
Findings of the Association for Computational Linguistics: ACL 2023, pages 5090–5104
July 9-14, 2023 ©2023 Association for Computational Linguistics

VoteTRANS: Detecting Adversarial Text without Training
by Voting on Hard Labels of Transformations

Hoang-Quoc Nguyen-Son1 , Seira Hidano1 , Kazuhide Fukushima1 ,
Shinsaku Kiyomoto1 , and Isao Echizen2

1KDDI Research, Inc., Japan
2National Institute of Informatics, Japan

1
{xso-guen,se-hidano,ka-fukushima,sh-kiyomoto}@kddi.com

2
iechizen@nii.ac.jp

Abstract

Adversarial attacks reveal serious flaws in deep
learning models. More dangerously, these at-
tacks preserve the original meaning and es-
cape human recognition. Existing methods
for detecting these attacks need to be trained
using original/adversarial data. In this paper,
we propose detection without training by vot-
ing on hard labels from predictions of trans-
formations, namely, VoteTRANS. Specifi-
cally, VoteTRANS detects adversarial text by
comparing the hard labels of input text and its
transformation. The evaluation demonstrates
that VoteTRANS effectively detects adversar-
ial text across various state-of-the-art attacks,
models, and datasets.

1 Introduction

Deep learning models are sensitive to changes in
input text from an adversarial attack. Even a slight
change enormously impacts the prediction of mod-
els. More dangerously, these changes still preserve
the input meaning, so attacks remain unrecognized
by humans. This vulnerability has negatively af-
fected the reputation of deep learning models.

In contrast to adversarial text defense, fewer
works have been proposed to detect adversarial
texts. Previous works detected such texts via
perturbed word identification (Zhou et al., 2019;
Mozes et al., 2021), synonyms (Wang et al.,
2022b), density (Yoo et al., 2022), attention (Biju
et al., 2022), PCA (Raina and Gales, 2022), trans-
former (Wang et al., 2022a), and word impor-
tance (Mosca et al., 2022). Since existing works
need original/adversarial data to train detectors,
they are sensitive to new adversarial attacks.

Motivation: Adversarial text must satisfy two
criteria: the text must (1) change the prediction
of a target model while (2) preserving the original
meaning. Few texts can comply with both criteria.
For example, we randomly selected original text
from AG News and used a probability-weighted

word saliency (PWWS) attack (Ren et al., 2019)
to generate adversarial text (Figure 1). PWWS re-
places original words to fool a target model (CNN).
During this generation process, only the final text
fooled the target CNN, while other texts were still
correctly predicted by the target CNN and another
model, such as RoBERTa. We find the same trend
for other AG News texts and IMDB movie reviews
as shown in Appendix A.

Contributions: We propose a simple detec-
tor by voting on hard labels of transformations
(VoteTRANS). In particular, we generate a trans-
formation set for each word in the input text. We
then compare the original hard label from the input
text and the majority vote from each transformation
set. If we find any difference in the comparison,
the adversarial text is identified. In summary, our
contributions are listed as follows:

• To the best of our knowledge, VoteTRANS is
the first model to detect adversarial text from
various attacks without training. Moreover,
we do not modify a target model and only use
the target as a black-box setting for prediction.
VoteTRANS can thus be applied to a wide
range of various models.

• Experiments on various attacks, models, and
datasets demonstrate that VoteTRANS out-
performs state-of-the-art detectors.

• VoteTRANS can run with all seventeen cur-
rent attacks related to text classification from
TextAttack framework (Morris et al., 2020).
VoteTRANS is also automatically compati-
ble with future attacks from this framework
without changing its source code1.

1VoteTRANS is available at https://github.
com/quocnsh/VoteTRANS

5090

https://github.com/quocnsh/VoteTRANS
https://github.com/quocnsh/VoteTRANS

CNN RoBERTa

Original: …a project to test wireless public transport… Sci/Tech Sci/Tech

run Sci/Tech Sci/Tech

tryout wireless Sci/Tech Sci/Tech

tuner Sci/Tech Sci/Tech

radio Sci/Tech Sci/Tech

Adversarial: …a project to tryout radiocommunication public transport… Business Sci/Tech

Figure 1: A process generates adversarial text by synonym-based transformation targeting a CNN model. During
this process, only the final adversarial text fools the CNN, while other texts are still correctly predicted by the CNN
and RoBERTa.

2 Related Work

2.1 Adversarial Attack
Many adversarial attacks have emerged since 2018
and have been supported by TextAttack (Morris
et al., 2020). We categorize all seventeen attacks
from TextAttack related to text classification by
their levels.

In word level, Alzantot (Alzantot et al., 2018),
Faster Alzantot (Jia et al., 2019), and an improved
generic algorithm (IGA)(Wang et al., 2021) ran
a generic algorithm to generate adversarial text.
PWWS (Ren et al., 2019) and TextFooler (Jin et al.,
2020) transformed a text with synonyms from a
fixed lexical database (WordNet) and word embed-
ding, respectively. Zang et al. (2020) applied parti-
cle swarm optimization (PSO) to synonyms from a
big database (HowNet). Kuleshov (Kuleshov et al.,
2018) and A2T (Yoo and Qi, 2021) measured the
similarity with GPT-2 and DistillBERT, respec-
tively. BERT-Attack (Li et al., 2020) extracted
the synonyms from a masked language model.
BAE (Garg and Ramakrishnan, 2020) used both
word insertion and replacement with the masked
model. CLARE (Li et al., 2021) extended this
model by merging two consecutive words. Check-
list (Ribeiro et al., 2020) verified the model con-
sistency by changing an input word into a neutral
entity (e.g., location, name, or number). Input-
Reduction (Feng et al., 2018) removes the word of
lowest importance until the target model changes
the prediction.

In character and hybrid levels, Hot-
Flip (Ebrahimi et al., 2018) accessed the
gradient of a target model to manipulate the
loss change. DeepWordBug (Gao et al., 2018)
transformed words using four-character operations
including swapping, substitution, deletion, and
insertion. Pruthi (Pruthi et al., 2019) added a
QWERTY keyboard operator. TextBugger (Li et al.,
2019) combined character and word operators.

2.2 Adversarial Detection

Zhou et al. (2019) trained a BERT model to identify
the perturbed words. Mozes et al. (2021) focused
on low-frequency words that were likely changed
by an attacker. Wang et al. (2022b) detected the
adversarial text via its synonyms. Yoo et al. (2022)
and Biju et al. (2022) distinguished adversarial
text with original text based on density estima-
tion and attention input, respectively. Raina and
Gales (2022) showed that adversarial text induces
residues (larger components than original text) in
PCA eigenvector. Wang et al. (2022a) finetuned
a transformer model on compliant and adversarial
text, which is not required to fool a target model.
The change in the requirement efficiently defends
against a wide range of adversarial attacks. Mosca
et al. (2022) extracted the word importance as a
feature to classify original and adversarial text.

Compared with VoteTRANS, previous detec-
tors need adversarial or/and original data to train
their models or optimizes their models on training
data to satisfy some requirements (such as FPR as
in Yoo et al. (2022)). These methods often more
suitable for word-based than character-based at-
tacks. On the other hand, VoteTRANS can be ap-
plied to various kinds of attacks at both word-level
as in PWWS and character-level as in TextBugger as
well as other modifications, such as deletion as in
Input-Reduction or CLARE and insertion as in BAE.
For example, CLARE deletes a word by merging it
with a nearby word. When applying the same merg-
ing operator on each input word, VoteTRANS will
change the attacked words and observe the change
in target predictions to detect the attacked text.

3 Voting on the Hard Labels of
Transformations (VoteTRANS)

Problem statement: We follow notations from
TextFooler paper (Jin et al., 2020). Given N
texts, X = {X1, X2, . . . , XN} corresponding to

5091

…project to tryout radiocommunication… adv/org

… plan to tryout radiocommunication…

… task to tryout radiocommunication…

vote

vote

compare

Target prediction

Support prediction

Transformation set

…project to tryout radio …

…project to tryout wireless …

Business

Business

Sci/Tech

Sci/Tech

Business

Business

and

Sci/Tech

Sci/Tech

Sci/Tech

Sci/Tech

Sci/Tech

Sci/Tech

Figure 2: Given input text, we replace each word (e.g., “project” and “radiocommunication”) with the correspond-
ing transformation set. The modified text is then predicted by a target and support models as hard labels. These
labels are voted and compared with the original label to determine whether the input text is adversarial or original.

N labels Y = {Y1, Y2, . . . , YN}, a target model
F : X → Y maps the input space X to the label
space Y . Adversarial text Xadv generated from
input X ∈ X should comply with the following
constraints:

F (Xadv) ̸= F (X), and Sim(Xadv, X) ≥ ϵ, (1)

where Sim(Xadv, X) measures the similarity be-
tween adversarial text Xadv and original text X; ϵ
is the minimum similarity.

Our objective is to determine whether input text
X is adversarial or original text. The process of
VoteTRANS is depicted in Figure 2, and the over-
all algorithm is summarized in Algorithm 1.

Model detail: To process input text X , we use
a target model F and an auxiliary attack A (e.g.,
PWWS). An optional word ratio α can be used
to speed up the detection process. Moreover, a
support model list F sup is used to improve the
performance. The support models and the target
model should solve the same task such as sentiment
analysis.

First, we create a list W including input words
that are sorted by their importance using word im-
portance score estimation in the auxiliary attack
A (lines 2-5). For example, PWWS calculates the
change in the predictions before and after replacing
a certain word with an unknown word to estimate
word importance. The impact of word importance
is shown in Appendix B.

Second, we select the top words W ∗ (line 6) with
the word ratio threshold α (100% by default). Since
VoteTRANS maintains the performance with α =
100%, it remarkably improves the run time with
a smaller α, with a slight change in performance,
as shown in Figures 4a and 4b in the experimental
results.

Third, we obtain a transformed set W trans for
each word wj in W ∗ (line 9) using word transfor-

mation in A. For example, PWWS uses synonyms
from WordNet to form the transformed set.

Fourth, we replace each transformed word in
W trans for the corresponding wj (line 11) in X and
checks the second constraint in Equation 1 (line
12). The Sim(·) and ϵ are provided by A. This step
is mainly used to preserve the original meaning
of the input in the transformed text. For example,
PWWS uses stop word checking for this step.

Fifth, we construct Y trans containing the label
predictions for the valid X ′ from target model F
and support model list F sup (lines 13-16). We then
use the majority vote on Y trans to obtain the top
majority classes Y ′ with the highest occurrence in
Y trans.

Finally, we check whether the input text X is
adversarial or original based on the input label Y
and majority set Y ′. If Y does not belong to Y ′

or Y belongs to Y ′, which contains more than one
majority class, we decide that X is adversarial text
(lines 20-22). If we cannot decide if X is adver-
sarial text after checking all words in W ∗, X is
considered original text.

4 Evaluation

4.1 Comparison
We follow recent work (Mosca et al., 2022) to
conduct the same experiments including attacks,
datasets, models, parameter settings, evaluation
metrics, number of training/testing samples, etc. In
particular, evaluation was performed with adversar-
ial text generated by four attacks2 including PWWS,
TextFooler, IGA, and BAE. These attacks targeted
four common models3 (LSTM, CNN, DistilBERT,
and BERT) on IMDB (235.72 words/text), Yelp

2All attacks ran with the default settings from the
TextAttack framework.

3All pretrained models were reused from the TextAttack
framework.

5092

Algorithm 1: Adversarial text detection by VoteTRANS.
Input :Input text X = {w1, w2 · · · }; Target model F ; Auxiliary attack A;

Optional: {Word ratio α (100% as default); Support models F sup = {F sup
1 , F sup

2 · · · }
(an empty as default)}

Output :Adversarial text detection (True/False)
1 Y ← F (X)
2 for each word wi in X do
3 calculate importance score Iwi using A
4 end for
5 Create a list W of all words wi ∈ X by sorting in descending order of the importance score Iwi

6 W ∗ ← obtains the top words from W with ratio α
7 for each word wj in W ∗ do
8 Transformation label list Y trans = {}
9 Create transformation set W trans from wj using A

10 for each word wtrans
k in W trans do

11 X ′ = replace wj with wtrans
k in X

12 if checking (Sim(X ′, X) ≥ ϵ) is satisfied by using A then
13 Add F (X ′) to list Y trans

14 for each F sup
l in F sup do

15 Add F sup
l (X ′) to list Y trans

16 end for
17 end if
18 end for
19 Y ′ ← majority vote on Y trans

20 if (Y ̸∈ Y ′)or(Y ∈ Y ′ and Y ′ has more than one majority class) then
21 return True ▷ adversarial text
22 end if
23 end for
24 return False ▷ original text

Polarity (YELP) (135.21 words/text), AG News
(38.78 words/text) and Rotten Tomatoes movie re-
views (RTMR) (18.65 words/text).

We compared VoteTRANS with
FGWS (Mozes et al., 2021) and WDR (Mosca
et al., 2022). FGWS is claimed as a state-of-the-art
in all existing detection papers that we know;
WDR is one of the most recent published work.
Both FGWS and WDR need to be trained on
the adversarial text generated from a specific
configuration (model, data, attack). Table 1 shows
the results on two configurations: (DistilBERT,
IMDB, PWWS) with 3000 training samples
(Table 1a)4 and (DistilBERT, AG News, PWWS)
with 2400 training samples (Table 1b). We
generated adversarial text from testing sets and

4Since VoteTRANS does not need to train, it produce
the same performance with any data-splits of the training
configuration. We average the performance on 30 different
data-splits of FGWS and WDR and ignore their variance
scores for simplification.

put them aside with corresponding original text
to form balanced samples. However, the two
configurations (DistillBERT, RTMR, IGA) and
(DistillBERT, AG News, IGA) had only 480 and
446 balanced samples, respectively. We thus chose
500 balanced samples as testing data for other
configurations.
VoteTRANS uses an auxiliary attack to de-

tect adversarial text without training. The aux-
iliary attack may be the same as the attack
used to generate the adversarial text, namely,
VoteTRANSsame. We also demonstrate the ca-
pability of VoteTRANS using a fixed auxiliary
attack (PWWS) to detect adversarial text gener-
ated from other attacks, namely, VoteTRANSdiff .
Both VoteTRANSsame and VoteTRANSdiff uses
RoBERTa as a support for all experiments5. Other
auxiliary attacks and supports will be discussed

5Since TextAttack does not support RoBERTa for YELP,
we used ALBERT as the support instead.

5093

Configuration FGWS WDR VoteTRANSsame VoteTRANSdiff

Model Data Attack F1 Recall F1 Recall F1 Recall F1 Recall
DistilBERT IMDB PWWS 89.5 82.7 92.1 94.2 96.9 98.4 - -
LSTM IMDB PWWS 80.0 69.6 84.1 86.8 94.8 97.6 - -
CNN IMDB PWWS 86.3 79.6 84.3 90.0 95.4 98.8 - -
BERT IMDB PWWS 89.8 82.7 92.4 92.5 97.4 98.4 - -
DistilBERT AG News PWWS 89.5 84.6 93.1 96.1 95.3 97.6 - -
DistilBERT IMDB TextFooler 86.0 77.6 94.2 97.3 97.8 99.6 97.7 100.0
DistilBERT IMDB IGA 83.8 74.8 88.5 95.5 95.8 99.2 95.9 99.2
BERT YELP PWWS 91.2 85.6 89.4 85.3 97.4 98.4 - -
BERT YELP TextFooler 90.5 84.2 95.9 97.5 97.4 98.8 97.0 98.0
DistilBERT RTMR PWWS 78.9 67.8 74.1 85.1 83.8 88.0 - -
DistilBERT RTMR IGA 68.1 55.2 70.4 90.2 86.9 90.4 80.5 82.4
DistilBERT IMDB BAE 65.6 50.2 88.0 96.3 97.7 100.0 96.3 99.2
DistilBERT AG News BAE 55.8 44.0 81.0 95.4 85.8 93.2 85.3 92.8
DistilBERT RTMR BAE 29.4 18.5 68.5 82.2 79.1 80.8 65.5 60.8

Overall average 77.5 68.4 85.4 91.7 93.0 95.7 - -

(a) FGWS and WDR trained on configuration (DistilBERT, IMDB, PWWS).
Configuration FGWS WDR VoteTRANSsame VoteTRANSdiff

Model Data Attack F1 Recall F1 Recall F1 Recall F1 Recall
DistilBERT AG News PWWS 89.5 84.6 93.6 94.8 95.3 97.6 - -
LSTM AG News PWWS 88.9 84.9 94.0 94.2 95.5 98.4 - -
CNN AG News PWWS 90.6 87.6 91.1 91.2 96.5 99.2 - -
BERT AG News PWWS 88.7 83.2 92.5 93.0 94.6 98.0 - -
DistilBERT IMDB PWWS 89.5 82.7 91.4 93.0 96.9 98.4 - -
DistilBERT AG News TextFooler 87.0 79.4 95.7 97.3 96.7 98.4 95.7 98.0
DistilBERT AG News IGA 68.6 58.3 86.7 93.6 96.5 99.2 93.2 95.6
BERT YELP PWWS 91.2 85.6 86.2 77.2 97.4 98.4 - -
BERT YELP TextFooler 90.5 84.2 95.4 94.7 97.4 98.8 97.0 98.0
DistilBERT RTMR PWWS 78.9 67.8 75.8 78.5 83.8 88.0 - -
DistilBERT RTMR IGA 68.1 55.2 73.7 85.4 86.9 90.4 80.5 82.4
DistilBERT IMDB BAE 65.6 55.2 88.1 97.0 97.7 100.0 96.3 99.2
DistilBERT AG News BAE 55.8 44.0 86.4 94.5 85.8 93.2 85.3 92.8
DistilBERT RTMR BAE 29.4 18.5 71.0 75.2 79.1 80.8 65.5 60.8

Overall average 77.1 68.8 86.4 89.4 92.4 95.2 - -

(b) FGWS and WDR trained on configuration (DistilBERT, AG News, PWWS).

Table 1: Comparison between VoteTRANS and two state-of-the-art detectors, FGWS and WDR. While both
FGWS and WDR need to be trained on a specific configuration (model, data, attack), VoteTRANS directly detects
adversarial text without training. VoteTRANSsame uses an auxiliary attack that is the same as the attack used to
generate adversarial texts. If the adversarial text is not generated by PWWS, VoteTRANSdiff uses PWWS as the
auxiliary attack.

later.

In general, WDR is better than FGWS when
they are trained on (DistilBERT, IMDB, PWWS)
as shown in Table 1a. While FGWS achieves an
F1 score of 77.5 and recall of 68.4 on average,
WDR exhibits improved F1 score and recall met-
rics of 85.4 and 91.7, respectively. All F1 scores

of VoteTRANSsame outperform those of WDR.
VoteTRANSsame also exhibits a recall improved
by 4.0 points from 91.7 of WDR. VoteTRANSdiff
is competitive with VoteTRANSsame for medium
(AG News) and long text (IMDB), while the perfor-
mance of VoteTRANSdiff on short text (RTMR)
is degraded, similar to other detectors.

5094

Scenario Method F1 Recall

Unknown Attack

VoteTRANSdiff (BAE) without support 94.4 93.6
VoteTRANSdiff (DeepWordBug) without support 94.2 97.2
VoteTRANSdiff (BAE) with RoBERTa as support 96.7 99.6
VoteTRANSdiff (DeepWordBug) with RoBERTa as support 95.2 100.0
VoteTRANSdiff (Checklist) with RoBERTa as support 83.9 74.0
VoteTRANSdiff (Input-Reduction) with RoBERTa as support 92.8 100.0
VoteTRANSdiff (A2T) with RoBERTa as support 95.7 96.8
VoteTRANSdiff (IGA) with RoBERTa as support 95.7 97.2
VoteTRANSdiff (Pruthi) with RoBERTa as support 95.8 99.6
VoteTRANSdiff (Alzantot) with RoBERTa as support 95.9 97.6
VoteTRANSdiff (PSO) with RoBERTa as support 96.1 97.6
VoteTRANSdiff (Faster-Alzantot) with RoBERTa as support 96.4 97.6
VoteTRANSdiff (TextBugger) with RoBERTa as support 96.5 98.8
VoteTRANSdiff (TextFooler) with RoBERTa as support 96.5 98.0
VoteTRANSdiff (Kuleshov) with RoBERTa as support 96.6 97.6

Known Attack

FGWS 90.6 87.6
WDR 91.1 91.2
VoteTRANSsame (PWWS) without support 95.2 94.8
VoteTRANSsame (PWWS) with LSTM as support 95.9 98.8
VoteTRANSsame (PWWS) with RoBERTa as support 96.5 99.2
VoteTRANSsame (PWWS) with LSTM+RoBERTa as supports 97.4 98.4

Table 2: Detecting adversarial text generated by PWWS targeting CNN on AG News.

Category RTMR(Adv/Org) AG News(Adv/Org) IMDB(Adv/Org)
PWWS attack time 0.77 2.84 26.36
FGWS/WDR 0.04 0.08 1.01
VoteTRANSsame without support 0.03(0.02/0.04) 0.08(0.03/0.13) 2.00(0.67/3.33)
VoteTRANSsame with RoBERTa as support 0.69(0.28/1.09) 1.42(0.15/2.69) 8.94(0.37/17.52)

Table 3: Run time for attacking original text by PWWS and detecting adversarial text generated by PWWS targeting
the CNN model.

In detail, we cluster the experimental results into
three groups based on their performances. The first
group with high performances includes configura-
tions from similar attacks (PWWS, TextFooler, and
IGA) on long (IMDB and YELP) and medium text
(AG News). The second group includes configura-
tions from PWWS and IGA on short text (RTMR).
The last group includes the remaining configura-
tions related to BAE. While BAE uses flexible syn-
onyms based on word context, the other attacks use
fixed synonyms for a certain word.

All of the detectors work well for the lengthy
text of the first group, especially VoteTRANSsame,
with both scores being between 94.8 and 99.6.
However, less information can be extracted from
the short text in the second group. While
FGWS is competitive with WDR in this group,
VoteTRANSsame performs better, especially in

the F1 score. In the last group, BAE re-
markably affects the detectors, especially with
FGWS in medium and short text. FGWS is de-
feated, with scores less than 50.0 (random guess).
VoteTRANSsame still maintains its high perfor-
mance for long text and is competitive with WDR
for medium and short text.

Table 1b shows experiments where FGWS and
WDR are trained on (DistilBERT, AG News,
PWWS). We train WDR with other word-based
attacks including TextFooler, IGA, and BAE and
reach similar results as shown in Appendix C.
While FGWS and WDR obtain scores less than
90.0 on average, VoteTRANSsame retains its per-
formance, with 92.4 F1 and 95.2 recall. This
demonstrates the resilience of VoteTRANSsame

across various models, datasets, and attacks.

5095

4.2 Ablation Studies

We studied variants of VoteTRANS and com-
pared them with FGWS and WDR. These de-
tectors identified adversarial texts generated by
PWWS targeting the CNN on AG News (Table 2).
VoteTRANS is presented in two scenarios: an
unknown attack (VoteTRANSdiff) and a known
attack (VoteTRANSsame).

For an unknown attack, we use a word-based
BAE and character-based DeepWordBug as the
auxiliary attacks for VoteTRANSdiff without
support. VoteTRANSdiff achieves high perfor-
mances with both auxiliaries. Other auxiliaries for
VoteTRANSdiff without support are mentioned in
Appendix D. The use of the RoBERTa model as
support boosts the overall performance. Other at-
tacks from the TextAttack were conducted and are
listed in increasing order of F1 scores. Among
these attacks, BERT-Attack and CLARE are ig-
nored because both use the same masked language
model used in BAE, and the three attacks reached
similar performances. HotFlip is not supported for
CNN. The results show that VoteTRANSdiff can
use any attack as the auxiliary, with all scores being
greater than or equal to 92.8, except for those of
Checklist. Checklist generates independent adver-
sarial text with any model and causes low perfor-
mance, as mentioned in the owner paper (Ribeiro
et al., 2020). The results from various auxiliaries
demonstrate that VoteTRANSdiff can detect ad-
versarial text without attack information.

For a known attack, VoteTRANSsame with-
out support outperforms FGWS and WDR.
VoteTRANSsame is improved by using random
support such as LSTM or RoBERTa. A stronger
model (RoBERTa) helps VoteTRANSsame more
than LSTM. Both can also be used together to sup-
port VoteTRANSsame and improve the F1 score,
but the adversarial recall is slightly affected. Other
available supports from TextAttack for AG News
are mentioned in Appendix E.

While character-based attacks are still a chal-
lenge for both WDR and FGWS as mentioned
in their papers, VoteTRANS still detects such ad-
versarial text upto 97.6% F1 and 99.6% recall as
shown in Appendix F. It indicates the flexible of
VoteTRANS with various attack levels.

4.3 Run Time

Since VoteTRANS uses an auxiliary attack to de-
tect adversarial text, we compared the run time of

VoteTRANSsame with that of the corresponding
attack. Table 3 shows a comparison of adversarial
text generated by PWWS targeting the CNN model
on short text (RTMR), medium text (AG News),
and long text (IMDB); VoteTRANSdiff , other at-
tacks, and models reached similar ratios. We
also compared the detection times obtained from
WDR/FGWS, which both use the target model to
predict the text n times, where n is the number
of words in an input text. VoteTRANSsame is re-
ported without support and with RoBERTa support.
We also separately appended the detection time for
adversarial and original text for VoteTRANSsame,
while other detectors ran for the same time for both.

The run times of both the attack and detec-
tors are affected by the text length. FGWS and
WDR need less than 2 seconds to detect text.
VoteTRANSsame processes adversarial text much
faster than original text because most of the ad-
versarial text is identified early with lines 20-
22 of Algorithm 1. Thanks to line 12 of Al-
gorithm 1 for filtering many transformed texts,
VoteTRANSsame without support run similar to
FGWS and WDR for short and medium text.
For long text, VoteTRANSsame needs 0.67 sec-
onds for adversarial text. VoteTRANSsame with
RoBERTa as support even completes processing
the adversarial text from IMDB with only 0.37 sec-
onds. This demonstrates that RoBERTa accelerates
adversarial text processing.

VoteTRANSsame runs faster by decreasing the
word ratio α in Algorithm 1. α determines
the number of words that are processed. While
VoteTRANSsame with RoBERTa as support pro-
cesses RTMR text in a reasonable time, we evaluate
the change in α for processing AG News and IMDB
text, as shown in Figure 4a and Figure 4b, respec-
tively. For AG News, although the detection time
is mostly steady at 0.25 seconds, with α between
12% and 19%, the F1/recall ratio remarkably in-
creases from 93.9/91.6 to 95.4/95.2. The run time
is worsened to 1.42 seconds with the largest α of
100%, but the F1 scores are only slightly increased.

For IMDB text, VoteTRANSsame achieves a
high performance, even with a small α. When α is
increased from 3% to 10%, the run time/F1/recall
increases from 0.28/89.1/81.6 to 0.91/96.6/97.6.
The recall is improved up to 98.8 with a maximum
α of 100%, but the corresponding F1 score drops
slightly to 95.4. The F1 score is affected by some
of the original text misclassified as adversarial text.

5096

91%

93%

95%

97%

99%

0.0

0.5

1.0

1.5

2.0

12% 13% 14% 15% 16% 17% 18% 19% 40% 100%

P
e
r
c
e
n

ta
g

e

S
e
c
o

n
d

s

Word ratio ()

Detection(Seconds) F1(%) Recall(%)

(a) AG News.

80%

85%

90%

95%

100%

0

2

4

6

8

10

3% 4% 5% 6% 7% 8% 9% 10% 30% 100%

P
e
r
c
e
n

ta
g

e

S
e
c
o

n
d

s

Word ratio ()

Detection(Seconds) F1(%) Recall(%)

(b) IMDB.

Figure 3: Correlation between the detection time and
performance of VoteTRANSsame with RoBERTa as
support to detect adversarial text generated by PWWS
targeting the CNN model when changing the word ratio
α. The time is averaged for all original and adversarial
detection.

In particular, when processing with 12% and
5% of the medium text (AG News) and long
text (IMDB), respectively, V oteTRANSsame

with RoBERTa as support takes approximately
0.21 seconds and 0.47 seconds, competitive with
0.08 seconds and 1.01 seconds produced from
FGWS/WDR, while keeping F1/recall scores
(93.9/91.6 for AG News and 94.7/92.4 for IMDB),
higher than FGWS (90.6/87.6 and 86.3/79.6) and
WDR (91.1/91.2 and 84.3/90.0). With these ratios,
V oteTRANSsame with RoBERTa only needs
32.0 and 61.1 for AG News and IMDB, respec-
tively (see Appendix G for other ratios).

4.4 Discussion

Detection with high confidence text:
VoteTRANS still keeps 79.2% of F1 score
on detecting adversarial text from AG News with
its confidence greater than or equal to 90%. In
contrast, WDR drops the score to 25.0% (see
other confidences and IMDB text in Appendix H).

Detection with only hard labels: VoteTRANS
only uses soft labels of predictions from a target
model via an auxiliary attack to calculate impor-
tance scores (line 3 of Algorithm 1). However,
these scores are only used to accelerate detection

Configuration AG News IMDB
Without detector 88.8 100.0
With WDR 5.2 16.4
With VoteTRANS 0.4 4.3

Table 4: Success rate under an adaptive attack.

by selecting the top words in line 6. Without
these scores, VoteTRANS achieves an identical
performance by processing all words. Therefore,
VoteTRANS is compatible with any target model
that only provides hard labels.

Parallel processing: An adversarial attack
needs to perturb individual words of input text in
sequence to optimize the perturbed text in each step
until a target model is fooled. On the other hand,
VoteTRANS can create independent transforma-
tion sets for individual words and process them in
parallel. VoteTRANS can accelerate the process
with parallel or distributed computing.

Adaptive attack: An attacker may be aware
of the existence of a detector and fool both a
target and the detector. We evaluate PWWS tar-
geting CNN models on AG News and IMDB as
shown in Table 4. Although PWWS strongly at-
tacks the CNN models with more than 88% of suc-
cess rate, it hardly bypasses detectors, especially
VoteTRANS.

5 Conclusion

We propose VoteTRANS, a method for detecting
adversarial text without training by voting on hard
labels of text after transformation. VoteTRANS
outperforms state-of-the-art detectors under var-
ious attacks, models, and datasets. Moreover,
VoteTRANS is flexible at detecting a restricted
scenario when an attack is unknown. VoteTRANS
also straightforwardly detects adversarial text from
a new attack without modifying the architecture.

6 Limitations

Auxiliary attack and supports: VoteTRANS
without support works well with an auxiliary attack
which is the same with the target attack. In contrast,
VoteTRANS with support achieves stable results
with any auxiliary attack but it runs slower.

Short text and susceptible text: A short text is
more difficult to detect than a long text. Suscepti-
ble text may bypass VoteTRANS as mentioned in
Appendix I. However, the short text and susceptible

5097

text are often unnatural and unclear meaning, re-
spectively, so they are easily recognized by humans.
Therefore, we recommend that humans recheck sus-
picious text with an abnormal ratio in the voting
process of VoteTRANS (line 19 of Algorithm 1).

Beyond word-based attacks: We detect adver-
sarial text up to word-based attacks, which change
a few characters or words and are often impercepti-
ble to humans. Other attacks remarkably affect the
naturalness with a large change such as sentence-
based attacks as in Iyyer et al. (2018).

Beyond text classification: We evaluate
VoteTRANS on adversarial attacks targeting text
classification. In contrast, the other tasks do not
well-define a standard for generating adversarial
text. For example, attacks targeting sequence
models need to determine a threshold for BLEU
score, which is aimed to minimize, but whether the
score is sufficient for an adversarial text is still in
question.

Acknowledgments

This work was partially supported by JST CREST
Grants JPMJCR20D3, Japan.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial exam-
ples. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2890–2896.

Emil Biju, Anirudh Sriram, Pratyush Kumar, and
Mitesh M Khapra. 2022. Input-specific attention
subnetworks for adversarial detection. In Findings of
the Association for Computational Linguistics (ACL),
pages 31–44.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. Hotflip: White-box adversarial examples
for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 31–36.

Shi Feng, Eric Wallace, Alvin Grissom II, Pedro Ro-
driguez, Mohit Iyyer, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretation dif-
ficult. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3719–3728.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In

Proceedings of the IEEE Security and Privacy Work-
shops (SPW), pages 50–56.

Siddhant Garg and Goutham Ramakrishnan. 2020. Bae:
Bert-based adversarial examples for text classifica-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6174–6181.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 16th Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL), pages 1875–1885.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy
Liang. 2019. Certified robustness to adversarial word
substitutions. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4120–4133.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong
baseline for natural language attack on text classi-
fication and entailment. In Proceedings of the 34th
Conference on Artificial Intelligence (AAAI), pages
8018–8025.

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung Lau,
and Stefano Ermon. 2018. Adversarial examples for
natural language classification problems. In OpenRe-
view.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and William B Dolan.
2021. Contextualized perturbation for textual ad-
versarial attack. In Proceedings of the Conference
of the North American Chapter of the Association
for Computational Linguistics (NAACL), pages 5053–
5069.

J Li, S Ji, T Du, B Li, and T Wang. 2019. Textbugger:
Generating adversarial text against real-world appli-
cations. In Proceedings of the 26th Annual Network
and Distributed System Security Symposium (NDSS).

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. Bert-attack: Adversarial at-
tack against bert using bert. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6193–6202.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in nlp. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations (EMNLP), pages
119–126.

Edoardo Mosca, Shreyash Agarwal, Javier Rando-
Ramirez, and Georg Groh. 2022. " that is a sus-
picious reaction!": Interpreting logits variation to
detect nlp adversarial attacks. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 7806–7816.

5098

https://aclanthology.org/D18-1316.pdf
https://aclanthology.org/D18-1316.pdf
https://aclanthology.org/2022.findings-acl.4/
https://aclanthology.org/2022.findings-acl.4/
https://aclanthology.org/P18-2006.pdf
https://aclanthology.org/P18-2006.pdf
https://aclanthology.org/D18-1407
https://aclanthology.org/D18-1407
https://ieeexplore.ieee.org/document/8424632
https://ieeexplore.ieee.org/document/8424632
https://aclanthology.org/2020.emnlp-main.498
https://aclanthology.org/2020.emnlp-main.498
https://aclanthology.org/2020.emnlp-main.498
https://aclanthology.org/N18-1170.pdf
https://aclanthology.org/N18-1170.pdf
https://aclanthology.org/D19-1423.pdf
https://aclanthology.org/D19-1423.pdf
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://openreview.net/forum?id=r1QZ3zbAZ
https://openreview.net/forum?id=r1QZ3zbAZ
https://aclanthology.org/2021.naacl-main.400
https://aclanthology.org/2021.naacl-main.400
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03A-5_Li_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03A-5_Li_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03A-5_Li_paper.pdf
https://aclanthology.org/2020.emnlp-main.500.pdf
https://aclanthology.org/2020.emnlp-main.500.pdf
https://aclanthology.org/2020.emnlp-demos.16.pdf
https://aclanthology.org/2020.emnlp-demos.16.pdf
https://aclanthology.org/2020.emnlp-demos.16.pdf
https://aclanthology.org/2022.acl-long.538/
https://aclanthology.org/2022.acl-long.538/
https://aclanthology.org/2022.acl-long.538/

Maximilian Mozes, Pontus Stenetorp, Bennett Klein-
berg, and Lewis Griffin. 2021. Frequency-guided
word substitutions for detecting textual adversarial
examples. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL), pages 171–186.

Danish Pruthi, Bhuwan Dhingra, and Zachary C Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 5582–5591.

Vyas Raina and Mark Gales. 2022. Residue-based nat-
ural language adversarial attack detection. In Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL), pages 3836–3848.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
1085–1097.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of nlp models with checklist. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
4902–4912.

Jiayi Wang, Rongzhou Bao, Zhuosheng Zhang, and Hai
Zhao. 2022a. Distinguishing non-natural from natu-
ral adversarial samples for more robust pre-trained
language model. In Findings of the Association for
Computational Linguistics (ACL), pages 905–915.

Xiaosen Wang, Hao Jin, Yichen Yang, and Kun He.
2021. Natural language adversarial defense through
synonym encoding. In Proceedings of the 37th
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 823–833.

Xiaosen Wang, Yifeng Xiong, and Kun He. 2022b. Ran-
domized substitution and vote for textual adversar-
ial example detection. In Proceedings of the 38th
Conference on Uncertainty in Artificial Intelligence
(UAI).

Jin Yong Yoo and Yanjun Qi. 2021. Towards improv-
ing adversarial training of NLP models. In Find-
ings of the Association for Computational Linguistics
(EMNLP), pages 945–956.

KiYoon Yoo, Jangho Kim, Jiho Jang, and Nojun Kwak.
2022. Detection of word adversarial examples in text
classification: Benchmark and baseline via robust
density estimation. In Findings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 3656–3672.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.

0%

20%

40%

60%

80%

100%

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

P
er

ce
n

ta
g

e

Maximum rate

original without suppport
original with support
adversarial without support
adversarial with support

(a) AG News.

0%

20%

40%

60%

80%

100%

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

P
er

ce
n

ta
g

e

Maximum rate

original without suppport
original with support
adversarial without support
adversarial with support

(b) IMDB.

Figure 4: Prediction change under one-word transfor-
mation.

Word-level textual adversarial attacking as combi-
natorial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 6066–6080.

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei
Wang. 2019. Learning to discriminate perturbations
for blocking adversarial attacks in text classifica-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4906–4915.

A Prediction Change under One-Word
Transformation

The example in Figure 1 shows that the prediction
of an adversarial text is more susceptible than that
of an original text. We verify this observation on
other AG News texts and IMDB movie reviews. In
particular, we inspect the whole testing set contain-
ing 500 balanced samples of original and adversar-
ial text generated by PWWS targeting CNN. For
each sample, we transform a word by synonyms
and measure the rate of prediction change from the
target CNN. The maximum rate among words is
represented for the sample and is plotted in his-
togram graphs (Figure 4). The maximum rate of an
original text is often lower than that of an adversar-
ial text in both AG News and IMDB.

5099

https://aclanthology.org/2021.eacl-main.13.pdf
https://aclanthology.org/2021.eacl-main.13.pdf
https://aclanthology.org/2021.eacl-main.13.pdf
http://aclanthology.lst.uni-saarland.de/P19-1561.pdf
http://aclanthology.lst.uni-saarland.de/P19-1561.pdf
https://aclanthology.org/2022.naacl-main.281.pdf
https://aclanthology.org/2022.naacl-main.281.pdf
https://aclanthology.org/P19-1103
https://aclanthology.org/P19-1103
https://aclanthology.org/2020.acl-main.442
https://aclanthology.org/2020.acl-main.442
https://aclanthology.org/2022.findings-acl.73
https://aclanthology.org/2022.findings-acl.73
https://aclanthology.org/2022.findings-acl.73
https://www.auai.org/uai2021/pdf/uai2021.315.pdf
https://www.auai.org/uai2021/pdf/uai2021.315.pdf
https://arxiv.org/abs/2109.05698
https://arxiv.org/abs/2109.05698
https://arxiv.org/abs/2109.05698
https://aclanthology.org/2021.findings-emnlp.81.pdf
https://aclanthology.org/2021.findings-emnlp.81.pdf
https://aclanthology.org/2022.findings-acl.289
https://aclanthology.org/2022.findings-acl.289
https://aclanthology.org/2022.findings-acl.289
https://aclanthology.org/2020.acl-main.540.pdf
https://aclanthology.org/2020.acl-main.540.pdf
https://aclanthology.org/D19-1496.pdf
https://aclanthology.org/D19-1496.pdf
https://aclanthology.org/D19-1496.pdf

40%

50%

60%

70%

80%

90%

20% 30% 40% 50% 60% 70% 80% 90%

F
1

Word ratio ()

with random score

with word importance score

(a) F1.

40%

50%

60%

70%

80%

90%

20% 30% 40% 50% 60% 70% 80% 90%

R
e
c
a

ll

Word ratio ()

with random score

with word importance score

(b) Recall.

Figure 5: The impact of word importance score in
VoteTRANS via changing word ratio α.

Attack WDR VoteTRANS
F1 Recall F1 Recall

TextFooler 95.4 95.2 96.5 98.0
IGA 94.1 95.2 95.7 97.2
BAE 88.7 82.0 96.7 99.6

Table 5: WDR training on other word-based attacks.

B Word Importance Score

We change word ratio α with 10% step to show the
impact of word importance score in VoteTRANS
(line 2-6 in Algorithm 1). The experiment is con-
ducted with adversarial text generated by PWWS
targeting a CNN model on IMDB. To elimi-
nate the impact of support models, we evaluate
VoteTRANSsame without support as shown in Fig-
ure 5. We also compare between VoteTRANSsame

with word importance score and that with random
score. VoteTRANSsame with word importance
score achieves better than that with random score
across all α, especially with small α. It demon-
strates the impact of word importance score in
VoteTRANS.

C WDR Training on Other Word-Based
Attacks

We train WDR on other main word-based attacks
including TextFooler, IGA, and BAE to detect adver-
sarial text generated by PWWS as shown in Table 5.

Method F1 Recall
VoteTRANSdiff (Checklist) 41.4 26.4
VoteTRANSdiff (PSO) 88.1 81.6
VoteTRANSdiff (A2T) 88.2 82.0
VoteTRANSdiff (Faster-Alzantot) 90.0 84.8
VoteTRANSdiff (IGA) 90.1 86.0
VoteTRANSdiff (Kuleshov) 90.8 86.4
VoteTRANSdiff (TextFooler) 91.1 88.0
VoteTRANSdiff (Input-Reduction) 93.8 97.6
VoteTRANSdiff (Pruthi) 94.3 96.8
VoteTRANSdiff (TextBugger) 94.6 97.2

Table 6: Other auxiliary attacks for VoteTRANSdiff
without support.

The adversarial text in both testing and training
data targets the CNN model on AG News. Since
VoteTRANS performs without training, we use
the corresponding attack as an auxiliary. WDR
is more compatible with TextFooler and IGA than
BAE. In contrast, VoteTRANS achieves similar
performance across three attacks.

D VoteTRANSdiff without Support

Besides BAE and DeepWordBug as mentioned in
Table 2, we show other auxiliary attacks in Table 6.
VoteTRANSdiff efficiently detects adversarial text
except with Checklist, which generates independent
adversarial text with any model and does not focus
on the performance.

E VoteTRANSsame with Other
Supports

Besides LSTM and RoBERTa as mentioned in Ta-
ble 2, we show all other available support models
for AG News from TextAttack and their combi-
nation in Table 7. VoteTRANS achieves perfor-
mances of at least 97.5 with individual supports
and their combination. Similar to the results in Ta-
ble 2, multiple supports reach more stable results
than an individual support.

F Detecting Character-Based Attacks

We conduct experiments to detect adversarial text
from all character-based attacks from TextAttack
compatible with the CNN model as shown in Ta-
ble 8. VoteTRANS achieves similar performances
for AG News and IMDB. It demonstrates the re-
silience of VoteTRANS in detecting character-
based attacks from different extents and tasks
(medium text with multiclass classification as in

5100

Method F1 Recall
VoteTRANSsame (PWWS) with BERT as support 97.5 100.0
VoteTRANSsame (PWWS) with ALBERT as support 97.6 99.6
VoteTRANSsame (PWWS) with DistilBERT as support 97.5 99.6
VoteTRANSsame (PWWS) with BERT+ALBERT as support 98.4 98.4
VoteTRANSsame (PWWS) with BERT+DistilBERT as support 98.2 98.8
VoteTRANSsame (PWWS) with ALBERT+DistilBERT as support 98.2 98.8
VoteTRANSsame (PWWS) with BERT+ALBERT+DistilBERT as support 98.4 99.2

Table 7: Other available support models from TextAttack for VoteTRANSsame.

Dataset Method F1 Recall

AG News

VoteTRANSsame (DeepWordBug) without support 94.3 89.2
VoteTRANSsame (Pruthi) without support 66.4 76.8
VoteTRANSsame (TextBugger) without support 92.7 93.6
VoteTRANSsame (DeepWordBug) with RoBERTa as support 95.0 98.8
VoteTRANSsame (Pruthi) with RoBERTa as support 80.3 98.0
VoteTRANSsame (TextBugger) with RoBERTa as support 96.1 98.8

IMDB

VoteTRANSsame (DeepWordBug) without support 90.5 93.2
VoteTRANSsame (Pruthi) without support 77.8 90.8
VoteTRANSsame (TextBugger) without support 92.1 95.2
VoteTRANSsame (DeepWordBug) with RoBERTa as support 93.3 99.6
VoteTRANSsame (Pruthi) with RoBERTa as support 82.0 98.4
VoteTRANSsame (TextBugger) with RoBERTa as support 97.6 99.6

Table 8: Detecting all character-based attacks compatible with CNN model from TextAttack.

AG News and long text with binary classification
as in IMDB).

G VoteTRANS Complexity

Let N , M , and K be the number of words, the num-
ber of transformations for each word, and the num-
ber of models used in Algorithm 1. The worst-case
of VoteTRANS complexity is O(N ×M ×K),
approximately with the number of predictions on
the K models. For example, if VoteTRANS
processes AG News using PWWS, CNN, and
RoBERTa as auxiliary, target, and support; in this
case, N , M , and K are 42.6, 10.7, and 2, respec-
tively. N of IMDB is increased to 241.9 while
other values are unchanged. Theoretically, the num-
ber of predictions is 910.6 (AG News) and 5165.6
(IMDB). However, this number is remarkably re-
duced by the constraint checking (line 12) and early
stopping (line 21) in Algorithm 1. As a result, it
is reduced to 216.3 (76.2%) and 1151.3 (77.7%)
predictions as shown in Figures 6a and 6b, respec-
tively. VoteTRANS can also adjust the number of
predictions suitable for the resource capacity by us-
ing small α. For example, α at 12% and 5% needs
32.0 and 61.1 predictions while keeping higher per-

91%

93%

95%

97%

99%

0

50

100

150

200

250

12% 13% 14% 15% 16% 17% 18% 19% 40% 100%

P
e
r
c
e
n

ta
g

e

N
o

.
o

f
p

r
e
d

ic
ti

o
n

s

Word ratio ()

No. predictions F1(%) Recall(%)

(a) AG News.

80%

85%

90%

95%

100%

0

200

400

600

800

1,000

1,200

3% 4% 5% 6% 7% 8% 9% 10% 30% 100%

P
e
r
c
e
n

ta
g

e

N
o

.
o

f
p

r
e
d

ic
ti

o
n

s

Word ratio ()

No. predictions F1(%) Recall(%)

(b) IMDB.

Figure 6: Number of predictions.

5101

formance on the existing works as mentioned in
Section 4.3.

H Detection with High Confidence Text

0%

20%

40%

60%

80%

100%

30% 40% 50% 60% 70% 80% 90%

F
1

 s
co

r
e

Minimum confidence

VoteTRANS

WDR

(a) AG News.

0%

20%

40%

60%

80%

100%

60% 70% 80% 90%

F
1

 s
co

r
e

Minimum confidence

VoteTRANS
WDR

(b) IMDB.

Figure 7: Detection of adversarial text with high confi-
dence

We evaluate WDR and VoteTRANS on detect-
ing high confidence of adversarial text, which is
generated by PWWS targeting CNN models on AG
News and IMDB. PWWS attacks the CNN model
until overcoming minimum confidence. Since any
confidence of AG News (4 classes) and IMDB (2
classes) is greater than 25% and 50%, respectively,
we set minimum confidences starting at 30% and
60% with 10% step. While the minimum confi-
dences at 80% and 90% on AG News have 71 and
19 adversarial texts, respectively, other confidences
have sufficient 500 balanced samples.

While WDR and VoteTRANS achieve simi-
lar F1 on AG News until minimum confidence
at 60%, WDR suddenly drops down to 25.0%
at confidence 90%. In contrast, VoteTRANS
still keeps 79.2% at this confidence as shown
in Figure 7a. For IMDB, the margins between
WDR and VoteTRANS gradually increase from
4.2% to 18.4%. It demonstrates the resilience
of VoteTRANS in detecting adversarial text with
high confidence.

I Error Analysis

We analyze the errors of VoteTRANSsame for the
short text (MR). Here we especially focus on the
results when DistilBERT and RoBERTa are the
target and support models and the adversarial text
is generated with PWWS. MR is harder to detect
than long text as shown in Table 1. 40.7% of all
the errors that VoteTRANSsame fails to detect are
caused by susceptible original text, which is eas-
ily attacked. For example, although the original
text “your children will be occupied for 72 minute”
is correctly predicted as negative by DistilBERT,
29 out of 39 perturbations with one-word replace-
ments change the prediction into positive. It is
opposite to our hypothesis as mentioned in line 38
in Section 1 and thus bypasses VoteTRANS. Its
adversarial text “your child will be occupied for
72 minutes” also bypasses our detector (1 out of
42 perturbations change the prediction). However,
such text is a little harmful because it has unclear
sentiment and is unpopular (4.4% and 1.2% of MR
and IMDB testing text, respectively).

5102

ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5103

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

5104

