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Abstract

Given the exponential growth in the number of
documents on the web in recent years, there
is an increasing demand for accurate models
to extract keyphrases from such documents.
Keyphrase extraction is the task of automat-
ically identifying representative keyphrases
from the source document. Typically, candidate
keyphrases exhibit latent hierarchical structures
embedded with intricate syntactic and semantic
information. Moreover, the relationships be-
tween candidate keyphrases and the document
also form hierarchical structures. Therefore, it
is essential to consider these latent hierarchical
structures when extracting keyphrases. How-
ever, many recent unsupervised keyphrase ex-
traction models overlook this aspect, resulting
in incorrect keyphrase extraction. In this paper,
we address this issue by proposing a new hyper-
bolic ranking model (HyperRank). HyperRank
is designed to jointly model global and local
context information for estimating the impor-
tance of each candidate keyphrase within the
hyperbolic space, enabling accurate keyphrase
extraction. Experimental results demonstrate
that HyperRank significantly outperforms re-
cent state-of-the-art baselines.

1 Introduction

Keyphrase extraction is a natural language process-
ing task that involves extracting a set of representa-
tive keyphrases from the source document (Hasan
and Ng, 2014; Song et al., 2023b). This task is
valuable for generating a concise summary or snip-
pet of a web page. The core objective of keyphrase
extraction is to condense information from the in-
put document and preserve only the most essential
details in the output. Distinguishing what informa-
tion is important is a challenge in the keyphrase
extraction task, primarily due to the fact that can-
didate keyphrases often exhibit latent hierarchical
structures (Zhu et al., 2020; Song et al., 2022a), as
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Figure 1: Illustration of the latent hierarchy hidden
in candidate keyphrases by an example sentence "Nu-
merical representation of binary relations with a mul-
tiplicative error function". Specifically, we present the
latent hierarchical structures hidden among candidate
keyphrases.

illustrated in Figure 1. Consequently, when extract-
ing keyphrases, it is necessary to consider these
latent hierarchical structures to accurately estimate
the importance scores of candidate keyphrases.

Typically, most existing unsupervised keyphrase
extraction models that rely on pre-trained word em-
beddings, as discussed in (Bennani-Smires et al.,
2018; Sun et al., 2020; Saxena et al., 2020; Liang
et al., 2021; Song et al., 2023d), can be catego-
rized into two primary steps: candidate keyphrase
generation and keyphrase importance estimation
(Hasan and Ng, 2014; Song et al., 2021, 2023f,b).
Specifically, the former step involves extracting
a list of words or phrases from the source docu-
ment that serve as candidate keyphrases through
heuristic methods (Wan and Xiao, 2008a; Nguyen
and Phan, 2009; Grineva et al., 2009; Song et al.,
2023c; Liang et al., 2021). The latter step mainly
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consists of two components: text representation
and importance calculation. Text representation is
obtained using pre-trained language models such
as BERT (Devlin et al., 2019). Subsequently, the
importance scores of candidate keyphrases are esti-
mated based on the pre-trained embeddings. This is
achieved by calculating textual similarities between
candidate keyphrases and the document using vari-
ous distance measures, such as Manhattan distance,
Euclidean distance, and Cosine distance. These
measures are employed to determine which candi-
date keyphrases are the real keyphrases (Bennani-
Smires et al., 2018; Sun et al., 2020; Song et al.,
2023e; Liang et al., 2021; Song et al., 2023d).

In recent years, a significant breakthrough in nat-
ural language processing has been the widespread
adoption of heavily pre-trained transformers de-
signed for natural language modeling, exemplified
by BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019). These Pre-trained Language Mod-
els (PLMs) have proven to be formidable tools for
various downstream tasks in natural language pro-
cessing and information retrieval. As a result, they
have evolved into indispensable components, serv-
ing as embedding layers to obtain contextualized
representations in most NLP downstream tasks.
Leveraging the advancements in text representa-
tion, embedding-based unsupervised keyphrase ex-
traction models (Bennani-Smires et al., 2018; Sun
et al., 2020; Liang et al., 2021; Zhang et al., 2022;
Song et al., 2023c) have demonstrated promising
results and have now established themselves as the
new state-of-the-art benchmarks.

Candidate keyphrases frequently present an in-
herent hierarchical structure infused with intricate
syntax and semantics (Zhu et al., 2020; Dai et al.,
2020; Song et al., 2022a). In addition to candi-
date keyphrases, the relations between keyphrases
and the document can also give rise to hierarchical
structures. However, capturing such hierarchies,
even in infinite dimensions within Euclidean space,
poses a considerable challenge (Ganea et al., 2018a;
Tifrea et al., 2019). Fortunately, hyperbolic space
naturally lends itself to modeling these hierarchical
structures, including tree-like characteristics (Zhu
et al., 2020). This property makes hyperbolic space
a valuable tool applied in various downstream nat-
ural language processing tasks (Chen et al., 2020;
Song et al., 2023a; Chen et al., 2021).

Motivated by the phenomena mentioned above,
in this paper, we explore the task of embedding-

based unsupervised keyphrase extraction in the hy-
perbolic space. More specifically, we propose a
new hyperbolic ranking model (HyperRank) de-
signed to model the importance estimation in the
hyperbolic space. In HyperRank, we first leverage
the pre-trained language model BERT as the back-
bone of our model to enhance the quality of text rep-
resentations, projecting these representations into
the hyperbolic space. To estimate the importance of
each candidate keyphrase accurately, we simultane-
ously consider two perspectives: phrase-document
relevance and cross-phrase relevance. Concretely,
the former calculates the relevance scores between
candidate keyphrases and their corresponding doc-
ument, while the latter calculates the relevance
scores between all candidate keyphrases. We then
combine these two relevance scores to determine
the final importance scores of candidate keyphrases
to rank and extract keyphrases. Our experimental
results demonstrate that the proposed model Hy-
perRank outperforms recent strong baselines sig-
nificantly. We conduct various analyses on existing
datasets to explore the characteristics of our model.
Additionally, we discover that merely mapping rep-
resentations to the hyperbolic space may likely mit-
igate the anisotropic issues in text representation in
the keyphrase extraction task.

2 Related Work

We briefly introduce the recent progress on unsu-
pervised keyphrase extraction and hyperbolic rep-
resentation learning in this section.

2.1 Unsupervised Keyphrase Extraction

Unsupervised keyphrase extraction models can be
categorized into statistics-based (Salton and Buck-
ley, 1988; Witten et al., 1999), graph-based (Mi-
halcea and Tarau, 2004; Grineva et al., 2009), and
embedding-based methods (Bennani-Smires et al.,
2018; Sun et al., 2020; Saxena et al., 2020; Liang
et al., 2021; Ding and Luo, 2021). To delve into
more detail, embedding-based models have wit-
nessed substantial advancements, mainly owing
to the progress in representation learning. For in-
stance, EmbedRank (Bennani-Smires et al., 2018)
assesses candidate phrases by gauging their simi-
larity through phrase and document embeddings.
Subsequently, Sun et al. (2020) enhances the static
embeddings from EmbedRank using a pre-trained
language model. Liang et al. (2021) leverage lo-
cal and global contextual information in Euclidean
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space to accurately estimate the importance score
of each candidate keyphrase, consequently facili-
tating high-quality keyphrase extraction.

Diverging from existing models, we investigate
unsupervised keyphrase extraction within the hy-
perbolic space rather than the conventional Eu-
clidean space. More specifically, our model entails
the initial mapping candidate keyphrases and their
associated document representations into the same
hyperbolic space. Subsequently, we employ the
Poincaré Distance to calculate the phrase-document
and cross-phrase relevance scores, aggregating and
obtaining the importance score of each candidate
keyphrase.

2.2 Hyperbolic Representation Learning

Recent advancements in representation learning, as
illustrated by Nickel and Kiela (2017), have em-
phasized the superiority of hyperbolic space over
Euclidean space, particularly in terms of representa-
tion capacity, especially when working with lower
dimensions. Meanwhile, Ganea et al. (2018b) in-
troduced a formalism for generalized operations in
neural networks within the Poincaré ball, utilizing
the framework of Möbius gyrovector space.

Later, recent research has showcased the advan-
tages of hyperbolic space in various natural lan-
guage processing tasks, including word embedding
(Tifrea et al., 2019), machine translation (Ganea
et al., 2018a), text classification (Chen et al., 2020),
and text summarization (Song et al., 2022b, 2023a).
Furthermore, previous research (Song et al., 2022a)
has confirmed the effectiveness of modeling super-
vised keyphrase extraction models in hyperbolic
space, yielding favorable results. In this paper, we
further validate the feasibility of hyperbolic deep
learning under an unsupervised setting.

3 Preliminary

Generally, hyperbolic space can be characterized
using Riemannian geometry, as described in Hop-
per and Andrews (2011). In line with previous stud-
ies (Nickel and Kiela, 2017; Ganea et al., 2018b;
Tifrea et al., 2019), we employ the Poincaré ball
model and introduce an additional hyper-parameter
denoted as c to modify the curvature of the Poincaré
ball. This curvature modification is defined as
Dn
c = x ∈ Rn : c‖x‖2 < 1, c ≥ 0. Concretely, the

corresponding conformal factor is now represented
as λcx := 2

1−c‖x‖2 . In practice, the choice of the pa-
rameter c allows us to balance between hyperbolic

and Euclidean geometries. Notably, when c tends
towards zero, all the formulas discussed below re-
vert to their typical Euclidean forms. We provide
a restatement of the fundamental mathematical op-
erations for the generalized Poincaré ball model.
For more comprehensive information, readers are
encouraged to refer to Ganea et al. (2018b). Ad-
ditionally, we present the closed-form expressions
for several Möbius operations.
Möbius Addition. For a pair x,y ∈ Dn

c , the
Möbius addition is defined as,

x⊕cy =
(1 + 2c〈x,y〉+ c‖y‖2)x+ (1− c‖x‖2)y

1 + 2c〈x,y〉+ c2‖x‖2‖y‖2 . (1)

Exponential and Logarithmic Maps. To per-
form operations within the hyperbolic space, it is
necessary to establish a mapping function from
Rn to Dn

c in order to transfer Euclidean vectors
into the hyperbolic space. We denote the tangent
space of Dn

c at x as TxDn
c . The exponential map

expcx(·) : TxDn
c → Dn

c for v 6= 0 is defined as
follows:

expc
x(v) = x⊕c (tanh(

√
c
λc
x‖v‖
2

)
v√
c‖v‖ ). (2)

As the inverse of expcx(·), the logarithmic map
logcx(·) : Dn

c → TxDn
c for y 6= x can be calculated

as follows:

logc
x(y) =

2√
cλc

x
tanh−1(

√
c‖−x⊕cy‖) −x⊕c y

‖ − x⊕c y‖
(3)

Poincaré Distance. The induced distance function
is defined as,

dc(x,y) =
2√
c

arctanh(
√
c‖ − x⊕c y‖). (4)

Here, dc(·) denotes the Poincaré Distance. Note
that with c = 1 one recovers the geodesic distance,
while with c→ 0 we obtain the Euclidean distance,
represented as, limc→0dc(x,y) = 2‖x− y‖.

4 Methodology

The overall architecture of our model HyperRank
is illustrated in Figure 2. HyperRank comprises
two main parts: candidate keyphrase generation
and keyphrase importance estimation. In the first
part, we employ natural language linguistic tech-
niques to generate candidate keyphrases from the
input document, as illustrated in Figure 3. The sec-
ond part involves embedding candidate keyphrases
and their corresponding document into a low-
dimensional semantic space using the pre-trained
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Figure 2: The overall architecture of our model HyperRank.
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Figure 3: The procedure of our candidate keyphrase
generation. (1) Get tokenized document and POS tags.
(2) Extract noun phrases that consist of zero or more
adjectives followed by one or multiple nouns.

language model BERT (Devlin et al., 2019). Then,
HyperRank estimates and ranks the importance of
each candidate keyphrase by modeling the context
information of the input document from global and
local perspectives, ultimately resulting in the ex-
traction of the top-ranked candidates as keyphrases.
Further details are shown in the following sections.

4.1 Candidate Keyphrase Generation

In this subsection, we describe the process of gen-
erating candidate keyphrases in our model Hyper-
Rank. In line with previous studies (Liang et al.,
2021; Song et al., 2022c, 2023d), we employ Stan-
ford CoreNLP Tools1 for tasks such as tokenization,
part-of-speech tagging, and noun phrase chunking.
To generate candidate keyphrases, we use the reg-
ular expression < NN.|JJ >< NN.∗ > and uti-
lize the Python package NLTK2 to extract noun
phrases as candidate keyphrases. The detailed il-
lustration of our candidate keyphrase generation
process is in Figure 3.

1https://stanfordnlp.github.io/CoreNLP/
2https://github.com/nltk

4.2 Keyphrase Importance Estimation
In order to obtain the importance scores of candi-
date keyphrases, we first obtain the representations
of the document and its corresponding candidate
keyphrases through the pre-trained language model
BERT. Subsequently, we derive the importance of
candidate keyphrases through two distinct perspec-
tives: phrase-document relevance and cross-phrase
relevance. These two relevance are then combined
to form the final importance scores for candidate
keyphases. Finally, the importance scores are used
to rank and extract keyphrases.

4.2.1 Text Representation
We adopt the pre-trained language model BERT
(Devlin et al., 2019) to obtain word embeddings for
the document D = {w1, ..., wm, ..., wM},

H = [h>1 , ...,h
>
m, ...,h

>
M ]>

= BERT({w1, ..., wm, ..., wM}),
(5)

where hm indicates the representation of the m-th
word in the source document. Next, we adopt word
embeddings to obtain representations of candidate
keyphrases. Considering the primary objective of
the keyphrase extraction task, it is generally antic-
ipated that the extracted keyphrases should effec-
tively encapsulate the central semantics of the doc-
ument (Hasan and Ng, 2014). To capture these cen-
tral semantics within the candidate keyphrases, we
obtain representations of the candidate keyphrases
through max-pooling operation, a straightforward
and parameter-free approach. Then, the representa-
tion of the i-th candidate keyphrase can be calcu-
lated as follows,

hpi = Max-Pooling({hk, ...,hk+|pi|−1}), (6)
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where hpi is the i-th candidate keyphrase represen-
tation in the Euclidean space and |pi| indicates the
length of pi. Specifically, hk represents the first
word in the document associated with the candidate
keyphrase pi. Meanwhile, we adopt the average
pooling operation to obtain the representation hd

of the source document D.

4.2.2 Phrase-Document Relevance
As previously mentioned, candidate keyphrases
often exhibit inherent hierarchical structures with
complex syntax and semantics (Zhu et al., 2020;
Dai et al., 2020; Nickel and Kiela, 2017). In ad-
dition to candidate keyphrases, latent hierarchical
structures are hidden in the relations between candi-
date keyphrases and their corresponding document.
However, capturing such hierarchical structures,
even with infinite dimensions, proves challenging
within the Euclidean space (Linial et al., 1995; Zhu
et al., 2020; Chen et al., 2021).

In light of the aforementioned challenges, in this
paper, we delve into unsupervised keyphrase ex-
traction within the hyperbolic space. To elaborate,
our model begins by mapping candidate keyphrases
and their corresponding document representations
into the same hyperbolic space. Subsequently, we
compute the point-wise importance of the i-th can-
didate keyphrase by evaluating phrase-document
relevance through the Poincaré distance, as illus-
trated below,

rdi =
1

dc(expc0(hd), ĥpi)
. (7)

Here, rdi indicates the phrase-document relevance
of the i-th candidate keyphrase, expc0(·) maps the
Euclidean space inside the Poincaré ball, and dc(·)
denotes the Poincaré distance. Specifically, ĥpi

means the hyperbolic representation of the i-th can-
didate keyphrase and is computed as follows,

ĥpi = Max-Pooling({hk, ...,hk+|pi|−1}).
= expc0({hk, ...,hk+|pi|−1}).

(8)

The latent hierarchical relationships are implicitly
modeled through the aforementioned process when
determining the relevance between the document
and its candidate keyphrases, effectively estimating
the importance of candidate keyphrases.

4.2.3 Cross-Phrase Relevance
Typically, the phrase-document relevance is com-
puted individually between the document and each

candidate keyphrase, making it unable to distin-
guish which candidate keyphrases are superior to
others (Liang et al., 2021; Song et al., 2023d). To
identify more prominent keyphrases from all candi-
dates, we introduce cross-phrase relevance, which
assists in selecting the most relevant keyphrases
from the candidate keyphrases and is calculated
between the i-th candidate and all other candidates,
as follows,

rpi =
N−1∑

j=1,j 6=i

(
hpih

>
pj√
d
− δi), (9)

where
hpih

>
pj√
d

denotes the scaled semantic related-
ness between the i-th candidate and the j-th candi-
date and d is the dimension of hpi . δi means the av-
erage of semantic relatedness between the i-th can-

didate keyphrase with others (
∑N−1

j=1,j 6=i

hpih
>
pj√
d

),
and we treat it as a de-noisy factor, which removes
small semantic relatedness between all candidates.

4.2.4 Relevance Aggregation
After obtaining the two relevance scores, we com-
bine them into a unified score, which serves as the
importance score of each candidate keyphrase,

si = rdi · rpi (10)

where si indicates the importance score of the i-th
candidate keyphrase.

4.2.5 Position Regularization
In various domain-specific text documents, such as
scientific and news articles, keyphrases often have
a tendency to appear at the beginning or front of the
source document (Florescu and Caragea, 2017a,b;
Liang et al., 2021; Song et al., 2023d). Therefore,
we introduce positional information as a regulariza-
tion mechanism to optimize the importance scores
of candidate keyphrases. And the importance score
of the i-th candidate keyphrase can be re-calculated
as follows,

ρi =
e

1
i

∑N
i=1 e

1
i

, (11)

ŝi = ρi · si. (12)

where ρi is the position regularization of the i-th
candidate keyphrase and ŝi is the final importance
score of the i-th candidate keyphrase. By imple-
menting the position regularization strategy, we
can enhance the importance scores of candidate
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Model DUC2001 Inspec SemEval2010
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Statistical Models
TF-IDF (Jones, 2004) 9.21 10.63 11.06 11.28 13.88 13.83 2.81 3.48 3.91
YAKE (Campos et al., 2018) 12.27 14.37 14.76 18.08 19.62 20.11 11.76 14.4 15.19
Graph-based Models
TextRank (Mihalcea and Tarau, 2004) 11.80 18.28 20.22 27.04 25.08 36.65 3.80 5.38 7.65
SingleRank (Wan and Xiao, 2008b) 20.43 25.59 25.70 27.79 34.46 36.05 5.90 9.02 10.58
TopicRank (Bougouin et al., 2013) 21.56 23.12 20.87 25.38 28.46 29.49 12.12 12.90 13.54
PositionRank (Florescu and Caragea, 2017b) 23.35 28.57 28.60 28.12 32.87 33.32 9.84 13.34 14.33
MultipartiteRank (Boudin, 2018) 23.20 25.00 25.24 25.96 29.57 30.85 12.13 13.79 14.92
Embedding-based Models
EmbedRankd2v (Bennani-Smires et al., 2018) 24.02 28.12 28.82 31.51 37.94 37.96 3.02 5.08 7.23
EmbedRanks2v (Bennani-Smires et al., 2018) 27.16 31.85 31.52 29.88 37.09 38.40 5.40 8.91 10.06
KeyGames (Saxena et al., 2020) 24.42 28.28 29.77 32.12 40.48 40.94 11.93 14.35 14.62
SIFRank (Sun et al., 2020) 24.27 27.43 27.86 29.11 38.80 39.59 - - -
SIFRank+ (Sun et al., 2020) 30.88 33.37 32.24 28.49 36.77 38.82 - - -
JointGL (Liang et al., 2021) 28.62 35.52 36.29 32.61 40.17 41.09 13.02 19.35 21.72
MDERank (Zhang et al., 2022) 23.31 26.65 26.42 27.85 34.36 36.40 13.05 18.27 20.35
HyperRank 32.68 39.18 40.21 33.35 40.79 42.12 14.79 21.33 24.20
Improvement Gain (%) 14.18 10.30 10.80 2.27 1.54 2.51 13.59 10.23 11.42

Table 1: Performance on DUC2001, Inspec and SemEval2010 test sets. The best results are bolded in the table.
The improvement gains (%) between HyperRank and the best baseline (JointGL) are listed. All the results in the
table are obtained by using the last layer of BERT as the embedding layer.

keyphrases located at the start of the source doc-
ument. Finally, we rank all candidates with their
importance scores and extract top-ranked K candi-
dates as keyphrases of the source document.

5 Experiments and Results

In this section, we conduct experiments to demon-
strate the effectiveness of our proposed model Hy-
perRank. Concretely, we first introduce our experi-
mental settings and then present the experimental
results and analysis.

5.1 Experimental Settings
Consistent with the previous studies (Liang et al.,
2021; Song et al., 2023d), we conduct experiments
on three benchmark keyphrase extraction datasets,
namely, DUC2001 (Wan and Xiao, 2008b), Inspec
(Hulth, 2003), and SemEval2010 (Kim et al., 2010).
DUC2001 (Wan and Xiao, 2008b) consists of 308
news articles, each with an average of 828.4 tokens.
Inspec (Hulth, 2003) contains 2,000 scientific ab-
stracts. We use 500 test documents for our experi-
ments and rely on the version of human-annotated
keyphrases as the ground-truth label, aligning with
the approach taken in prior research (Liang et al.,
2021; Song et al., 2023d). SemEval2010 (Kim
et al., 2010) is composed of ACM full-length pa-
pers. We evaluate our model on 100 test documents
and employ the combined set of author- and reader-
annotated keyphrases as the ground truth.

We follow the standard practice and evaluate the

performance of our models using the F1-measure
at the top-K keyphrases (F1@K). Additionally, we
apply stemming to both the extracted keyphrases
and the gold truth. Our reported metrics include
F1@5, F1@10, and F1@15 for our models and
baselines on three benchmark datasets.

To ensure a fair comparison, we employ the pre-
trained language model BERT (bert-base-uncased)
as the foundational element of our model, initial-
izing it with its pre-trained weights. As BERT
has a maximum document length constraint of 512
tokens, we truncate documents to adhere to this
limit. In addition, the dimension of BERT-based
representations is set to 768.

5.2 Results and Analysis

Table 1 presents the primary comparative results
between our proposed models and recent state-of-
the-art unsupervised keyphrase extraction baselines
on three benchmark datasets, with higher scores
indicating superior performance. Specifically, the
results in Table 1 unequivocally show that Hyper-
Rank outperforms most state-of-the-art baselines
by a margin across all evaluation metrics, indicat-
ing the effectiveness of our model.

Notably, HyperRank excels over statistical and
graph-based models, primarily attributed to its uti-
lization of the pre-trained language model BERT as
the backbone, which results in enhanced represen-
tations and improved accuracy when calculating
the importance of candidate keyphrases. These
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HyperRank w/ PDR R@5 R@10 R@15 P@5 P@10 P@15 F1@5 F1@10 F1@15
DUC2001

Manhattan Distance 14.68 21.50 27.66 22.54 17.00 14.91 17.56 18.75 19.11
Euclidean Distance 11.03 16.99 21.35 16.82 13.33 11.55 13.16 14.76 14.78
Cosine Distance 8.53 14.00 18.20 12.54 10.73 9.67 10.03 12.02 12.46
Poincaré Distance 17.68 30.27 40.33 27.28 23.81 21.64 21.17 26.32 27.79

Inspec
Manhattan Distance 19.55 32.26 43.31 31.80 27.29 25.75 22.68 27.82 30.66
Euclidean Distance 17.93 29.95 41.04 29.48 25.41 24.29 20.91 25.86 28.94
Cosine Distance 13.66 26.42 38.58 22.76 21.85 22.49 16.08 22.48 26.95
Poincaré Distance 23.88 39.71 49.76 39.32 34.21 30.21 27.99 34.59 35.63

SemEval2010
Euclidean Distance 5.43 9.35 12.39 12.80 11.10 10.00 7.58 10.08 10.99
Cosine Distance 3.64 5.35 7.56 8.80 6.50 6.13 5.10 5.81 6.70
Manhattan Distance 6.29 9.87 12.94 15.00 11.90 10.40 8.81 10.70 11.45
Poincaré Distance 8.01 13.03 17.73 19.20 15.80 14.47 11.22 14.14 15.78

Table 2: Performance on DUC2001, Inspec and SemEval2010 test sets. The best results are bolded in the table.
Specifically, all the results in the table are obtained by using the last intermediate layer of BERT.

Model
SemEval2010

F1@5 F1@10 F1@15

HyperRank 14.79 21.33 24.20
HyperRank w/ CPR 11.85 18.61 22.03
HyperRank w/ PDR 11.22 14.14 15.78

Table 3: Ablation tests on the SemEval2010 test set.
Specifically, HyperRank w/ PDR indicates that Hyper-
Rank only uses the phrase-document relevance.

findings also provide valuable insights into model-
ing text representation and importance estimation
within the hyperbolic space.

5.3 Ablation Test
In this section, we evaluate the performance of
each component of our model HyperRank. There-
fore, we conduct several ablation experiments to
study the impact of these components, the results
of which are detailed in Table 3 on three bench-
mark datasets. Specifically, "HyperRank w/ CPR"
represents our model without the calculation of
phrase-document relevance. Overall, the results
highlight the superiority of the individual compo-
nents within our model in terms of overall perfor-
mance, affirming the effectiveness of modeling text
representations in the hyperbolic space and calcu-
lating the importance of candidate keyphrases via
the Poincaré distance.

Observing the results from Table 3 and Table 1
jointly, compared to the baseline model (JointGL),
"HyperRank w/ PDR" achieves comparable per-
formance on three benchmark datasets in most
cases. Notably, our findings indicate that phrase-
document relevance holds greater significance than
cross-phrase relevance in our models.

5.4 Impact of Different Distance Measures

In this paper, our model utilizes the Poincaré dis-
tance to estimate textual semantic similarity be-
tween candidate keyphrases and the entire docu-
ment within the hyperbolic space. We also explored
the application of various distance measures, in-
cluding the Manhattan distance, Euclidean distance,
and Cosine distance. The results associated with
these different distance measures are detailed in
Table 2, highlighting the advantage of the Poincaré
distance. Meanwhile, we consider this advantage
may partially come from the enhanced representa-
tion capacity of the hyperbolic space.

Furthermore, we observe that Cosine distance
yields subpar results and could be unsuitable for cal-
culating phrase-document relevance in our model.
As mentioned, capturing such latent hierarchical
structures remains challenging even within infinite
dimensions in the Euclidean space.

5.5 Impact of Different Intermediate Layers

Previous studies (Kim et al., 2020; Rogers et al.,
2020; Song et al., 2022a) have highlighted that
the intermediate layers of the pre-trained language
model BERT capture a diverse hierarchy of linguis-
tic information, encompassing surface features in
its lower layers, syntactic features in the middle
layers, and semantic features in the higher layers.
On the other hand, embedding-based unsupervised
keyphrase extraction models rely on pre-trained
language models to acquire embeddings and utilize
these embeddings to calculate textual similarities
as the importance scores for candidate keyphrases
during keyphrase extraction. However, many ex-
isting embedding-based models focus solely on
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Figure 4: Results of using different intermediate layers of BERT on three benchmark datasets.

Document Embedding Phrase Embedding
DUC2001

F1@5 F1@10 F1@15

CLS Token
Max-Pooling 32.02 37.11 38.83

Average-Pooling 31.19 36.51 37.42

Average-Pooling
Max-Pooling 32.68 39.18 40.21

Average-Pooling 32.23 37.34 38.96

Max-Pooling
Max-Pooling 29.98 36.65 37.06

Average-Pooling 28.85 36.35 37.96

Table 4: Impact of different pooling operations for the document and its corresponding candidate keyphrases.

the last intermediate layer of the pre-trained lan-
guage model to derive text representations, often
overlooking the latent knowledge residing in the
intermediate layers of BERT.

Therefore, in this paper, we evaluate our model
HyperRank by employing different intermediate
layers of BERT as the embedding layer across three
benchmark datasets to verify the performance of
HyperRank. The results, as depicted in Figure 4,
reveal that the optimal performance may not neces-
sarily be achieved by exclusively utilizing the last
intermediate layer of BERT as the embedding layer.
We attribute this to the varying language character-
istics of keyphrases in different datasets, leading to
the observed bias. This highlights the importance
of embedding-based models considering different
intermediate layers of BERT as potential embed-
ding layers to tap into the full linguistic knowledge
embedded in pre-trained language models. Intrigu-

ingly, we observed a notable performance drop
when our model employed the 11th intermediate
layer as the embedding layer. The reasons behind
this phenomenon remain an interesting direction
for future investigation.

Earlier studies (Jawahar et al., 2019) have noted
that the pre-trained language model BERT pre-
dominantly captures phrase-level information in
its lower layers and gradually diminishes this in-
fluence in higher layers. To delve deeper into the
influence of employing different intermediate lay-
ers, we tested "HyperRank w/ PDR" using various
distance measures. Interestingly, we find that "Hy-
perRank w/ PDR" also yielded promising results
when utilizing the earlier intermediate layers.

5.6 Impact of Different Pooling Operations
In our model, we empirically employ the average-
pooling operation to derive the document repre-
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(a) Euclidean Space (b) Hyperbolic Space

Figure 5: Visualization of candidate keyphrases embed-
ded in the Euclidean and hyperbolic spaces.

sentation and utilize the max-pooling operation to
derive the representations of candidate keyphrases.
In Table 4, we present a comparison of various en-
coding methods, including max-pooling, average-
pooling, and the "[CLS]" token. It is evident from
the results that average-pooling is the most effec-
tive choice for document representation, while the
max-pooling operation proves to be the most suit-
able choice for the representations of candidate
keyphrases in our model.

5.7 Visualization of Representations in
Different Semantic Spaces

A keyphrase extraction system correctly predicts
a candidate keyphrase as a keyphrase because it
contains a word that frequently appears in its cor-
responding document but at the same time erro-
neously outputs other candidates as keyphrases be-
cause they have the same word. This phenomenon
can be attributed to word frequency biases and fur-
ther introduces the anisotropic3 problem in learn-
ing representation for the embedding-based unsu-
pervised keyphrase extraction models. To verify
this opinion, we visualize the representations of
candidate keyphrases in Euclidean and hyperbolic
spaces, as illustrated in Figure 5.

The 3-dimensional representations of candidate
keyphrases in Euclidean and hyperbolic spaces are
depicted in Figure 7 (a) and (b), respectively. In
general, it is evident that keyphrase representations
in the Euclidean space exhibit relatively high den-
sity (anisotropy) while being widely dispersed in
the hyperbolic space. Consequently, utilizing repre-
sentations learned in the hyperbolic space may lead
to more accurate estimations of importance scores

3“Anisotropic” means the pre-trained embeddings occupy
a narrow cone in the vector space (Gao et al., 2019). This
phenomenon is also observed in the pre-trained transformers
like BERT.

between candidate keyphrases and their respective
documents based on textual semantic similarities.

6 Conclusion

In this paper, we propose a novel hyperbolic rank-
ing model for unsupervised keyphrase extraction
(HyperRank). HyperRank is designed to concur-
rently model text representation and importance es-
timation in the hyperbolic space. To ensure the ac-
curacy of the importance estimation of each candi-
date keyphrase, HyperRank simultaneously utilizes
global and local contextual information to estimate
the relevance scores between candidate keyphrases
and their corresponding documents. Afterward, Hy-
perRank combines these two aspects of relevance
to derive the final importance score for each candi-
date keyphrase, which is then used for ranking and
keyphrase extraction. Our extensive experiments
conclusively demonstrate that the proposed model
HyperRank surpasses the performance of existing
state-of-the-art unsupervised keyphrase extraction
baselines.

7 Limitations

In this paper, we employ the pre-trained language
model BERT as our encoder. However, it comes
with a length limitation, typically allowing only
512 tokens for the length of the input document.
Some of the keyphrase extraction datasets we work
with have document lengths far exceeding this limit.
Consequently, when dealing with long documents,
there is a risk of information loss during encoding,
leading to a skewed estimation of phrase-document
relevance and keyphrase extraction.

In the future, exploring how pre-trained language
models can be adapted to address the challenge of
handling long documents in the keyphrase extrac-
tion task would be intriguing.
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