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Abstract
Subject-verb agreement in the presence of an
attractor noun located between the main noun
and the verb elicits complex behavior: judg-
ments of grammaticality are modulated by the
grammatical features of the attractor. For ex-
ample, in the sentence “The girl near the boys
likes climbing”, the attractor (boys) disagrees in
grammatical number with the verb (likes), creat-
ing a locally implausible transition probability.
Here, we parametrically modulate the distance
between the attractor and the verb while keep-
ing the length of the sentence equal. We eval-
uate the performance of both humans and two
artificial neural network models: both make
more mistakes when the attractor is closer to
the verb, but neural networks get close to the
chance level while humans are mostly able to
overcome the attractor interference. Addition-
ally, we report a linear effect of attractor dis-
tance on reaction times. We hypothesize that a
possible reason for the proximity effect is the
calculation of transition probabilities between
adjacent words. Nevertheless, classical models
of attraction such as the cue-based model might
suffice to explain this phenomenon, thus paving
the way for new research. Data and analyses
available at https://osf.io/d4g6k

1 Introduction

On the surface, language appears to be produced
and understood linearly, as humans read or hear
words one after the other. Yet, formal linguistic the-
ories postulate the existence of an underlying struc-
ture that governs language processing (Chomsky,
1957; Rizzi, 2004; Dehaene et al., 2015; Vigliocco
and Nicol, 1998; Hauser et al., 2002). This hy-
pothesis is supported by both behavioral (Fossum
and Levy, 2012; Shi et al., 2020; Coopmans et al.,
2021) and neural (Brennan et al.; Nelson et al.,
2017; Pallier et al., 2011) data. According to a
competing view, unstructured probabilistic mod-
els capture behavior without explicitly relying on
structures (Frank and Bod, 2011). The discrepancy

The N1 who V1 the quick young N2 V2
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Figure 1: Experimental design Our design aims to
separate two possible mechanisms involved in language
processing, by altering the distance of the embedded
noun (attractor) from the verb. We compare the im-
pact of noun-verb agreement (Violation) and noun-noun
dependency (Congruency). The Transition effect sym-
bolizes the consequence of the transition probability
between the second noun and the verb. As a baseline,
we also include a condition with a similar number of
words, but without a noun in between. The summary of
the experimental conditions is shown in Table 1

between the two views has led to a decade-long de-
bate on linear versus structural effects in language
(Haskell and MacDonald, 2005; Ding et al., 2015;
Willer Gold et al., 2017; Arana et al., 2021).

Analyzing subject-verb agreement errors in the
presence of distracting elements is a standard way
of separating linear and structural accounts of lan-
guage (Molinaro et al., 2011). Attraction effects in
number agreement have been studied extensively
in humans (Bock and Miller, 1991; Franck et al.,
2002; Hammerly et al., 2019) and Neural Language
Models (NLMs) (Linzen et al., 2016; Jumelet et al.,
2019; Lakretz et al., 2021).

In the present work, we introduce a parametric
manipulation of the distance between the distract-
ing nouns and the verb (Figure 1). We include a
baseline condition where the subject-verb distance
is matched but no word that carries number mark-
ing is introduced in-between. We thereby provide
a minimal triplet of experimental conditions (Ta-
ble 1) that can disentangle structural from linear
mechanisms by contrasting operations directly as-
cribed to each mechanism. We posit that there are
structural operations at play to explain the fact that
participants are always able to detect violations,
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Condition Sentence Violation Congruency

Proximal Attractor
The writer who knows the happy young journalist climbs. ✗ ✓
The writer who knows the happy young journalists climbs. ✗ ✗
The writer who knows the happy young journalist climb. ✓ ✓
The writer who knows the happy young journalists climb. ✓ ✗

Distal Attractor
The writer who knows the journalist the most climbs. ✗ ✓
The writer who knows the journalists the most climbs. ✗ ✗
The writer who knows the journalist the most climb. ✓ ✓
The writer who knows the journalists the most climb. ✓ ✗

Baseline The writer who walks fast but rather clumsily climbs. ✗ -
The writer who walks fast but rather clumsily climb. ✓ -

Filler (Number) The writer who knows the journalist climbs. ✗ -
The writer who know the journalist climbs. ✓ -

Filler (POS) The writer whom the journalist knows climbs. ✗ -
The writer whom knows the journalist climbs. ✓ -

Table 1: Conditions. The design contrasts the attribution of two distinct effects to the overall error rate in humans
and NLMs. To prevent the subjects from developing strategies for the effective resolution of the violation-detection
task, we included two different kinds of filler trials that contained violations at the beginning of the sentence.

and at the same time there are linear operations at
play which lead to the attraction effect of the inter-
vening noun. We additionally hypothesize that the
linear effect might be modulated by transition prob-
abilities, i.e., the prior probability that a given word
follows another (Dehaene et al., 2015; Friston et al.,
2021). Finally, despite reaching on par with or even
supra-human performance on many tasks (Brown
et al., 2020; Minaee et al., 2021), NLMs are known
to be sensitive to superficial statistical properties of
their training data (McCoy et al., 2021). Thus, we
compare two NLMs with the behavior of human
participants.

2 Experimental Evidence

2.1 Method

We tested the grammatical judgments of the partici-
pants in a forced-choice, online violation detection
task where the words were presented one at a time
on the screen (RSVP), and the participants had to
press a button to indicate whether a given sentence
was grammatically correct or not.

Participants Fifty-four native speakers of En-
glish took part in our experiment, which was ad-
vertised on social media and mailing lists. The
procedure and the consent were approved by the
local ethical committee (Université Paris-Saclay,
CER-Paris-Saclay-2019-063). We used filler tri-
als (Table 1) to avoid potential confounding strate-
gies from the participants, such as actively ignor-
ing the middle of the sentences (Pearlmutter et al.,
1999). Any participant whose answer to fillers was

not significantly different from chance (binomial
test, null hypothesis p0 = .5) was rejected. We
also rejected participants whose success rate on
the main task was below 70%. Overall, we re-
jected 20 participants, and reported analyses from
34 participants (all analyses reported are consistent
with corresponding analyses performed with the
full dataset, reported in appendix B. For example,
one can compare Table 2 and Table 5, and Figure 2
and Figure 5).

We also tested two transformer models (Wolf
et al., 2020): a replication of the GPT-3 language
model (Brown et al., 2020) made available by
EleutherAI1 (Black et al., 2021) and a Text-To-
Text Transformer (T5)2 (Raffel et al., 2019) fine-
tuned on a grammatical error correction bench-
mark (Napoles et al., 2017). To evaluate the GPT-3
model, we input it with the sentence up to (exclud-
ing) the target verb and compare the probabilities
associated with the grammatical and ungrammati-
cal tokens (e.g., “climb” vs “climbs” for sentences
in Table 1). Thus, for this model, we get a compara-
tive performance per condition but cannot evaluate
performances between grammatical and ungram-
matical sentences. On the other hand, we compare
humans directly with the grammaticality judgment
of T5.

Experimental Procedure Participants were
given a description of a violation-detection task
(see Appendix A for the exact wording) includ-

1
https://huggingface.co/EleutherAI/gpt-neo-1.3B

2
https://huggingface.co/vennify/

t5-base-grammar-correction
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ing which button to press and three examples of
grammatical and ungrammatical sentences. We
presented sentences to participants, with a fixa-
tion cross between words, in white on black back-
ground, using a presentation time of 200ms and
an SOA of 366ms. Participants could answer at
any point by pressing the keyboard to indicate their
judgment of grammaticality (left and right arrow
keys randomized across subjects). Participants re-
ceived auditory and visual feedback with each trial:
green/red fixation and upward/downward tune (cor-
rect/incorect). At the end of the experiment, partici-
pants answered questions about the experiment (dif-
ficulty, weirdness, strategies), we provided them
with an overall score and invited them to share the
experiment on social media.

Stimuli We generated sentences from a fixed lex-
icon balanced for low-level features, yielding many
sentences. Then we filtered them based on the per-
plexity of GPT-3, keeping only sentences that had
an overall perplexity between the median and me-
dian +2std — in order to keep sentences of low
and consistent perplexity. We sampled 5 sentences
for each condition (baseline, distal congruent, dis-
tal incongruent, proximal congruent, proximal in-
congruent), subject number (singular, plural), and
grammaticality, as well as 32 filler sentences. No
two sentences shared 5 words or more. The same
sentences were presented to participants in random-
ized order.

2.2 Results

We call incongruent the trials in which the num-
bers of N1 and N2 disagree (Figure 1) — which is
independent from grammaticality. Figure 2 shows
the main effect of the presence of an attractor, and
how its distance to the target (distal or proximal)
modulates the performances of humans and NLMs.

In all cases, the baseline elicits fewer errors
(ER) and faster reaction times (RT) compared to
the attractor conditions. Errors occur more often in
ungrammatical sentences than in grammatical ones,
irrespective of the condition: this phenomenon is
called grammatical illusions (Phillips et al., 2011)
and indicates that participants accept ungrammati-
cal sentences more often than they reject grammat-
ical ones. We also replicate grammatical asymme-
try (Wagers et al., 2009): incongruent trials lead to
higher ER in the ungrammatical sentences.

To investigate the attractor effects, we analyzed
the main factors of our design. The main effect

Ungramma�cal

Gramma�cal

Figure 2: Performances of humans and NLMs: colors
indicate grammaticality, error bars indicate (all figures)
SEM over participants (humans) or sentences (NLMs).

of Violation refers to the dependency that con-
trols the grammatical configuration of the sentence
(Figure 1) and we use this effect as a proxy into
structural processing (Rizzi, 2004). The Congru-
ency effect refers to a dependency realized between
two non-structurally related words and is used as a
proxy for linear processing.

Figure 3 shows the main factors and their inter-
action. We report the corresponding ANOVA for
the human participants in Table 2. We replicate the
markedness phenomenon (Bock and Miller, 1991;
Wagers et al., 2009): attraction effects surface only
with plural attractors (see Table 4 and Figure 4 for
analyses with singular attractors). Results shown
in Figure 3 and Table 4 correspond to sentences
with plural attractors.

In the human data, the main effect of Violation
is significant across all conditions and dependent
variables. Nevertheless, for the ER, the η2G value
is larger by an order of magnitude in the distal at-
tractor condition: this illustrates that participants
make more mistakes in judging the grammaticality
of sentences in which the attractor is far from the
verb, especially when the sentence is ungrammat-
ical. The distance of the attractor does not affect
the magnitude of the effect in the case of RTs.

To elucidate this facilitatory effect, we focus
on Congruency: its effect is only significant in the
proximal condition, which illustrates that partici-
pants make more errors in incongruent sentences
compared to the congruent ones (figure 3).
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Figure 3: Effect of grammaticality, congruency, and distance of the attractor on our dependent variables.

Effect F1,33 p-value η2
G

Response Time; Distal attractor
congruency 7.04 .012 .011
violation 11.64 .002 .031
interaction 0.01 .915 < .001

Response Time; Proximal attractor
congruency 26.90 < .001 .046
violation 11.81 .002 .027
interaction 0.10 .752 < .001

Error Rate; Distal attractor
congruency 2.29 .140 .013
violation 18.01 < .001 .135
interaction 0.04 .846 < .001

Error Rate; Proximal attractor
congruency 15.79 < .001 .085
violation 5.33 .027 .040
interaction 0.57 .454 .003

Table 2: One-way between-subjects ANOVAs were con-
ducted to compare the effect of congruency, violation,
and their interaction on RT and ER for both proximal
and distal attractors. Highlighted rows indicate signif-
icance at the p < .05 level. The last column provides
η2G values, an estimator of the variance explained by the
ANOVA, similar to r2 for linear models.

NLMs displayed super-human performances in
evaluating grammatical sentences. T5 is sensitive
to the mere presence of an attractor, whose distance
strongly modulates performance. GPT-3 is not sen-
sitive to the mere presence of an attractor, but elicits
a significant distance effect. Both models, but not
humans, have near-chance performances in the case
of a proximal attractor. These results might have
a two-fold interpretation. The presence of gram-
matical illusions in both humans and models might
be informative on the role of training in linguis-
tic performance: in real sentences, grammatical
sentences vastly outnumber ungrammatical ones.
We might therefore be describing a similar training
bias between humans and NLMs. There is a com-
mon response profile between the NLMs, which
demonstrates the sensitivity of transformer models
to statistical regularities. This allows us to zoom
in on T5, which is more directly comparable to hu-

mans, and investigate how the Congruency factor
modulates the ER.

The reduction in the ER in the human data was
traced to a facilitatory effect of congruency: con-
gruent trials led to fewer errors in the proximal
compared to the distal attractor. On the contrary, in
T5, the incongruent trials yielded chance-level per-
formances, but there was no distance effect in the
congruent trials. This indicates that congruent sen-
tences help humans in performing the task, but not
NLMs. Additionally, incongruent sentences have a
detrimental effect in the models, but no such effect
is observed in humans. These observations point to
a common sensitivity to the attractor-verb distance
in both systems, but a fundamental difference as to
the outcome of this sensitivity.

3 Discussion

In this study, we revisited the classical attraction
effect in subject-verb number agreement in humans
and neural networks and sought to assess the influ-
ence of the attractor-verb distance.

Our results draw a picture of a shared distance
sensitivity between humans and NLMs, but also a
fundamental difference in the weight of this sen-
sitivity. We observed that the artificial system op-
erates on the basis of word-level statistics, and is
thus driven to chance-level performance in the pres-
ence of a deviant bigram (Figure 3-bottom right-
Incongruent trials). On the contrary, the incon-
gruency of the sentence leads to comparable error
rates irrespective of the attractor distance in hu-
mans (Figure 3-central column). The significant
effect of congruency observed in the human data is
due to a facilitatory effect of congruency in judg-
ing grammaticality, and not an inhibitory effect
of incongruency, unlike with the neural networks.
This effect is mostly evident in the agrammatical
sentences and can be decomposed as follows.

Consider the following two sentences:
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(a) [Congruent]
The writers who like the happy young
editors cries.

(b) [Incongruent]
The writers who like the happy young
editor cries.

Participants and T5 made fewer errors in (a)
compared to (b). Participants also made fewer er-
rors in (a) when the attractor was further away. We
thus observe a facilitatory effect. Notice that here
we have the realization of the locally implausible
bigram “editors cries”. One possible interpreta-
tion might be that the participants were lured into
judging this sentence as invalid, based on the pres-
ence of this bigram. A facilitatory effect is hence
observed because the sentence was indeed agram-
matical.

The error rate for the incongruent cases like (b)
remained unchanged for the humans, with respect
to the distal attractor (see Figure 3-central column).
Importantly, though, in this case, where a plau-
sible bigram is found (“editor cries”), the NLM
reached chance-level performance. Given the local
agreement of the attractor with the verb, the NLM
was lured into judging the sentence as grammatical,
when the sentence was wrong, whereas humans
were able to mostly overcome the attraction effect.

Thus, our results suggest that operations at the
n-gram level might play a key role in explaining the
observed phenomena, in both humans and NLMs.

Nevertheless, alternative explanations can be
described. In many behavioral studies, significant
effects of congruency have been reported in non-
intervening attractor structures such as Object Rel-
ative Clauses (e.g.: The player that the [teacher
encourage/s] climbs) (Wagers et al., 2009). The
n-gram mechanism cannot explain attraction phe-
nomena in this setup, something that the dominant
model of attraction (cue-retrieval model, (Wagers
et al., 2009)) can do. In this model, a memory
mechanism is enabled upon a cue, that retrieves the
number of the subject from the memory system and
the errors can be attributed to retrieval interference.
Under this interpretation, the memory representa-
tion attractors fade with distance and therefore the
distal attractor does not compete for retrieval. In
contrast, when the attractor is in the vicinity of the
verb, similarity-based retrieval interference can oc-
cur, and thus, attraction effects can only be realized
in that condition (McElree et al., 2003).

However, it is important to note that none of the
dominant models of grammatical agreement (cue-
based retrieval model & feature percolation) are
complete, as both are conclusive in ungrammatical
conditions, but not always for the grammatical ones.
Thus, a need of model revision seems necessary.
In this study, we tried to point to the calculation
of transition probabilities as a candidate factor for
model development.

3.1 Limitations
There are a number of limitations that narrows the
scope of our results. First, it is difficult to draw
general conclusions from a single experiment on
grammatical number agreement. Second, although
all conditions are balanced, the stimuli we used are
not devoid of semantic content which might induce
some biases. These results will need to be con-
firmed in future experiments using different tasks
and stimuli, for example using morphosyntactically
marked stimuli but devoid of semantics, so-called
“jabberwocky” sentences (Hahne and Jescheniak,
2001; Desbordes et al., 2023). This subject repre-
sents a significant area for our ongoing research
and exploration.

Third, we compared human participants to lan-
guage models under the assumption that NLMs
express sensitivity to probabilistic relationships at
the word level, and thus a comparison under the
same conditions might shed light on the processing
of language in the human brain. We are fully aware
that this comparison is indirect, and that an LSTM
architecture might have been more appropriate for
such a comparison. Nevertheless, the literature has
pointed to differences between grammatical and un-
grammatical conditions, effects that we replicated
in this study, and we therefore sought for a model
that would allow us for a direct comparison for
each condition.

3.2 Conclusion
Our results show that, in humans and NLMs, lan-
guage processing is affected by the attractor-verb
distance. We additionally hypothesize that this is
due to the calculation of transition probabilities at
the word level, which can either run contrary or
reinforce the overall structure-based processing.

Humans are less affected by this local inter-
ference, suggesting that language models process
language in ways that are still fundamentally dif-
ferent from humans, even though they superficially
coincide, e.g. in grammatical cases in our data.
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Appendices

A Questionnaire, Instructions, and
Stimuli

Instructions

The exact instructions given to the participants are
provided below. They consisted of three separate
pages, participants could go back and forth between
pages freely.

Remember that the key/response binding was
randomized across subjects, so page 3 provided be-
low only applied to half of our participants, where
the other half had a corresponding, flipped associa-
tion of key and responses.

Page 1

• This experiment is about sentence processing

• You will read sentences on the screen, with
the words presented one after the other, at the
center of the screen

• Some of these sentences will contain mistakes

• Your task is to find these mistakes

Page 2

Here are a few examples to show what we mean by
correct and incorrect. Remember that the sentence
will not be presented as a whole, but rather one word
after another.
Incorrect examples:

• The boy drink water while listening to music

• The farmer near the two pilot detests boxing

• The athletes that dislike the happy proud banker
sings

Correct examples:

• The boy drinks water while listening to music

• The farmer near the two pilots detests boxing

• The athletes that dislike the happy proud banker
sing

Some sentences might be a bit weird, like in exam-
ple 3, but you should always be able to perform the
task if you remain focused.

Page 3

You have to look at the cross at the center of the
screen, which is always present when there is no word
to read. Make sure the luminosity of your screen is
high enough for you to read. Then you will read
sentences one word after the other and you have to
do the following:

• As soon as you think a given sentence is IN-
CORRECT, please press the -> right arrow key
on your keyboard

• When the sentence ends, if you think it is COR-
RECT, please press the <- left arrow key on
your keyboard

• You have to answer every time, even when
you’re not sure or you feel you don’t know.
Only after you answer, the following sentence
will start. Answer the best you can!

After each answer you will receive feedback: the cen-
tral cross will turn green if you answered correctly,
and red otherwise. If you can, please turn your com-
puter audio on: that way, you will receive feedback
with sounds for each trial.
This is the last instruction page. You can go back
to the other pages, but when you move forward the
experiment ask you to go fullscreen. Then the experi-
ment will start with 5 training examples so that you
understand the task.

Material

All stimuli are provided below, first the grammati-
cal ones (1-50), then the ungrammatical ones (51-
100):

1. The lawyers who avoid the kind gentle judge lie.
2. The athlete who hates the farmers the least sings.
3. The judges that fear the proud charming man sing.
4. The builder who dislikes the proud gentle farmer cheats.
5. The plumbers that run happily although rather quickly

lie.
6. The painter who loves the young lazy farmers cheats.
7. The waiter who avoids the judge the least cooks.
8. The waiters that love the chefs the least pray.
9. The tailor who avoids the farmer the least prays.

10. The waiters that walk happily albeit pretty quickly pray.
11. The judges that avoid the tailors the most swim.
12. The women who love the happy clever chefs sing.
13. The lawyer that runs carefully yet fairly quickly swims.
14. The athlete that loves the vet the most lies.
15. The waiters who walk carefully yet pretty quickly lie.
16. The teacher who fears the lawyers the most cheats.
17. The teachers who fear the plumber the most climb.
18. The waiters who avoid the clumsy clever plumber cheat.
19. The waiter who dislikes the proud nice woman swims.
20. The chefs who avoid the waiters the least climb.
21. The painters who fear the funny nice women pray.
22. The vets that like the farmer the most smoke.
23. The doctor that runs happily albeit rather carefully

cheats.
24. The teachers that dislike the tailors the least cheat.
25. The lawyers that love the waiter the least climb.
26. The plumber who fears the lawyer the most climbs.
27. The painters that love the careless proud judges smoke.
28. The farmers that run happily though fairly quickly sing.
29. The waiters that walk carefully although rather quickly

cheat.
30. The man who laughs happily though pretty quickly lies.
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31. The plumber that rides happily although pretty quickly
swims.

32. The actor that dislikes the lawyer the most prays.
33. The chef who dislikes the authors the least cheats.
34. The vet that likes the proud helpful painters cheats.
35. The farmer who fears the clever lazy tailors cheats.
36. The painter who dislikes the nice careless teacher cheats.
37. The painters that dislike the careless helpful tailors

climb.
38. The waiters who avoid the men the most sing.
39. The actors that hate the painter the most cook.
40. The teacher who likes the bakers the most sings.
41. The actor who dislikes the chefs the most swims.
42. The lawyers that fear the funny kind athlete pray.
43. The bakers that fear the man the least pray.
44. The actors who fear the nice proud men cook.
45. The man who laughs carefully yet rather quickly

smokes.
46. The athlete who hates the proud funny woman prays.
47. The tailor that loves the clever clumsy bakers cheats.
48. The man who avoids the clumsy helpful chef sings.
49. The vets who dislike the young nice man cheat.
50. The man who fears the lazy nice authors lies.
51. The baker who likes the clever happy plumber swims.
52. The baker that hates the lazy gentle man cooks.
53. The waiter who likes the actors the most smokes.
54. The tailors who like the nice cool men swim.
55. The women who fear the lazy clumsy plumber sing.
56. The baker who dislikes the judge the least cooks.
57. The woman that fears the baker the most cheats.
58. The plumber who talks happily yet rather quickly

swims.
59. The lawyer that likes the farmers the most swims.
60. The bakers that love the careless clever chef pray.
61. The man who walks carefully although fairly quickly

cheats.
62. The man that runs carefully though rather quickly lies.
63. The bakers who love the actor the least cheat.
64. The tailor that dislikes the cool lazy baker prays.
65. The plumbers who love the kind charming doctor cheat.
66. The pilots that hate the waiter the most cook.
67. The baker who dislikes the kind helpful plumbers lies.
68. The farmer who fears the doctors the least swims.
69. The doctor who hates the actor the least cheats.
70. The waiter who hates the cool clumsy man swims.
71. The farmer who likes the builders the least prays.
72. The waiter who dislikes the painter the least prays.
73. The woman who avoids the gentle lazy waiters prays.
74. The author that hates the waiters the least smokes.
75. The doctor that hates the careless young teacher lies.
76. The chef that dislikes the proud clumsy tailors sings.
77. The athletes who love the judges the least sing.
78. The bakers that love the lovely helpful women cook.
79. The tailors that drive happily although fairly quickly

climb.
80. The tailors who run carefully yet fairly happily cheat.
81. The chefs who love the proud cool bakers cook.
82. The bakers who fear the woman the most climb.
83. The teacher who dislikes the helpful charming builders

cheats.
84. The chefs who run carefully albeit rather quickly cook.
85. The painter who loves the helpful friendly judges prays.
86. The waiters that run carefully though pretty quickly

cook.
87. The teachers that avoid the waiters the most pray.
88. The waiters who drive happily yet fairly quickly swim.
89. The painter that avoids the waiter the most prays.
90. The tailors that love the charming young authors smoke.
91. The lawyers that dislike the proud young farmer cheat.
92. The vets that love the woman the least cook.
93. The doctors that like the bakers the least pray.
94. The builder that drives happily though rather quickly

cheats.
95. The plumbers who dislike the careless clever bakers

sing.
96. The athletes who hate the bakers the most swim.
97. The doctors that like the chef the most cook.
98. The bakers who fear the friendly nice man swim.
99. The men who dislike the pilots the least pray.

100. The plumber that laughs carefully yet pretty quickly
prays.

B Additional Results

Table 3: ANOVAs for two dependent variables in hu-
mans (response time and error rates) and for error rates
in T5, testing whether there was a significant effect of
violation in three possible conditions: Baseline, (no
attractor), and Distal and Proximal attractors.

condition Statistic p-value η2G

Response Time (humans)
Baseline F1,33 = 1.81 .187 .023
Distal F1,33 = 27.86 < .001 .274
Proximal F1,33 = 13.22 < .001 .139

Error Rate (humans)
Baseline F1,33 = 10.91 .002 .040
Distal F1,33 = 22.76 < .001 .032
Proximal F1,33 = 28.60 < .001 .047

Error Rate (T5)
Baseline F1,110 = 6.29 .014 .054
Distal F1,233 = 71.59 < .001 .235
Proximal F1,216 = 147.35 < .001 .406

Table 4: Corresponding table to Table 1 with the filter
operation when the attractor is singular.

Effect F1,33 p-value η2G

Response Time; Distal attractor
congruency 1.12 .297 .001
violation 14.02 < .001 .021
interaction 0.15 .704 < .001

Response Time; Proximal attractor
congruency 0.00 .961 < .001
violation 13.66 < .001 .045
interaction 0.32 .578 < .001

Error Rate; Distal attractor
congruency 0.03 .867 < .001
violation 14.52 < .001 .091
interaction 0.88 .356 .003

Error Rate; Proximal attractor
congruency 0.00 > .999 < .001
violation 8.17 .007 .053
interaction 0.38 .539 .002
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Figure 4: Corresponding figure to 3 filtering for singular attractors: observe the overall collapse of the effect of
congruency.

Table 5: Table 2 with full dataset of N=54 participants
included

Effect F1,53 p-value η2G

Response Time; Distal attractor
congruency 0.14 .714 < .001
violation 11.77 .001 .024
interaction 0.08 .773 < .001

Response Time; Proximal attractor
congruency 0.16 .691 < .001
violation 17.98 < .001 .038
interaction 0.97 .329 .002

Error Rate; Distal attractor
congruency 0.01 .918 < .001
violation 20.70 < .001 .062
interaction 0.09 .768 < .001

Error Rate; Proximal attractor
congruency 0.75 .391 .002
violation 18.21 < .001 .064
interaction 0.27 .607 < .001
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Figure 5: Performances of humans and NLMs, using all
participants: colors indicate grammaticality, error bars
indicate (all figures) SEM over participants (humans) or
sentences (NLMs). Results are comparable to the ones
after rejection of low-performing participants
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