Distilling Reasoning Capabilities into Smaller Language Models

Kumar Shridhar*

Alessandro Stolfo*

Mrinmaya Sachan

Department of Computer Science, ETH Ziirich
{shkumar, stolfoa}@ethz.ch

Abstract

Step-by-step reasoning approaches like chain
of thought (CoT) have proved to be very ef-
fective in inducing reasoning capabilities in
large language models. However, the success of
the CoT approach is fundamentally tied to the
model size, and billion parameter-scale mod-
els are often needed to get CoT to work. In
this paper, we propose a knowledge distillation
approach that leverages the step-by-step CoT
reasoning capabilities of larger models and dis-
tills these abilities into smaller models.

In this work, we propose an alternative rea-
soning scheme, SOCRATIC COT that learns a
decomposition of the original problem into a
sequence of subproblems and uses it to guide
the intermediate reasoning steps. We use SO-
CRATIC COT to train a combination of two
small distilled models: a problem decomposer
and a subproblem solver. In practice, given a
new problem, the two distilled models work
in sync to decompose and solve complex prob-
lems. On multiple reasoning datasets (GSMS8K,
StrategyQA, and SVAMP), our proposed dis-
tillation strategies boost the performance of
smaller models over 70% compared to the base-
lines. Finally, we investigate when SOCRATIC
CoOT is an effective alternative to CoT, demon-
strating cases where a much smaller model
(GPT-2 large) can outperform a 10X larger
model (GPT-3 6B). Our code is available here.

1 Introduction

Large language models (LLMs) have demonstrated
strong performance on a variety of reasoning tasks
(Brown et al., 2020; Hoffmann et al., 2022; Chowd-
hery et al., 2022, inter alia). One particularly inter-
esting strategy for prompting these models is chain-
of-thought (CoT), which has been shown to elicit
reasoning abilities in LLMs by asking the model
to incorporate intermediate reasoning steps while
solving a problem (Nye et al., 2021; Wei et al.,

* Equal contribution.

Reasoning Annotation via LLM

o ‘ A robe takes 2 bolts of blue fiber and half
e that much white fiber. How many bolts in
total does it take?

~
—— 000
Few-shot Generate
Prompting Annotation
M\
y Y
CoT: Socratic CoT:

It takes 2/2=<<2/2=1>>1
bolt of white fiber. So the
total amount of fabric is...

v

(-

How many bolts of white
fiber does it take?
It takes...

Single Model
- R < T
‘))“ g L 4
o | @ —
Fine-tuning
Question™~——"Question
\Generation Answering

Reasoning Skill
Transfer

Figure 1: Illustration of the proposed framework. First,
an LLM is prompted to decompose a multi-step problem
providing annotation for the intermediate steps leading
to the final solution. Then, the generated annotation is
used to provide additional supervision when fine-tuning
smaller models.

2022b; Wang et al., 2022). However, CoT has been
shown to work primarily on models with hundreds
of billions of parameters (Wei et al., 2022b,a) or
those tuned on a wide range of tasks (Chung et al.,
2022; Iyer et al., 2022).

Due to the significant computational resources or
expensive API calls required to access CoT-capable
LLMs, we ask whether it is possible to elicit such
reasoning capabilities in smaller models.!

"Following Li et al. (2022), we argue that small and large
models are relative terms and context-dependent. We consider
models with billions of parameters to be large, and models
with millions of parameters to be small.

7059

Findings of the Association for Computational Linguistics: ACL 2023, pages 7059-7073
July 9-14, 2023 ©2023 Association for Computational Linguistics

https://github.com/kumar-shridhar/Distiiling-LM

Small-sized, non-fine-tuned language models are
known to be poor reasoners (Stolfo et al., 2023).
Therefore, a possible approach to induce CoT-like
reasoning abilities in smaller models would be fine-
tuning them on step-by-step examples.

In our work, we propose a framework for leverag-
ing the reasoning capabilities of LLMs to supervise
the training of smaller models. This approach can
be thought of as a form of knowledge distillation
(Hinton et al., 2015), where a larger teacher model
transfers knowledge to a smaller student model.
However, unlike standard knowledge distillation,
our method transfers the reasoning abilities of the
teacher model only using its generated solutions
as a proxy, i.e., we do not assume access to the
teacher model parameters. Our approach consists
of prompting an LLLM to produce step-by-step anno-
tations leading to the answer for a set of problems.
This annotation is then used as supervision to fine-
tune the student model. A high-level illustration of
the process is provided in Figure 1.

Within this framework, we study three different
types of annotation structure for supervising our
distillation approach: (i) We consider fine-tuning
on the gold step-by-step solution procedure for
datasets where the step-by-step solutions are avail-
able. (ii) We study whether procedural supervision,
coming from the chain of thought (CoT) of the
teacher model can improve upon the baseline. (iii)
We propose a third type of supervision structure,
which we call SOCRATIC COT. This approach re-
lies on learning a semantic decomposition of the
original problem into a sequence of subproblem-
solution pairs using two models — a) a question
generator that learns to decompose the problem
into a sequence of subproblems, and b) a question-
answering model that solves the various generated
subproblems (more details are in section 3.2). This
approach can be thought of as an extension of the
typical chain of thought reasoning where, unlike
CoT, the intermediate steps are now decomposed
into subquestion-solution pairs; the subquestions
guide the generation of intermediate steps that lead
to the final answer to the problem.

We train distilled student models with the var-
ious annotation structures mentioned above. De-
pending on the annotation available for the given
data, we use the teacher model to generate either
a CoT-like solution to a problem or, if the step-by-
step annotation is available, a set of subquestions
leading to the solution of the problem, or both (ex-

amples of different annotations are shown in Figure
2).

We perform our analyses on three multi-step
reasoning datasets: GSM8K (Cobbe et al., 2021),
StrategyQA (Geva et al., 2021), and SVAMP (Pa-
tel et al., 2021). We consider data with various
types of annotation to cover a range of realistic data
scenarios. Our results show that supervision by
CoT-decomposed examples helps smaller models
perform better, and subquestioning introduced by
SOCRATIC COT can provide further improvement.
We observe performance gains of up to 40% with
LLM-generated step-by-step annotations — this vali-
dates the effectiveness of our distillation framework
(detailed analysis in Section 5).

2 Related Work

Decomposing Multi-Step Reasoning Tasks
Solving multi-step reasoning tasks like MWPs has
been a popular area of research for the last cou-
ple of years (Kushman et al., 2014; Hosseini et al.,
2014; Roy et al., 2015; Amini et al., 2019; Zhang
et al., 2020; Shridhar et al., 2022; Opedal et al.,
2023). However, the majority of the modern ap-
proaches for these problems are shifting towards
using large language models, often relying on ap-
proaches involving prompting or in-context learn-
ing (Cobbe et al., 2021; Kojima et al., 2022; Wei
et al., 2022b; Chowdhery et al., 2022; Lewkowycz
et al., 2022; Srivastava et al., 2022). One such
prompting approach is the chain of thought prompt-
ing (Wei et al., 2022b), which prompts the language
model to generate a series of intermediate steps that
improve the reasoning capabilities in LLMs. Wang
et al. (2022) took another step forward and sam-
pled multiple reasoning paths and selected the most
relevant output using majority voting. Huang et al.
(2022) used the most voted outputs to further fine-
tune the model for better performance. Kojima et al.
(2022) further improved the reasoning of LLM in a
zero-shot manner by appending “Let’s think step
by step” to the prompt. In contrast, our work does
not propose prompting solutions; instead, we ex-
plicitly guide the student model reasoning using
sub-questions at each step. Most similar to our
work is the work by Zhou et al. (2022) which de-
composes questions into sub-questions and asks
the language model to solve each sub-question se-
quentially. However, this work is also restricted to
prompting and only works with LLMs with billions
of parameters.

7060

Knowledge Distillation Our approach is remi-
niscent of knowledge distillation (Ba and Caru-
ana, 2014; Hinton et al., 2015) in that we use a
student network to mimic the large teacher lan-
guage model. Snell et al. (2022) demonstrated the
usefulness of providing instruction that can help
models achieve better reasoning skills. Similar to
our hypothesis, Eisenstein et al. (2022) argued that
question-answering systems should focus not only
on the final answer, but also on the rationale that
justifies their reasoning, to help them reason bet-
ter. We go beyond this; in our work, in addition to
the question-answering system, we also focus on
what questions need to be asked at each step that
can help to learn that reasoning step better. Finally,
similar to our hypothesis of injecting reasoning ca-
pabilities into smaller models, Li et al. (2022) used
CoT-like reasoning from LLMs to train smaller
models on a joint task of generating the solution
and explaining the generated solution. We, on the
other hand, use the LLM to generate subquestions
and solution pairs and use them together to inject
reasoning capabilities into smaller models.

Subquestioning as supervision The idea of in-
quiring or asking information-seeking questions for
discovery learning has been studied well in the past
(Bruner, 1961). Rao and Daumé III generated clar-
ification questions based on Stack Exchange ques-
tions as supervision, Klein and Nabi (2019) used
a joint question answering model to ask questions
from a given span of text and later answer them,
and (Rajani et al., 2019; Shwartz et al., 2020) asked
questions to improve common sense QA models.
In contrast, our work focuses on multistep reason-
ing tasks where intermediate clarifying questions
and reasoning steps may not always be available
and may need to be extracted from a teacher model.

3 Methodology

The setting we consider consists of a data set D,
where each problem P; is accompanied by a final
answer a; that can be reached by several steps of
reasoning. The task of solving the problem using
a model v is to predict an answer & = ¢(P) such
that @ = a. We consider different data scenarios
where intermediate annotations of the solution may
be available in different forms (e.g., step-by-step,
as a semantic decomposition by subquestions) or
may not be present. Depending on the availability
of annotations, we propose different approaches
to augment the training of a small model on D by

Reasoning Problem

S,'!iz A robe takes 2 bolts of blue fiber and half
> that much white fiber. How many bolts in
| total does it take?

Answer-Only: The answer is 3.

CoT:

It takes 2/2=<<2/2=1>>1 bolt of white fiber.
So the total amount of fabric is
2+1=<<2+1=3>>3 bolts of fabric.

The answer is 3.

Socratic CoT:

How many bolts of white fiber does it take?
It takes 2/2=<<2/2=1>>1 bolt of white fiber.
How many bolts in total does it take?

So the total amount of fabric is
2+1=<<2+1=3>>3 bolts of fabric.

The answer is 3.

Figure 2: Illustration of the three different kinds of an-
notation structure. Our proposed approach, SOCRATIC
CoT, augments the typical chain-of-thought step-by-
step solution with subquestioning.

using LLMs.

3.1 Distilling step-by-step reasoning via CoT

A data set may present an annotation that contains
intermediate reasoning steps that lead to the answer
a; (i.e., a chain-of-thought annotation). This inter-
mediate annotation can be used directly to fine-tune
a small model. However, in cases where such step-
by-step information is not available, we use a LLM
to generate the reasoning steps that might improve
the performance of the small model.

To achieve this, we consider a small subset of the
dataset D and decompose each problem P; into n;
intermediate reasoning steps. We construct these
intermediate reasoning steps manually, since we
only need a few examples as prompts (examples
are provided in Appendix Table 6).

For each remaining problem P € D, we then
prompt a large language model M to generate the
intermediate reasoning steps. We make sure that
the chain of reasoning steps is meaningful by check-
ing whether the last solution matches the ground
truth answer, i.e. whether az(ni) = q;, where az(-ni)
represents the answer corresponding to the last rea-
soning step. If this is not the case, we discard the
problem and sample a new chain by prompting the
model again (for a maximum of 3 times). In this
way, we obtain an augmented dataset D* in which
a subset of problems is paired with a sequence of
reasoning steps leading to the correct result. Fi-

7061

nally, we can distill the reasoning capabilities into
smaller models by fine-tuning them with the gener-
ated intermediate steps.

3.2 Distilling step-by-step reasoning through
SocRrATIC COT

In this section, we describe how CoT can be en-
hanced through subquestioning. An illustration of
our approach is shown in Figure 3.

3.2.1 Extracting the Reasoning Capability
from the Teacher

In Section 3.1, we detailed how an LLM can be
used to generate the intermediate annotation of a
problem P; as a chain of steps leading to the an-
swer a;. We now extend this procedure to include a
subquestion at each step of the solution. Following
a similar procedure as described in Section 3.1, we
prompt the LLM with few exemplars of problems
decomposed as a set of intermediate subquestion-
solution pairs (the prompts are reported in Ap-
pendix Table 6). This way, we obtain an inter-
mediate annotation that includes subquestioning.
In particular, each of the n; steps constituting the
overall solution is a subquestion-solution pair, de-
noted qz-(j),sgj), j € {1,...,n;} (an example is
shown in Figure 2). We refer to the ordered list
of subquestion-solution pairs for problem P; as

(a0, (@™).

3.2.2 Transferring the Reasoning Capability
into the Student

We present two strategies to distill the reasoning
annotation provided by the LLM into smaller mod-
els.

In the first strategy, a single unified student is
trained to generate the subquestion-solution pairs
simultaneously, while in the second strategy, the
question generation and question-answering tasks
are assigned to two separate models. We call
this second strategy iterative because the question-
answering model is trained to solve each subques-
tion iteratively.

Unified. Using the problems in D that contain
the chain of intermediate questions and solutions,
we train a unified student model M,,,; that learns
to generate the sequence of subquestion-solution
pairs {(¢1), s(1), (¢®,5)),...} that lead to the
solution of a given problem. We use a pre-trained
transformer-based model (Vaswani et al., 2017) and
train it on the chain of subquestion-solution pairs

for each problem P. Given a step j of problem P
(i.e., the concatenation of ¢U/) and s\%)) consisting

of a sequence of m; tokens {3:5»1), .. ,xﬁ»mj)}, we
use a typical auto-regressive language modeling

loss, L:

m;
Li(P)= = logPuy (22" P) (1)
k=1

where Py,;(z|c) is the probability assigned by
Mni to token x given context ¢, and ¥ indi-
cates the sequence {z(1),... () }. The loss L,
is computed for each problem P; and for each pair
(¢, 519)) leading to the final answer a;.

Iterative. The iterative version of the student sep-
arates the tasks of generating the subquestions and
providing an intermediate answer to each subques-
tion into two distinct models: a question generation
(QG) model and a question answering (QA) model.
Both the QG and QA models are implemented us-
ing a Transformer-based language model (Vaswani
et al., 2017). In particular, the QA model M, is
iteratively trained to answer the teacher-generated
sub-questions. The learning objective is computed
at the token level for each intermediate solution:

l
L(P,sW)) = - fj logPou (3" ly* 7V, ¢, 501, P)
k=1

where [; and the y;’s represent, respectively, the
length and the tokens of the intermediate solution
s(). §G=1) consists of the previous solution gen-
erated by the QA model iteratively in the past itera-
tions.

Similarly, the QG model is trained to acquire
the ability of the teacher model to decompose the
problem’s main question into a series of sub-steps,
each of which corresponds to a subquestion. The
loss for this model is analogous to Equation 1, with
the only difference being that the intermediate so-
lutions are not considered for the QG model. Dur-
ing training, the previous intermediate solutions
generated by the QA model are replaced with the
teacher-generated solutions using teacher forcing
(Cho et al., 2014). However, the intermediate solu-
tions generated by the model are used at inference
time.

3.3 Inference-time Predictions

Given an unseen problem P, the unified student
model can directly predict a solution as a sequence

7062

Reasoning Annotation
Reasoning Problem

A robe takes 2 bolts of blue fiber and half Socratic CoT:
that much white fiber. How many bolts in

total does it take?

Eg_{

it take?

Answer: The answer is 3.

q(”: How many bolts of white fiber does

sU: It takes 2/2=<<2/2=1>>1 bolt of

Reasoning Skill Transfer

Fine-Tuning

=/q(j;\(q(j)’s(j))-s

CoT white fiber.
ol:). i i
= < <
It takes 2/2=<<2/2=1>>1 bolt of e ZakévHow many bolts in total does it
2). ol
So the total amount of fabric is & 5@: So the total amount of fabrlc is
24+1=<<2+1=3>>3 bolts of fabric. 2+1=<<2+1=3>>3 bolts of fabric. QG Model QA Model
H@Q@F a: The answer is 3.
LLM
Inference g
Final Answer
< A(2) <
@w— Qe
‘ .
QG _/ QA
Unseen Problem 4

Figure 3: Detailed illustration of our framework. First, a LLM is prompted to decompose the input problem P into

a series of subquestion-solution pairs (ql(j), sEj), je{l,.

..,n;}) with an answer at each step az(-j). The generated

subquestions-solutions are used to train two student models: a) the QG model which learns to mimic the LLM’s sub
questioning capability and b) the QA model, which learns to solve each subquestion. At the bottom, the inference
process is depicted for an unseen problem and no LLM is involved. The QG model breaks the unseen problem into

simpler subquestions and the QA model solves each one of them eventually leading to the final answer a;

of subquestions and answers. In the iterative ap-
proach, we first generate the subquestions condi-
tioning the generation of the QG model on P. After
these questions are generated, they are provided to
the QA model one by one, decoding the intermedi-
ate solution 3U) at step j token by token according
to the model’s probability distribution over its vo-
cabulary:

Pou (410, ¢0,50-0 P), ()

where yj(.k) is the k-th token being decoded in
greedy fashion.

After the last solution (") has been generated,
the numerical prediction @™ is parsed from the

text using simple heuristics.

4 Empirical Analysis
4.1 Datasets

We study how smaller models can learn to rea-
son better on three multi-step reasoning datasets:
GSMBS8K (Cobbe et al., 2021), StrategyQA (Geva
et al., 2021), and SVAMP (Patel et al., 2021).
GSMSK consists of 8.5K grade school math word
problems, each requiring 2 to 8 steps of reason-
ing to solve. The solutions primarily involve a se-

(m,).

quence of elementary calculations using basic arith-
metic operations (4, —, X, <). The dataset is di-
vided into 7.5K training problems and 1K test prob-
lems. To evaluate the model on SVAMP, we train
the model on 761 multi-step math word problems
taken from the ASDiv (Miao et al., 2020) training
set and evaluate it on 237 multi-step SVAMP prob-
lems. For StrategyQA, the test set with facts is
not available, so we split the data into 80% train-
ing, 10% as validation data, and the last 10% as
test data. We do not shuffle the data to maintain
reproducibility.

4.2 Experimental Setup

We use three kinds of annotation, corresponding to
the three datasets that we consider.

Step-by-step solution. The GSMS8K dataset falls
into this category and includes a Socratic version
where intermediate subquestion-solution pairs are
provided for each MWP. While the intermediate
step-by-step solutions were manually annotated,
the authors report that the subquestions were gen-
erated by prompting GPT-3. We reproduced a sub-
set of these subquestions using a GPT-3 model
with prompts, and we observed a high similarity
between the questions provided and the ones gen-

7063

Unified

Input:
A robe takes 2 bolts of blue fiber and half that much white
fiber. How many bolts in total does it take?

Output:

How many bolts of white fiber does it take? It takes 2/2
= <<2/2=1>> 1 bolt of white fiber. How many bolts in
total does it take? So the total amount of fabric is 2+1 =
< <2+1=3>> 3 bolts of fabric. The answer is 3.

Iterative

Iteration 1

Input:
A robe takes 2 bolts of blue fiber and half that much white
fiber. How many bolts in total does it take?

Output:
QG: How many bolts of white fiber does it take?
QA It takes 2/2 = <<2/2=1>> 1 bolt of white fiber.

Iteration 2

Input:
A robe takes 2 bolts of blue fiber and half that much white
fiber. How many bolts in total does it take? How many bolts

of white fiber does it take? It takes 2/2 = <<2/2=1>> 1 bolt

of white fiber.

Output:

QG: How many bolts in total does it take?

QA: So the total amount of fabric is 2+1 = <<2+1=3>> 3
bolts of fabric. The answer is 3.

Table 1: Example demonstraing the input-output format for unified vs iterative setup. QG represents the question
generation model and QA is the question answerer model. Note that the QA model uses the QG output to answer it

as shown in Figure 3.

erated by us (BERT F} score of 95%). For So-
CRATIC COT, we thus use the subquestioning an-
notation already provided.

Supporting facts. We study the StrategyQA
dataset, which falls in this category. Strategy
QA consists of a factual question with binary
True/False as the final answer. Additional support-
ing facts and decomposed questions are provided.
However, the set of facts and the decomposed ques-
tions provided with a given question are not always
aligned (i.e., a fact is not necessarily the answer to
one subquestion). Therefore, having a setup simi-
lar to the one for GSMS8K is not possible. We thus
consider two versions of the data. One in which
the supporting facts are used as CoT and the corre-
sponding questions are generated by prompting a
GPT-3 model, and a second in which we take the
provided questions and generate the facts (this time
aligned with the questions) using GPT-3.

Final answers only. AsDiv/SVAMP falls in this
category and for training, we use GPT-3 to gener-
ate both intermediate subquestions and solutions.
Intermediate solutions are used as CoT and the gen-
erated subquestion-solution pairs for SOCRATIC
CoT.

4.3 Implementation Details

We use GPT-2 variants (Radford et al., 2019) as
student models. GPT-3 175B (Brown et al., 2020)
served as the teacher model for decomposing com-
plex problems into a series of simpler substeps (we

report the prompts used in Appendix Table 6).

All models were trained using the Huggingface
library (Wolf et al., 2020) on an NVIDIA Tesla
A100 GPU with 40 GB of memory. Each experi-
ment was run for the same number of iterations to
ensure fairness with periodic evaluation over the
validation set. Teacher forcing was used during
training to replace the generated responses with
ground truth answers from the training dataset.

Evaluation Metric. To evaluate the question-
answering performance on the GSM8K, SVAMP,
and StrategyQA datasets, we compute the accuracy
based on the final answer provided by the student
model.

5 Results and Discussion

Can our framework improve the reasoning capa-
bilities of smaller models? Table 2 demonstrates
that leveraging LL.Ms reasoning capabilities using
our framework can improve the reasoning results
for all dataset types.

Step-by-Step Solution. When human-annotated
step-by-step solutions are available, training
smaller models with LLM-generated CoT is not
advantageous, as shown on GSM8K. This is to
be expected since the annotation generated by an
LLM is likely to be noisier and of lower quality
than human-annotated data. However, the ground-
truth step-by-step annotation can be leveraged to
prompt an LLM to generate subquestions for the
SOCRATIC COT approach, giving a performance

7064

Iterative Unified

Dataset Model Answer Only GT Steps GT Facts | CoT Soccor Socaor Soccor
Small (124M) 1.45 5.05 - 4.70 5.98 6.44 (1 20%) 5.10
GSMSK Medium (355M) 2.90 7.88 - 7.10 11.57 12.74 (1 38%) 7.90
Large (774M) 4.62 14.10 - 12.85 17.89 21.08 (1 33%) 13.25

| GPT-3(6B) - 21.00 - - - - -

Medium (355M) 54.10 - 52.02 55.01 52.05 6031(113%) 52.05

StrategyQA | Large (774M) 61.10 - 62.80 5590 61.32 66.40 (1 5%) 59.45
XL (1.5B) 60.51 - 66.30 58.07 62.30 63.56 (| 4%) 62.05
Small (124M) 2.15 - - 5.35 6.79 - 5.82

SVAMP Medium (355M) 4.80 - - 17.30 18.99 - 17.62
Large (774M) 7.40 - - 23.60 18.14 - 17.45

Table 2: Accuracy comparison (in %) on the three considered datasets. We consider three human-annotated
baselines: final answers only (Answer Only), ground-truth step-by-step solution (GT Steps), and supporting facts
(GT Facts). We compare the different supervision strategies for fine-tuning the small models: CoT represents the
case where the chain of intermediate reasoning steps is generated by GPT-3, Socc,7 represents the case where both
the chain of intermediate solutions and the subquestions are generated by LLM and used to fine-tune small models.
Socqr represents the case where GT solutions/facts are used when prompting GPT-3 to generate the subquestions.
Iterative and Unified represent the two Socc, 1 strategies described above. All models are GPT-2 versions and their
size is reported within parentheses. All experiments were run at least 3 times and the average is reported. GPT-3 6B

results are taken from Cobbe et al. (2021).

boost of up to 38% when the LLM-generated sub-
questions are used at inference time. When the
subquestions are learned by the QG model (Iter-
ative Soco,7), the accuracy of the student model
decreases slightly but still improves over the step-
by-step annotation without subquestions (17.89 vs.
14.10). Figure 5 shows a comparison of predictions
generated by Socc, models and a model trained
on the GT step-by-step annotation. Unified SO-
CRATIC COT performs similarly to training with
the step-wise ground-truth annotation. We addition-
ally include the score produced by GTP-3 6B to
show that training with SOCRATIC COT can help
a small model (GPT-2 large with 774M parame-
ters) perform as well as a nearly 10x larger model
fine-tuned with human annotated data.

Supporting facts. On StrategyQA, we observe
that the inclusion of ground-truth supporting facts
in the fine-tuning procedure improves the perfor-
mance of the small models. However, surprisingly,
when the supporting facts are generated by GPT-3,
their inclusion actually hurts performance (58.07
vs 60.51 for GPT-2 Large). We hypothesize that
this is likely due to the imperfect factual knowl-
edge provided by the LLM, which mars the quality
of the supervision. We have observed that the GT
supporting facts provided often do not represent a
logical sequence of propositions leading to the final
answer. This is likely the reason why decomposing

\

o o o
I=] N N
L L

Accuracy

——
-
-
——

“@- Ansonly
W~ GT Facts
B coT

Socer
Soccor

wu
=)
L

v
S
L

v
N
L

Large XL

GPT-2 model size

Medium

Figure 4: Accuracy comparison for different supervi-
sion strategies on StrategyQA. The baseline method
consists of fine-tuning on final answers only (Ans only),
and it is compared to fine-tuning with: ground-truth sup-
porting facts (GT Facts), GPT-3-generated supporting
facts (CoT), ground-truth supporting facts with GPT-3-
generated subquestions (Socc,r), and LLM-generated
facts with human-annotated subquestions (Socgr).

the problem through subquestions based on such
facts actually harms accuracy (see Socc, column
in Table 2). Instead, using the provided subques-
tions and using an LLM to generate the answers
(representing coherent facts leading to the final
answer) proves to be an effective strategy (60.31
vs. 52.02 for GPT-2 Medium). A more detailed
comparison between our proposed approaches is
presented in Figure 4. However, GPT-2 XL mod-

7065

Training w/ GT Steps

It takes 2*2=<<2*2=4>>4 white
fibers So it takes 24=<<2*4=8>>8
blue fibers That means it takes
8*2=<<8*2=16>>16 fibers. The
answer is 16. x

P: Arobe takes 2 bolts of blue fiber |—
and half that much white fiber. How
many bolts in total does it take?

GT Solution:
It takes 2/2=<<2/2=1>>1 bolt of

white fiber So the total amount of
fabric is 2+1=<<2+1=3>>3 bolts of ||
fabric. The answer is 3.

[Training w/ Soc,;)

How many bolts of white fiber does
it take? It takes 2/2=<<2/2=1>>1
bolt of white fiber. How many bolts
in total does it take? So it takes
2+1=<<2+1=3>>3 bolts in total.
JThe answer is 3.

P: Tom gets 4 car washes a month.
If each car wash costs $15 how
much does he pay in a year?

Training w/ GT Steps

He gets 4*15=<<4*15=60>>60 car
washes a year. So he pays
60*12=$<<60*12=720>>720 a year
The answer is 720.

GT Solution:
e gets 4*12=<<4*12=48>>48 car
washes a year. That means it cost
48*15=$<<48*15=720>>720. The
answer is 720.

Training w/ Soc,r

How many car washes does Tom
get in a year? He gets
4*12=<<4*12=48>>48 car washes a
year.

How much does Tom pay in a year?
That means he pays
48*15=$<<48*15=720>>720 a year.
The answer is 720. J

Figure 5: Example of predictions generated by a GPT-2
Large model fine-tuned with GT steps and SOCRATIC
CoOT on GSME8K dataset.

Models \ Methodology Accuracy
GPT-3 (1-shot) | CoT 27.5
(175B) | Sub-ques 47.1 (1 41%)

Table 3: Accuracy comparison (in %) of using CoT vs
SOCRATIC COT (Sub-ques) on the GSMS8K dataset for
GPT-3 model with prompting.

els perform well when trained on facts as unlike
smaller models, larger models can encode more
facts at once in their parameters, which assists in
answering a factual question.

Answers only. On the SVAMP dataset, which
includes only final answers and no intermediate
annotation, LLMs can be used to generate both
the intermediate steps and the subquestions. Both
the consideration of intermediate solutions without
subquestions (CoT) and the consideration of inter-
mediate solutions with subquestions (Socc,r) lead
to an improvement in performance. The trend here
is similar to what was observed for StrategyQA,
with SOCRATIC COT being more effective for the
two smaller models but falling back to CoT for the
larger model.

Can SOCRATIC COT be used as a prompt-
ing strategy? We experimented with SOCRATIC
COT as a prompting strategy. First, we prompted

GPT-3 (175B) to decompose the main problem into
simpler steps by formulating subquestions. Then,
GPT-3 is used again to solve the sequence of sub-
problems in a single-shot setting with a problem
decomposed into intermediate subquestions and so-
lutions included in the prompt. The introduction
of subquestioning boosts accuracy by over 40%
compared to standard CoT prompting (Table 3).
Other work (e.g., Wei et al. 2022b) has used a
larger number of exemplars in the few-shot prompt,
achieving higher overall accuracy. We limited our
experiments to single-shot prompts due to budget
constraints.

6 Ablation Studies

In this Section, we describe additional analyses
regarding specific components of the framework
we propose, as well as negative results that we
obtained with alternative strategies.

How good are the sub-questioning capabilities
of a smaller model? We investigate in more de-
tail the ability of a small model to decompose a
problem by generating meaningful subquestions.
We fine-tuned GPT-2 Large on the GPT-3 gener-
ated subquestions provided in the GSMS8K dataset.
We then evaluated the quality of the generated ques-
tions in terms of BLEU score (Post, 2018), BERT
F; score (Zhang et al., 2019), and by measuring
for how many problems the number of questions
generated by GPT-2 (#Q) matches the number of
GPT-3 annotated questions for a given problem.
We found that the fine-tuned GPT-2 predicted
an incorrect number of subquestions for the ma-
jority of problems (see Table 4, first row). Thus,
following previous work on subquestion generation
(Shridhar et al., 2022), we introduced a guidance
mechanism that conditions the generation of sub-
questions for a problem P on the equations describ-
ing the intermediate solutions of P. This strategy
improved the quality of the generated questions
for all three metrics considered (Table 4, second
row). To avoid the dependence on the step-by-step
annotation of the equations for each problem P
at inference time, we train an additional sequence-
to-sequence model to predict, given P, the set of
equations that lead to the solution of the problem.
At inference time, the predictions for the guidance
model are used to condition the generation by the
QG model. Although the predicted equations often
do not lead to the correct solution of the problem,
they help the QG model to generate more meaning-

7066

Methodology BLEU BERT F1 #Q

No-guidance 51.5 0.78 0.42
Guidance 58.8 0.81 0.80

Table 4: BLEU, BERT F} and the number of questions
(# Q) comparison between the question generator model
and the Socratic subquestions present in the GSM8K
dataset using GPT2-large model.
Medium

Small Large

Accuracy
N w = o

0.0~
Ans Only No guide Guide

0= 0
Ans Only Noguide Guide Ans Only No guide Guide

Figure 6: Accuracy of student models (QA + QG) when
the question generation is conditioned using the guid-
ance model (Guide) and with non-guided question gen-
eration (No guide). Ans only represents the baseline.
All models are GPT-2 versions.

ful sub-questions. Figure 6 shows the overall accu-
racy of the GPT-2 student models (QA + QG) fine-
tuned with SOCRATIC COT on the GSM8K data
with and without equation conditioning provided by
the guide model. We have extended this guidance
mechanism to StrategyQA and SVAMP, where the
generation of subquestions is conditioned on the
number of facts (StrategyQA) or steps (SVAMP)
needed to answer the problem.

Eliminating the need for a subquestion module.
We have experimented with an alternative training
solution that does not involve a question-generation
model. This strategy aims to improve the su-
pervision for fine-tuning a small model through
subquestioning, but without relying on the pres-
ence of subquestions at test time. The procedure
consists of training the student model to gener-
ate the entire chain of steps leading to an inter-
mediate answer. That is, when the sub-question
q(l) is asked, the model is trained to generate the
answer 3(1), but when q(j) is asked, the model
is trained to generate the chain of thought rea-
soning {5(1), s@ ,s(j)} (instead of just s()),
This eliminates the need for the intermediate sub-
questions at inference time, as the model is trained
to implicitly decompose the main problem into
smaller reasoning steps. However, this method

GPT-2 No SubQ SubQ with QG
Small 2.70 5.98

Medium 7.20 11.57
Large 8.18 17.89

Table 5: Accuracy comparison (in %) of student models

trained with (SubQ with QG) and without (No SubQ)
question generation model on GSM8K.

Training w/ GT Steps

Haley has <<+ number0 number1>>
trees. Haley has <<- + number0
number1 number2>> trees left

P: Haley grew number0 trees in her

backyard. After a typhoon number1 x
died. Then she grew number2 more
trees. How many trees does she
?
have left? (Training w/ Soc,,]

GT Solution:

How many trees did haley grow in
<<- + number0 number2 number1>>

total?

Haley grew <<+ number0
number2>> trees in total.

How many trees does she have?
Haley has <<- + number0 number2
number1>> trees left. «

Training w/ GT Steps

Faye put <<+ number0 number1>>
pencils into each row. Faye could
make <</ + number0 number1
number2>> rows. J

P: Faye was placing her pencils into
rows with numberQ pencils in each
row. She had number1 packs of
pencils each one having number2

pencils. How many rows could she
make?

GT Solution:

<</ + number0 number1 number2>>

Training w/ Soc,;

How many pencils did Faye have in
total? Faye had <<+ number1
number2>> pencils in total. How
many rows could she make?Faye
could make <</ + number1 number2
number0>> rows.

Figure 7: Example of predictions generated by a GPT-2
Medium model fine-tuned with GT steps and SOCRATIC
COT on the SVAMP dataset.

leads to significant performance degradation (re-
sults are reported in Table 5), highlighting the need
for subquestions at inference time.

Example outputs In Figures 5 and 7, we report
example outputs predicted by GPT-2 models for a
set of GSM8K and SVAMP problems.

7 Conclusion

The chain-of-thought style of step-by-step reason-
ing has proven to be very effective for reasoning
in LLMs. In this work, we propose ways to distill
these reasoning capabilities into smaller models
and suggest ways to further improve them by ex-
plicitly asking stepwise questions. We demonstrate
the effectiveness of our proposed methodology on
three popular multi-step reasoning datasets, and dis-
cuss cases where one method should be preferred
over the other for different datasets.

7067

Limitations

In our work, we use only one solution from the
LLM to distill information into the student model,
and according to Wang et al. (2022), multiple
subquestion-solution pairs can be sampled, and
using majority voting, all pairs leading to the most
frequent answer can be used to distill knowledge
into the student models. Also, due to computational
budget, we used a single prompt to compare the
CoT and SOCRATIC COT and using more prompts
(up to 8) might lead to a fairer comparison and
better results (Wei et al., 2022b). We leave these
experiments for the future.

Ethical Considerations

Although this work improves the reasoning capa-
bilities of smaller models, the models are still not
powerful enough to be used in sensitive settings
such as education. We plan to release our code and
model checkpoints, but the models must be used
carefully by users, as many generative models, in-
cluding ours, are prone to hallucination.

Acknowledgements

Alessandro Stolfo is supported by Armasuisse Sci-
ence and Technology through a CYD Doctoral Fel-
lowship.

References

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? Advances in neural information
processing systems, 27.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Jerome S Bruner. 1961. The act of discovery. Harvard
educational review, 31:21-32.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training veri-
fiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Jacob Eisenstein, Daniel Andor, Bernd Bohnet, Michael
Collins, and David Mimno. 2022. Honest students
from untrusted teachers: Learning an interpretable
question-answering pipeline from a pretrained lan-
guage model. arXiv preprint arXiv:2210.02498.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did Aristo-
tle Use a Laptop? A Question Answering Bench-
mark with Implicit Reasoning Strategies. Transac-
tions of the Association for Computational Linguis-
tics (TACL).

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

7068

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523-533.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru,
Todor Mihaylov, Déniel Simig, Ping Yu, Kurt Shus-
ter, Tianlu Wang, Qing Liu, Punit Singh Koura, et al.
2022. Opt-iml: Scaling language model instruc-
tion meta learning through the lens of generalization.
arXiv preprint arXiv:2212.12017.

Tassilo Klein and Moin Nabi. 2019. Learning to answer
by learning to ask: Getting the best of gpt-2 and bert
worlds. arXiv preprint arXiv:1911.02365.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
271-281, Baltimore, Maryland. Association for Com-
putational Linguistics.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative
reasoning problems with language models. arXiv
preprint arXiv:2206.14858.

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen,
Xinlu Zhang, Zekun Li, Hong Wang, Jing Qian,
Baolin Peng, Yi Mao, et al. 2022. Explanations from
large language models make small reasoners better.
arXiv preprint arXiv:2210.06726.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975-984, Online.
Association for Computational Linguistics.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,

David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

Andreas Opedal, Niklas Stoehr, Abulhair Saparov, and
Mrinmaya Sachan. 2023. World models for math
story problems. In Findings of the Association
for Computational Linguistics: ACL 2023, Toronto,
Canada.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain Yourself!
Leveraging Language Models for Commonsense Rea-
soning. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
4932-4942, Florence, Italy. Association for Compu-
tational Linguistics.

Sudha Rao and Hal Daumé III. Answer-based Adversar-
ial Training for Generating Clarification Questions.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers).

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-
tions of the Association for Computational Linguis-
tics, 3:1-13.

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady,
Tanmay Sinha, Manu Kapur, and Mrinmaya Sachan.
2022. Automatic generation of socratic subquestions

for teaching math word problems. arXiv preprint
arXiv:2211.12835.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4615-4629, Online. Association for Computa-
tional Linguistics.

Charlie Snell, Dan Klein, and Ruiqi Zhong. 2022.
Learning by distilling context. arXiv preprint
arXiv:2209.15189.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,

7069

https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://www.aclweb.org/anthology/N19-1013/
https://www.aclweb.org/anthology/N19-1013/
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.18653/v1/2020.emnlp-main.373
https://doi.org/10.18653/v1/2020.emnlp-main.373

Adria Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bern-
hard Scholkopf, and Mrinmaya Sachan. 2023. A
causal framework to quantify the robustness of math-
ematical reasoning with language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), Toronto, Canada. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. ArXiv, abs/2203.11171.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022b.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
tree learning for solving math word problems. Asso-
ciation for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-

uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022. Least-
to-most prompting enables complex reasoning in
large language models. ArXiv, abs/2205.10625.

7070

https://arxiv.org/abs/2210.12023
https://arxiv.org/abs/2210.12023
https://arxiv.org/abs/2210.12023
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Let’s generate sub-questions for these problems. Use exactly one operation per step.

Q: Zoe was unboxing some of her old winter clothes . She found number0 boxes of clothing and inside each box there were
number] scarves and number2 mittens . How many pieces of winter clothing did Zoe have total ?

SQ1: How many pieces of winter clothing did Zoe have in each box?
Al: Zoe had <<+ number] number2>> pieces of winter clothing in each box.

SQ2: How many pieces of winter clothing did Zoe have total ?
A2: Zoe had <<* number0 + number] number2>> pieces of winter clothing in total.

Q: Katie picked number0 tulips and number1 roses to make flower bouquets . If she only used number2 of the flowers though
, how many extra flowers did Katie pick ?

SQ1: How many flowers did Katie pick in total?
Al: Katie picked <<+ number0 number1>> flowers in total.

SQ2: How many extra flowers did Katie pick ?
A2: Katie picked <<- + numberO numberl number2>> extra flowers.

Q: Conner has number0 dollars in his bank account . Every month he spends number1 dollars . He does not add money to the
account . How much money will Conner have in his account after number2 months ?,

SQ1: How much money does Conner spend in total? Al: Conner spends <<* number] number2>> dollars.
SQ2: How much money will Conner have in his account after 8.0 months ? A2: After 8.0 months, Conner will have ;-
number0 * numberl number2>> dollars.

For each of the following topics, generate intermediate answers to the subquestions leading to the final answer.

Topic: Albany, Georgia (City in Georgia, United States)
Will the Albany in Georgia reach a hundred thousand occupants before the one in New York?

Albany, GA has around 75,000 people.
Albany, NY has almost 100,000 people.
The difference is 100,000-75,000=25,000
The difference is 100,000-100,000=0

No, 25,000 is not smaller than 0.

The final answer is NO.

Topic: The Police (English rock band)
Could the members of The Police perform lawful arrests?

Only law enforcement officers can perform lawful arrests.
No, the members of The Police (rock band) are not law enforcement officers.
The final answer is NO.

Topic: Wonder Woman (2017 film) (American superhero film directed by Patty Jenkins) Is a Boeing 737 cost covered by
Wonder Woman (2017 film) box office receipts?

The average cost of a US Boeing 737 plane is 1.6 million dollars.

Wonder Woman (2017 film) grossed over 800 million dollars at the box office.
Yes, 800 is larger than 1.6.

The final answer is YES.

Table 6: Exemplars included in the few-shot prompt for the decomposition of the problems from the ASDiv (upper
row) and StrategyQA (lower row) datasets.

7071

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Limitation

¥ A2. Did you discuss any potential risks of your work?
Ethical considerations

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Introduction

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

Section 3, Methodology

¥/ B1. Did you cite the creators of artifacts you used?
Section 4.2

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Conclusion

X B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

Our models are free to be used by anyone. We mention the limitations of our approach

B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?

We used standard open source datasets

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4.2

C ¥ Dpid you run computational experiments?
Section 4.3

¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4.3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

7072

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.3

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 4.3, Table 1

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Section 4.3

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

7073

