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Abstract

Given the input radiology images, the objective
of medical report generation is to produce accu-
rate and comprehensive medical reports, which
typically include multiple descriptive clinical
sentences associated with different phenotypes.
Most existing approaches have relied on a pre-
trained vision encoder to extract the visual rep-
resentations of the images. In this study, we
propose a phenotype-based contrastive learn-
ing framework, i.e., PhenotypeCLIP, to effi-
ciently bridge the gap between visual and tex-
tual modalities for improved text generation. In
contrast to existing contrastive learning meth-
ods which learn representations by contrast-
ing images with entire reports, our approach
learns more fine-grained representations, i.e.,
phenotype-based representations, by contrast-
ing images with each sentence within the re-
ports. The experiments on two widely-used
datasets MIMIC-CXR and IU X-ray demon-
strate that PhenotypeCLIP can achieve promis-
ing performances and substantially outperform
the conventional contrastive learning methods.

1 Introduction

Medical images, such as those from radiology and
pathology, and medical reports, which consist of
multiple clinical sentences describing both the nor-
malities and abnormalities in the medical images,
are frequently used for disease diagnosis and treat-
ment (Jing et al., 2018, 2019). Therefore, medical
report generation has the potential to reduce the
heavy workload of experienced radiologists in re-
port writing and remind inexperienced radiologists
of abnormalities (Jing et al., 2018; Li et al., 2018).

Similar to the task of image captioning (Xu et al.,
2015), which aims to describe the visual content in
the images, lots of encoder-decoder-based medical
report generation models are proposed (Jing et al.,
2018, 2019; Li et al., 2018; Chen et al., 2020c; Liu
et al., 2021a; Wang et al., 2022a). In the encoding
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stage, the visual representations of the images are
extracted by a vision encoder pretrained on Ima-
geNet (Deng et al., 2009); In the decoding stage,
the medical report is generated by a Transformer
(Chen et al., 2020c; Liu et al., 2021b) or LSTM
(Jing et al., 2018). Specifically, several works pro-
pose to further fine-tune the vision encoder on med-
ical image datasets, e.g., ChestX-ray8 (Wang et al.,
2017) and CheXpert (Irvin et al., 2019). Neverthe-
less, we argue that as a text-oriented task, a core
step of the medical report generation models is to
efficiently bridge the gap between visual and tex-
tual modalities. To this end, in this work, motivated
by the great success of contrastive learning in bridg-
ing the gap between visual and textual modalities,
i.e., CLIP (Radford et al., 2021), we introduce a
phenotype-based contrastive learning framework -
PhenotypeCLIP.

In implementation, existing contrastive learn-
ing models first extract the visual representations
of images and textual representations of entire re-
ports, and then pre-train models by contrasting the
visual representations with the textual representa-
tions. In this study, we (i) first construct a set of
phenotypes; (ii) introduce an attention mechanism
to transform each sentence within the reports into
phenotype-based textual representations; (iii) adopt
the phenotype-based textual representations to ex-
tract phenotype-based visual representations; (iv)
and per-train the model by contrasting the two types
of phenotype-based representations. In this way, by
splitting the entire report into multiple sentences,
PhenotypeCLIP not only learns fine-grained repre-
sentations, but also scales up contrasting learning,
resulting in boosting the downstream medical re-
port generation task.

We perform the experiments on two benchmark
datasets, i.e., MIMIC-CXR (Johnson et al., 2019)
and IU X-ray (Demner-Fushman et al., 2016). The
results validate the effectiveness of PhenotypeCLIP,
which substantially outperforms the conventional
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contrastive learning methods on all widely used
evaluation metrics.

Overall, the main contributions of this paper are:

• In this study, to efficiently bridge the gap be-
tween visual and textual modalities, we per-
form phenotype-based contrastive learning
to learn accurate and fine-grained represen-
tations, which can boost the downstream text-
oriented medical report generation task.

• The experiments and analysis performed on
two benchmark datasets demonstrate that the
proposal achieves improved performances on
all metrics.

2 Related Work

We will introduce our related work from medical
report generation and contrastive learning.

2.1 Medical Report Generation

Medical report generation aims to interpret the med-
ical image by generating a report (Jing et al., 2018,
2019; Chen et al., 2020c). In contrast to image
captioning (Xu et al., 2015; Anderson et al., 2018;
Liu et al., 2018; Gu et al., 2022) that produces a
single-sentence description for general images, the
medical report generation aims to produce a para-
graph containing multiple clinical descriptions.

Inspired by the success of image captioning, nu-
merous encoder-decoder-based frameworks have
been introduced for medical report generation. For
example, Jing et al. (2018) and Chen et al. (2020c)
respectively introduced a hierarchical LSTM with
an attention mechanism and a Transformer to learn
to generate the long paragraph; Yuan et al. (2019);
Jing et al. (2018) and You et al. (2021) further
incorporated the medical concepts to boost the per-
formance; (Yang et al., 2022; Liu et al., 2021b) and
Li et al. (2019) proposed to construct the medical
knowledge graph to inject the medical knowledge
into the models.

In summary, while deep learning models, par-
ticularly those encoder-decoder-based frameworks,
have achieved promising results for medical re-
port generation, they mainly adopt the vision en-
coder pre-trained on ImageNet (Deng et al., 2009)
and CheXpert (Irvin et al., 2019) to extract the vi-
sual representations. In this study, we argue that
as a text-oriented task, it is necessary to explic-
itly bridge the gap between visual and textual do-
mains. To this end, we propose phenotype-based

contrastive learning to learn fine-grained represen-
tation and thus boost the downstream task.

2.2 Contrastive Learning

In recent years, contrastive learning, which trains
the models to distinguish between positive and
negative pairs, has achieved state-of-the-art per-
formances in visual representation learning (Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b)
and vision-language representation learning (Rad-
ford et al., 2021). Inspired by the great success of
contrastive learning, several works (Huang et al.,
2021; Zhang et al., 2020a; Boecking et al., 2022;
Zhou et al., 2023, 2022; Wang et al., 2022b) have
been proposed to learn robust and accurate medi-
cal vision-language representations, which can be
used to achieve promising results on various down-
stream tasks. However, most existing works focus
on contrasting images with entire reports, ignoring
the potential phenotypes in each sentence within
the reports. To this end, we propose the phenotype-
CLIP to implement phenotype-based contrastive
learning to learn fine-grained representations, out-
performing existing works.

3 Approach

In this section, we introduce the proposal for medi-
cal report generation in detail.

3.1 Formulation of Contrastive Learning

Contrastive learning has shown encouraging re-
sults in bridging the gap between vision and
language domains, e.g., CLIP (Radford et al.,
2021). Given a batch of N training samples,
including N pairs of image and report, i.e.,
{(x1, y1), (x2, y2), . . . , (xN , yN )}, where xi de-
notes the visual representations of the i-th image
and yi denotes the textual representations of the i-th
report. Therefore, (xi, yi) dentoes the positive sam-
ple, and (xi, yj), where i ̸= j, denotes the negative
sample. To train the models, contrastive learning
adopts the InfoNCE loss, which maximizes the mu-
tual information between xi and yi, and minimizes
the mutual information between xi and yj , which
can be defined as follows:

Lx→y = − 1

N

N∑

i=1

log
exp(sim(xi, yi)/τ)∑N
j=1 exp(sim(xi, yj)/τ)

Ly→x = − 1

N

N∑

i=1

log
exp(sim(yi, xi)/τ)∑N
j=1 exp(sim(yi, xj)/τ)

LCL =
1

2
(Lx→y + Ly→x) ,

(1)
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where sim(·) represents the cosine similarity and τ
is a hyper-parameter.

3.2 PhenotypeCLIP

As we can see, although contrastive learning has
been well explored for medical representation
learning in existing literature (Huang et al., 2021;
Zhang et al., 2020a; Boecking et al., 2022; Zhou
et al., 2023, 2022; Wang et al., 2022b), they encode
the entire report yi for training.

In this study, we argue that each sentence
within the report contains different phenotypes.
Thus, we propose the PhenotypeCLIP to capture
the phenotypes for better medical representation
learning. For example, if a medical report con-
tains (phenotype1, phenotype2) and another re-
port contains (phenotype1, phenotype3), then ex-
isting works would treat the two reports as neg-
ative samples. However, we can notice that the
two different reports contain the same phenotype,
i.e., phenotype1. Therefore, phenotype-based con-
trastive learning can enable the models to learn
such fine-grained representations. In implementa-
tion:

(i) We first construct a set of phenotypes, P =
{p1, p2, . . . , pM}, where M stands for the total
number of the phenotypes. pi ∈ Rd can be ei-
ther a randomly initialized soft vector or a word
embedding of a pre-defined phenotype, e.g., car-
diomegaly.

(ii) We introduce the three-layer Transformer
(Vaswani et al., 2017), which includes a multi-head
attention and a feed-forward network1, to extract
the phenotype-based representations. Given a pair
of image and report (xi, yi), where report contains
K sentences, i.e., yi = {si1, si2, . . . , siK}. We
first transform each sentence sik within the reports
into phenotype-based textual representations sPik ∈
Rd:

sPik = Transformer(sik, P, P ) (2)

where sik and P denotes the query and key/value
in Transformer. In this way, for the input report yi,
we can obtain K phenotype-based textual represen-
tations, {sPi1, sPi2, . . . , sPiK}.

(iii) We adopt the phenotype-based textual rep-
resentations sPik to extract phenotype-based visual
representations vPik ∈ Rd:

vPik = Transformer(sPik, V, V ) (3)

1Please refer to Vaswani et al. (2017) for details.

where V denotes the extracted patch features of the
input medical image (Chen et al., 2020c). Through
above equation, we can obtain K phenotype-based
visual representations {vPi1, vPi2, . . . , vPiK}.

(iv) Now, for each pair of image and report
(xi, yi), we can obtain K pairs of phenotype-based
visual representations and textual representations,
i.e., {(vPi1, sPi1), (vPi2, sPi2), . . . , (vPiK , sPiK)}. The in-
creased training samples indicate that our proposal
can scale up contrasting learning.

During training, given a batch of N∗ training
samples, the phenotype-based contrastive learning
(PCL) is defined as follows:

Lv→s = − 1

N∗

N∗∑

k=1

log
exp(sim(vPk , sPk )/τ)∑N∗
j=1 exp(sim(vPk , sPj )/τ)

Ls→v = − 1

N∗

N∗∑

k=1

log
exp(sim(sPk , v

P
k )/τ)∑N∗

j=1 exp(sim(sPk , v
P
j )/τ)

LPCL =
1

2
(Lv→s + Ls→v) ,

(4)

Through the above equation, we can enable Pheno-
typeCLIP to perform phenotype-based contrastive
learning, learning fine-grained (phenotype-based)
representations to achieve improved performance.

3.3 Report Generation
Medical report generation aims to automatically
generate a medical report y given the input medical
image x. Therefore, to perform the medical report
generation, we follow previous works (Li et al.,
2018; Jing et al., 2018; Chen et al., 2021, 2020c;
Liu et al., 2021b,a) to adopt the encoder-decoder-
based framework. We adopt the PhenotypeCLIP
as the image encoder to extract the fine-grained vi-
sual representations, and the memory-driven Trans-
former (Chen et al., 2020c) as the decoder to gen-
erate accurate medical reports.

Given the ground-truth report y∗ =
{y∗1, y∗2, . . . , y∗T } for the input image x, the
medical report generation model can be trained
using the cross-entropy (XE) loss:

LXE(θ) = −
T∑

t=1

log (pθ (yt | y1:t−1;x; θ)) (5)

4 Experiments

We first describe two benchmark datasets, the met-
rics, and the settings used for evaluation. Then,
we present the main results and analysis of our
proposal on the two datasets.
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Methods MIMIC-CXR IU X-ray
BLEU-4 METEOR ROUGE-L CIDEr BLEU-4 METEOR ROUGE-L CIDEr

AdaAtt (Lu et al., 2017) 0.088 0.118 0.266 0.084 0.068 - 0.308 0.295
TOPDOWN (Anderson et al., 2018) 0.074 - 0.250 0.073 - - - -
Transformer (Vaswani et al., 2017) 0.090 0.125 0.265 - 0.135 0.164 0.342 -
R2Gen (Chen et al., 2020c) 0.103 0.142 0.277 - 0.165 0.187 0.371 -
PPKED (Liu et al., 2021b) 0.106 0.149 0.284 0.237 0.168 0.190 0.376 0.351
DeltaNet (Wu et al., 2022) 0.114 - 0.277 0.281 0.184 - 0.379 0.802
XProNet (Wang et al., 2022a) 0.105 0.138 0.279 - 0.199 0.220 0.411 0.359
MedCLIP∗ (Wang et al., 2022b) 0.109 0.146 0.283 0.255 0.178 0.204 0.382 0.347
ConVIRT∗ (Wang et al., 2022a) 0.101 0.142 0.275 0.249 0.175 0.196 0.380 0.341
PhenotypeCLIP 0.119 0.158 0.286 0.259 0.205 0.223 0.414 0.370

Table 1: Results of our approach, existing medical report generation models, and two conventional contrastive
learning models on the two benchmark datasets. ∗ denotes the re-implementations of existing contrastive learning
methods for medical report generation.

4.1 Datasets, Metrics, and Settings

Datasets We performed the evaluation using
the commonly used MIMIC-CXR dataset (John-
son et al., 2019) and IU X-ray dataset (Demner-
Fushman et al., 2016). The MIMIC-CXR dataset
comprises 377,110 chest X-ray images and 227,835
related radiology reports, whereas the IU X-ray
dataset consists of 7,470 chest X-ray images and
3,955 reports. We follow Chen et al. (2020c) to
pre-process the datasets: we adopt the official split
to split the MIMIC-CXR dataset. The IU X-ray
dataset is randomly split into training, validation
and test sets by 7:1:2 of the entire dataset.

Metrics To report the performance of models for
medical report generation, we use common evalu-
ation metrics, i.e., BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), ROUGE-L
(Lin, 2004), and CIDEr (Vedantam et al., 2015).

Settings Following Zhang et al. (2020b), we use
the ResNet-50 (He et al., 2016), which is pre-
trained on ImageNet (Deng et al., 2009) and fine-
tuned on CheXpert (Irvin et al., 2019), as the im-
age encoder to acquire the visual path features
of input medical images, and the BERT (Devlin
et al., 2019), which is initialized with the Clini-
calBERT weights (Alsentzer et al., 2019), as the
text encoder to acquire the textual features of input
reports and sentences. We adopt the three-layer
Transformer (Vaswani et al., 2017) to extract the
phenotype-based representations. The number of
attention heads and the hidden size d are set to
8 and 512, respectively. We adopt the memory-
driven Transformer (Chen et al., 2020c) as the text
decoder to generate final medical reports. For the
phenotypes-based contrastive learning, inspired by
the success of memory vectors (Chen et al., 2020c,

2021; Liu et al., 2021c), we adopt the randomly ini-
tialized soft vectors to implement the phenotypes.
The number of phenotypes M is set to 100. The
hyper-parameter τ is set to 0.1. During Phenotype-
CLIP training, we adopt the AdamW optimizer
(Loshchilov and Hutter, 2019) with an initial learn-
ing rate of 1e-4, weight decay of 1e-6, and batch
size of 32. During report generation model training,
the learning rate and batch size are respectively set
to 1e-4 and 16. During inference, we apply a beam
search of size 3.

4.2 Results

The results of the proposal on the MIMIC-CXR
and IU X-ray datasets are reported in Table 1. For
comparison, we report the results of existing strong
medical report generation models, Additionally,
we re-implement two contrastive learning methods,
i.e., MedCLIP (Wang et al., 2022b) and ConVIRT
(Wang et al., 2022a). As we can see, the two con-
ventional contrastive learning models (MedCLIP
and ConVIRT) achieved competitive results with
specific medical report generation models, suggest-
ing that contrastive learning can provide a solid
basis for report generation by bridging the gap be-
tween visual and textual modalities.

The proposed PhenotypeCLIP method demon-
strated encouraging performances on the two
benchmark datasets. On the MIMIC-CXR/IU X-
ray datasets, PhenotypeCLIP achieved the highest
BLEU-4 (0.119/0.205), METEOR (0.158/0.223),
and ROUGE-L (0.286/0.414) scores, surpassing all
other methods. In particular, our PhenotypeCLIP
consistently outperformed all previous conven-
tional contrastive learning methods across all eval-
uation metrics. For example, the PhenotypeCLIP
outperforms previous contrastive learning models
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PhenotypeCLIP:

Lung volumes remain low.

The appearance of the

cardiac silhouette is

unchanged. There is a

moderate pneumothorax

evidenced in the right.

Small bilateral pleural

effusions are present.

The mediastinal contours

are within normal limits.

Ground Truth:
Bilateral pleural catheters

remain in place, with persistent

pneumothoraces, moderate

left apical lateral pneumothorax

on the left and small on the right.

The left pneumothorax is

unchanged, but right

pneumothorax has minimally

increased. Heart size remains

normal. Persistent left basilar

atelectasis and adjacent small

left pleural effusion.

ConVIRT:

The lungs are clear. The 

heart size is normal. The 

pulmonary vascularity is 

normal and the lungs are 

clear. There is no large 

pleural effusion or 

pneumothorax. There 

are no acute osseous 

abnormalities. There is 

no focal consolidation.

PhenotypeCLIP:

The lungs are clear

without evidence of focal

consolidations concerning

for pneumonia. The heart

size is enlarged. No lung

nodules or masses. There

is no pleural effusion,

pneumothorax, or

evidence of pulmonary

edema.

Ground Truth:
Both lungs are well expanded

and clear. There are no lung

opacities concerning for

pneumonia or pulmonary

edema. Heart size is mildly

enlarged and stable since.

Mediastinal and hilar contours

are unchanged. There is no

pleural effusion or

pneumothorax.

ConVIRT:

The cardiac, mediastinal 

and hilar contours appear 

stable. The lungs appear 

clear. No focal consolidation, 

pleural effusion or pneumot-

horax is seen. The heart is 

normal in size. Normal 

cardiomediastinal contours.

Figure 1: For a better understanding of our approach, we demonstrate the medical reports generated by a strong
baseline model ConVIRT (Zhang et al., 2020b) and the proposed PhenotypeCLIP. We adopt the Bold text and
Underlined text to denote the Correct results and Unfavorable results, respectively.

by 1.8% and 3.0% BLEU-4 score on MIMIC-CXR
and IU X-ray datasets, respectively. It proves the ef-
fectiveness of our approach in learning fine-grained
representations to boost the downstream medical
report generation task.

4.3 Analysis2

In Figure 1, a qualitative analysis is conducted to
give a better understanding of our PhenotypeCLIP.
Specifically, we show two medical reports gener-
ated by a strong contrastive learning model Con-
VIRT (Zhang et al., 2020b) and our method. It is
clear that our method can generate better reports
than the ConVIRT on the two input images. For ex-
ample, in the first example, given the ground truth
{Heart size is mildly enlarged}, ConVIRT gives
a wrong description, while PhenotypeCLIP accu-
rately describes the abnormality, i.e., {The heart
size is enlarged.}. In the second example, Con-
VIRT is unable to capture any anomalies and incor-
rectly describes the input image in a normal case.
Fortunately, although our proposal can not capture
the “basilar atelectasis”, it correctly describes the
“pneumothorax” and “pleural effusions”. The en-
couraging results demonstrate that our phenotype-
based contrastive learning can efficiently improve

2Please refer to our supplementary material for more anal-
ysis, e.g., the sensitivity of hyper-parameters and examples.

medical report generation by learning accurate
and fine-grained phenotype-based representations,
which are helpful in capturing and describing the
abnormalities. It further proves the effectiveness of
our proposed approach.

5 Conclusion

In this work, we propose a phenotype-based (fine-
grained) contrastive learning framework, Pheno-
typeCLIP, for medical imaging report genera-
tion. The proposed PhenotypeCLIP can efficiently
bridge the gap between visual and textual modali-
ties to provide a solid basis for generating accurate
medical reports. In the implementation, Pheno-
typeCLIP learns fine-grained representations, i.e.,
phenotype-based representations, by performing
contrastive learning on the image and each sen-
tence within the report. Experiments on two widely-
used datasets MIMIC-CXR and IU X-ray datasets
prove our arguments and show that PhenotypeCLIP
achieves competitive results with previous state-of-
the-art methods, especially exhibiting a remarkable
improvement over conventional contrastive learn-
ing techniques across all evaluation metrics.

In future research, it is interesting to explore ex-
tracting the topics or keywords, e.g., abnormalities
(Jing et al., 2018), from the reports to build the set
of phenotypes.
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Limitations

The study heavily relies on the quality and amount
of the labeled medical report generation datasets for
training. It might be possible that in some cases,
a large-scale labeled dataset might not be avail-
able, leading to unsatisfactory results. Besides,
the current phenotype set might not cover all the
phenotypes or abnormalities, e.g., rare diseases.
Therefore, performance could be further improved
by expanding and refining the phenotypes. At last,
the second example in Figure 1 shows that our
approach cannot well capture the details of abnor-
malities, such as the position (‘left’ and ‘bilateral’).
Introducing a position prediction module or knowl-
edge graph (Yang et al., 2022) could be helpful in
addressing this problem.

Ethics Considerations

The two benchmark datasets we used are publicly
available, so no protected health information is dis-
closed. Any inaccuracies, including misdiagnosis
or missed abnormalities, in the generated reports
can lead to incorrect clinical outcomes. It’s essen-
tial to control the use of model-generated reports.
It’s crucial to ensure that medical professionals
review and validate the generated reports in clini-
cal practice. At last, similar to any existing deep
learning models, PhenotypeCLIP is vulnerable to
inherent biases in training data. Ensuring fairness
and avoiding potential bias is critical.
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