers. However, the requirement to modify the model
structure poses challenges in incorporating these
methods into pre-trained models.

Randomized smoothing-based methods offer an
alternative approach that is independent of the
model structure. These methods utilize stochastic
ensembles of input texts and leverage the statis-
tical properties of these ensembles to offer prov-
able robustness certification. A common approach
to achieve this is by generating a few randomly
modified versions of the original sample. This can
be done through techniques such as random word
substitutions using synonyms, as demonstrated in
SAFER (Ye et al., 2020), or by employing a mask
language model to substitute words, as shown in
RanMASK (Zeng et al., 2021). The final prediction
is then made based on the decisions made by these
randomly generated samples.

Throughout the rest of the paper, we do not delve
into a detailed discussion of these techniques for
several reasons. Firstly, the main focus of this paper
is on empirical methods and evaluating their impact.
Secondly, randomized smoothing methods can be
integrated into various techniques, making them
applicable in different contexts. Lastly, previous
findings suggest that while randomized smoothing
methods demonstrate strong defense performance,
they tend to underperform compared to latent space
adversarial training (Li et al., 2021).

3 AT with Embedding Space
Perturbations

Among all adversarial defenses developed for lan-
guage processing models, moving the adversarial
training from the input space to the embedding
space offers the most advantage. This essentially
allows the adoption of gradient-based adversarial
training approaches that are computationally less
demanding than input space methods. Although a
plethora of such adversarial training methods ex-
ists, they are all essentially guided by two main
principles in their approach. The first one essen-
tially sets the training objective to minimize the
loss due to worst-case perturbation induced on the
training samples, instead of the average loss com-
puted from training samples by the standard train-
ing. This group of methods essentially differ in the
way they approximate the worst-case perturbation
(Madry et al., 2017; Miyato et al., 2018; Zhang
et al., 2019) as well as the extent and nature of per-
turbation applied during generation of adversarial

samples (Ding et al., 2018; Wang et al., 2019; Liu
et al., 2020).

The second approach primarily relies on the
premise that smoothness is an important require-
ment of a robust model. To this objective, these
methods focus on minimization of a regularized
version of the loss instead of optimizing only the
standard, training loss. The regularization term
here ensures that there is a wide enough margin
around each training data point with the decision
boundary of the model through minimizing the
difference between the predictions of natural and
adversarial samples. Methods following this ap-
proach are distinguished based on their formula-
tion of regularization (Szegedy et al., 2016; Zhang
et al., 2019) and their coupling with the training
loss described above (Gan et al., 2020; Pan et al.,
2022).

In our analysis, we consider two representative
methods that most effectively exemplify each ap-
proach. In practice, due to its computational effi-
ciency, the PGD attack is most frequently used for
the creation of adversarial samples. We will refer to
this generic adversarial training approach as PGD-
AT. The latter approach is also best characterized
by the use of PGD in ensuring local distribution
smoothness around natural samples. This alterna-
tive method will be referred to as LDS. We must
note that improved variants of the two base meth-
ods should be expected to perform better. In this
regard, robustness-generalization performance of
the PGD-AT and LDS can be interpreted as lower-
bounds.

The steps of both methods are presented in Al-
gorithm 1 where the lines that differ between the
two methods are highlighted as pink for PGD-AT
and blue for LDS. Both methods start by randomly
initializing δ with normal distribution with a mean
of zero and standard deviation of σ. The loss is
then calculated between the model’s output of the
perturbed input depending on the method, PGD-AT
or LDS. The δ value is then updated by the gra-
dient and clipped to within ±ϵ by the projection
function Π. These steps are repeated for S times.
The loss value is then updated by combining the
standard loss with the loss associated with each
method. Gradient update is then applied to model
parameters.

To better examine the behavior of the two meth-
ods, we analyze a simple one-dimensional linear
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Algorithm 1 PGD-AT and LDS based adversarial
training
Input: E: the number of epochs, D = {(x(i), y(i))}ni=1: the
dataset, f(x, θ): the machine learning model parametrized by
θ, δ: the perturbation initialized by σ and limited by ϵ, τ : the
global learning rate, µ: the adversarial learning rate, S: the
number of PGD step, and Π is the projection function.
for e = 1, .., E do

for (x, y) ∈ D do
δ ∼ N (0, σ2)
for s = 1, .., S do

gadv = ∇δl(f(x+ δ, θ), y) %PGD-AT
gadv = ∇δl(f(x, θ), f(x+ δ, θ)) %LDS
δ = Π||δ||≤ϵ(δ + µgadv)

end
gθ ← ∇θl(f(x, θ), y)

+∇θl(f(x+ δ, θ), y) %PGD-AT
gθ ← ∇θl(f(x, θ), y)

+∇θl(f(x, θ), f(x+ δ, θ)) %LDS
θ ← θ − τgθ

end
end
Output: θ

Model Loss Function Parameter

OLS 1
n

∑n
i=1(θ.xi − yi)

2 θ =
∑

i xiyi∑
i x2

i

PGD-AT
1
n

∑n
i=1

{
(θ.xi − yi)

2 +
θ =

∑
i 2xiyi+yiδ∑

i x2
i+(xi+δ)2(θ.(xi + δ)− yi)

2
}

LDS
1
n

∑n
i=1

{
(θ.xi − yi)

2 +
θ =

∑
i xiyi∑

i x2
i+δ2(θ.(xi + δ)− θ.xi)

2
}

Table 1: Closed form solutions of the model parame-
ter of a one-dimensional linear regression model under
various loss functions

regression model:

y = θ.x+ ϵ, ϵ ∼ N(0, σ2)

Assuming a fixed perturbation δ, we determine how
the two loss functions, given in Algorithm 1, es-
timate the model parameter θ under noisy obser-
vations. Table 1 presents the loss functions cor-
responding to PGD-AT and LDS as well as the
one corresponding to the standard ordinary least
squares (OLS) estimation in the absence of δ. The
estimates for the parameter θ for the three loss
functions are also given in the table (third column).
Comparing PGD-AT and LDS, it can be deduced
that LDS will converge to OLS only as the noise
ϵ gets severe, suppressing the effect of δ in the de-
nominator. Whereas PGD-AT can be expected to
follow OLS more closely at all noise levels as δ
appears both at the numerator and the denominator,
thereby absorbing its effect on the estimate.

We also designed an experimental setup to test
these hypotheses. A single neuron is trained based
on randomly generated (x, y) pairs as defined above

(a) (b)

Figure 1: The resulting distribution for θ values related
to three different models, trained using OLS, LDS, and
PGD-AT methods, when σ is set to (a) 0.01 and (b)
0.1. A small standard deviation indicates the model’s
robustness and clustering around 0.5 implies better gen-
eralizability.

Figure 2: Evaluation pipeline of models learned using
different adversarial training approaches.

assuming θ = 1
2 and for two different noise dis-

tributions, (σ = 0.01 and σ = 0.1) for each loss
function. The models are trained for 2K epochs at
a learning rate of 0.005 starting with the OLS loss.
For PGD-AT and LDS models, the OLS loss is sub-
stituted by their loss function after epoch 1750 and
δ values are computed as defined in Algorithm 1.

The distributions of the estimated scalar model
parameter θ obtained after 25 runs is displayed in
Fig. 1. Essentially, the spread of the distribution
signifies the robustness of a model against adver-
sarial samples and the distribution mean relates to
the generalizability of the model. In this regard,
PGD-AT is seen to perform better than LDS as it
yields a tighter spread in both cases. However, at
higher noise levels, it can be seen that LDS pro-
vides a more accurate estimate of θ. Overall, we
can expect that a model trained with PGD-AT to
be more robust while yielding a generalizability
behavior closer to that of LDS.

4 Experiments

We first compare the robustness, generalization and
run-time complexity of different AT strategies, fol-
lowing the pipeline in Fig. 2. Then, we perform a
Linguistic Correlation Analysis (LCA, Dalvi et al.,
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Figure 3: LCA pipeline of models learned using different adversarial training approaches.

Table 2: Robustness results. Models are evaluated using ASR (lower is better) on the MR and IMDB datasets.

Attack Dataset BERT
AT-IP AT-DA AT-EP

A2T A2T_MLM BERT_Attack SSMBA BackTranslation LDS PGD-AT

TextFooler
MR 82.1 77.9 79.7 79.3 79.8 72.8 88.6 87.8

IMDB 80.6 86.5 65.3 72.8 81.3 45.9 91.5 94.7

A2T
MR 33.8 27.6 30.8 26.5 34.2 30.4 22.3 20.9

IMDB 59.5 51.1 43.7 49.4 59.2 36.4 56.9 43.0

BAE
MR 52.1 44.1 45.5 44.0 49.2 47.1 55.3 52.9

IMDB 68.8 65.0 52.5 57.9 61.5 41.4 66.5 61.0

PSO
MR 79.8 75.0 72.7 74.7 78.1 75.6 79.8 80.7

IMDB 46.4 35.3 35.4 30.2 41.8 42.8 70.8 66.2

Average MR 62.0 56.1 57.2 56.1 60.3 56.5 61.5 60.5
IMDB 63.8 59.5 49.2 52.6 61.0 41.6 71.4 66.2

2019) as implemented in the NeuroX toolkit (Dalvi
et al., 2023) to gain better insights into the dynam-
ics of the learned models, as illustrated in Fig. 3.
Baselines: We compare standard BERT (Devlin
et al., 2018) with seven versions of adversarially
trained BERT models using methods from three
families of AT approaches: (1) AT with pre-training
data augmentation (AT-DA), (2) AT with input
space perturbations (AT-IP) and (3) AT with em-
bedding space perturbations (AT-EP), on the task
of sentiment classification. Specifically, for AT-
DA, we experiment with SSMBA (Ng et al., 2020)
and BackTranslation (Xie et al., 2020). For AT-IP,
we use A2T, A2T_MLM (Yoo and Qi, 2021) and
BERT_attack (Li et al., 2020). For AT-EP, we re-
port results on LDS (Szegedy et al., 2016; Zhang
et al., 2019) and PGD-AT (Gan et al., 2020; Pan
et al., 2022).
Datasets: We fine-tune all models on the Inter-
net Movie Database (IMDB, Maas et al., 2011)
and Movie Reviews (MR, Pang and Lee, 2005)
datasets and test on the corresponding testing splits,
as well as on YELP dataset (Zhang et al., 2015) for
out-of-distribution assessment of the models.
Attack methods: We assess the robustness of the
models under four different attacks which replace
words in the input space using different strategies.
(1) TextFooler (Jin et al., 2020) first searches for the
word that results in the highest change in the senti-

ment score, when removed, then replaces it with the
nearest neighbouring word in the embedding space.
(2) BAE (Garg and Ramakrishnan, 2020) masks a
portion of the text and using a BERT masked lan-
guage model to generate alternatives for the masked
words. (3) A2T (Yoo and Qi, 2021) selects the word
with the largest loss gradient w.r.t its embedding
and replaces it with a synonym generated from a
counterfitted word embedding (Mrkšić et al., 2016).
(4) PSO (Zang et al., 2019) uses sememe-based
word substitution and particle swarm optimization-
based search algorithm to find good adversarial
examples for a given input text.
Evaluation metrics: we assess (1) generaliza-
tion via computing the accuracy values on in-
distribution and out-of-distribution datasets, (2)
robustness using the Attack Success Rate (ASR)
representing the ratio of the number of successful
attacks to the number of samples, as well as (3)
the time complexity measured via the fine-tuning
run-time of the BERT model over 4 epochs.
Implementation details: For AT-DA and AT-IP
methods, we use the parameters proposed by the
corresponding papers. For our PGD-AT and LDS
approaches, we limit the number of PGD steps to 3
and the perturbations L2-norm to 0.003. All exper-
iments are conducted on Nvidia v100 Tensor Core
GPU.
Run-time results: We report the time for fine-
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tuning the models over 4 epochs in Tab. 3. The AT-
DA approaches results in the shortest fine-tuning
time as adversarial examples are generated once for
every sample before the training, unlike in AT-IP
and AT-EP where adversarial examples are gener-
ated at every training iteration. AT-EP methods,
are around 1.5 times slower to fine-tune than the
standard BERT model as generating the adversarial
examples requires an additional backward pass for
computing the gradient of the loss, at every training
iteration. As expected, AT-IP methods are the most
time consuming as they involve a combinatorial
search over a large number of input space configu-
rations. For example, the fastest approach in this
class, A2T, needs 6 seconds for a single adversar-
ial example generation, which is around 10 times
slower than the other approaches.

Table 3: Run-time results. We report the fine-tuning run-
time over 4 episodes on the MR and IMDB datasets.

Models
Run Time (in min)

IMDB MR

BERT 79.0 38.2

A
T-

D
A SSMBA 112.8 46.4

BackTranslation 210.5 66.0

A
T-

IP

A2T 1600.5 448.5
A2T_MLM 1494.3 504.7

BERT_Attack 1495.2 461.5

A
T-

E
P LDS 163.4 64.2

PGD-AT 158.2 69.0

Robustness results are shown in Tab. 2. The lower
the ASR the better is the model in withstanding
the attack. As expected, the most effective meth-
ods against adversarial attacks are the AT-IP ones.
This is due to the fact that the only class of ap-
proaches were it’s possible to match the attack and
the defense strategies, i.e., train on perturbations
generated from the attack strategies, is AT-IP, as
attacks in language models operate in the input
space. Among AT-AD methods, BackTranslation
is the most robust method on the IMDB dataset. We
found that this is due to IMDB having in average
long sentences which makes it easier to generate
good and diverse adversarial examples to train on,
via back translation. Our results show that AT-EP
methods are the least robust. In particles, LDS-AT
struggle in the sentiment classification task due to
noisy ground-truth label, i.e., sentiments are mostly
not binary but the ground truth labels are.
Generalization results are reported in Tab. 4.

AT-DA accuracy values are comparable to BERT.
Hence, it looks like AT-DA generalization capa-
bilities are not traded-off for better robustness
as it is the case of AT-IP approaches. This is
due to the fact that adversarial examples from
SSMBA (self-supervised-based) and BackTrans-
lation (translation-based) are generated while tak-
ing the global context into account. So they are
unlikely to change the semantics of the input text
and hence the decision boundaries. These meth-
ods are however unpractical for usage inside of
the training loop. More efficient techniques, e.g.,
based on local search in the embedding space, are
used by AT-IP methods. This however might not
always lead to preserving the semantics of the orig-
inal input text, which also means that assigning the
label of the ground truth input to these adversarial
examples might be inappropriate or noisy. Such
hard examples are well known to encourage over-
fitting and hence reduce the generalization ability
of the model. This explains the significant drop in
both in and out-of-distribution accuracy values of
AT-IP approaches. The best generalization results
are obtained using AT-EP methods. We notice that
PGD-AT consistently improves upon BERT. This
phenomena doesn’t occur in vision where general-
ization is well know to drop in adversarially trained
models. To the best of our knowledge, we are
the first to report this in language models trained
with embedding space perturbation. In order to
gain a better understanding of the reasons behind
this phenomena, we investigate the learned dynam-
ics of deepnets trained with AT-EP methods using
Linguistic Correlation Analysis (next paragraph).
Specifically, we want to validate that the achieved
accuracy was due to better learning to solve of the
task at hand and not just due to memorizing the
training data.

Linguistic Correlation Analysis (LCA, Dalvi
et al., 2019) is used to identify the most salient neu-
rons for a given linguistic property like a Parts-of-
Speech (POS) tag (Sajjad et al., 2022). To achieve
this, we first match words to neurons, then assess if
the matched words have the linguistic property of
interest. As the sentiment prediction task is not ap-
propriate for word level analysis, i.e., same words
can be part of different sentiment classes, we focus
on POS tagging task. We fine-tune BERT mod-
els using AT-EP methods on the publicly available
Penn Treebank dataset (Marcinkiewicz, 1994). We
use LCA to generate a list of the top-5 firing neu-
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Table 4: Generalization results. We report the accuracy
values on IMDB/MR (in-distribution) and YELP (out-
of-distribution) datasets for BERT models fine-tuned on
IMDB/MR for the task of sentiment classification.

Models

IMDB MR

IMDB YELP MR YELP

BERT 93.49 91.24 85.27 87.06

A
T-

D
A SSMBA 93.49 91.17 85.24 87.72

BackTranslation 93.44 91.50 84.96 87.77

A
T-

IP

A2T 92.59 89.97 83.58 83.62

A2T_MLM 92.70 89.15 83.90 81.79

BERT_Attack 92.63 90.04 84.61 80.41

A
T-

E
P LDS 93.24 92.09 86.49 81.80

PGD-AT 93.80 92.11 86.59 88.16

Table 5: LCA results. The association strength between
POS tags and neurons.

POS
BERT LDS PGD-AT

Match Total % Match Total % Match Total %

JJ 2 15 13.33 2 15 13.33 6 10 60.00
JJR 3 9 33.33 4 9 44.44 7 13 53.84
MD 0 5 0.00 3 5 60.00 2 5 40.00

VBD 5 5 100.00 0 5 0.00 0 5 0.00
: 0 5 0.00 1 5 20.00 3 5 60.00

VBZ 4 10 40.00 7 9 77.77 9 10 90.00
RB 9 10 90.00 9 10 90.00 6 10 60.00

VBG 10 12 83.33 14 18 77.77 15 15 100.00

rons for every POS tag and leverage these lists to
perform two types of analysis: (1) neurons-POS
tags association strength analysis and a (2) a neu-
ral ablation analysis. To assess the neurons-tag
association strength, given the list of the top-firing
neurons from LCA, we next generate a list of the
words in the testing data with the highest activa-
tion values for these neurons. Then, we compute
the intersection between the generated word list
and the ground-truth one, i.e., the list of words
with label being the POS tag of interest in the test-
ing data. A large intersection set means that the
neurons learned to specialize in predicting specific
POS tags, i.e., they learned the linguistic nuances
of the task and are unlikely to have just memorized
the training data. Results in Tab. 51 show that our
AT-EP learn more ‘focused’ neurons as measured
by the intersection ratio (match/total). In particular,
PGD-AT significantly improves upon the standard
BERTB model.

Table 6 provides words corresponding to select
1Definitions of POS tags with their order in the table: ad-

jective; adjective, comparative; modal; verb, past tense; colon,
semi-colon; verb, 3rd person singular present; adverb; verb,
gerund or present participle

POS tags obtained from the models trained with
the BERTB , the LDS, and PGD-AT methods.
For the second analysis, i.e., the neural ablation
study, we create a linear regression model using
only activations of the top 10 ranked neurons. Re-
sults are shown in Tab. 7. PGD-AT and LDA
achieve a significantly higher performance than
BERT, which further support the observation that
AT helped better learn the intricacies of the tasks
and explains the improvement of the generalization
abilities of the AT-EP approaches (e.g., in Tab. 4).

5 Conclusions

In this paper we have carried out an extensive study
of adversarial training methods (ATMs) to under-
stand their impact on robustness and generalizabil-
ity for transformer-based deep language models.
We can draw the following conclusions from our
study. First, non-adversarial data augmentation im-
proves both generalization and robustness over the
baseline BERT model. Adversarial training in the
input space yields better robustness compared to
both non-adversarial data augmentation and em-
bedding space adversarial training. In contrast, ad-
versarial training in the embedding space exhibits
best generalization behavior. Among PGD-AT and
LDS methods, our results show that the PGD-AT is
consistently more robust and generalizable. Over-
all, our results show that unlike in computer vision
domain where gradient-based adversarial training
yields the best robustness and generalization trade-
off, for language processing models input-space
training methods are indispensable.

For future work we will consider combining data
augmentation, input-space training, and embedding
space training approaches together. We would also
like to extend our theoretical understanding of the
trade-off between robustness and generalizability
for language models. In connection, the impact of
ATMs for other downstream applications needs to
be studied.

Limitations

All our experiments are performed using the BERT-
small language model due to the computational
requirements of generating and testing models con-
sidering many configurations of adversarial train-
ing and attack methods. Although using larger
language models might have provided different per-
formance measurements, our findings that compare
input- and embedding-space adversarial training
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Table 6: Examples of the most related words for different POS tags for models trained with the BERTB , the LDS,
and PGD-AT methods. The words are bolded when their actual tags match with the associated tag, where the actual
tags correspond to the most frequent tags of the words based on the POS-tagged training data.

POS BERTB LDS PGD-AT

VBZ
indicates teenage And begins indicates denies erodes explains indicates accounts refuses agrees

reflects explains evil Previously resembles And runs is has believes And
automatic reckless adds trains adds begins

JJ
Rae away little Springs Nelson Aktiebolaget least plummeted Do policies bright away what high
live equal What explain Giants little told What equal securities strong cold skyrocketed

Who Aktiebolaget skyrocketed what rung Dallara added said most cardboard green What same

JJR
newer meaning greater punish included newer greater smaller included newer stronger meaning

included banking close indicated shipbuilding arranged smaller greater indicated planning
smaller her Higher her higher close Higher lower least

MD associated bright required severe denied apart shall might must fallen fallen shall expected might apart
VBD restored bothered notched mixed began expire face exist become buy expire face become exist disagree

Table 7: LCA results. Neural ablation study.

BERT LDS PGD-AT

34.2% 38.6% 35.3%

methods are expected to remain unchanged. An-
other limitation of our work is the semantic gap be-
tween attacks in input and embedding space needs
further research. Specifically, how do perturbations
in the embedding space get translated in the input
space? Finally, other forms of robustness tech-
niques, besides adversarial training, in the context
of large language models require examination.

Ethics Statement

The work studied the impact of several adversarial
training methods on robustness and generalization.
The work did not result in any new dataset and
model and it has no potential ethical issues. On
the positive side, the work targets two important
attributes of trustworthy AI i.e. robustness and gen-
eralization. Our work provides an insightful com-
parison of the input-space and embedding space
adversarial training approaches and will positively
impact the future research work in this area.
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Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thom-
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