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Abstract

Despite the success of Siamese encoder mod-
els such as sentence transformers (ST), little is
known about the aspects of inputs they pay at-
tention to. A barrier is that their predictions can-
not be attributed to individual features, as they
compare two inputs rather than processing a sin-
gle one. This paper derives a local attribution
method for Siamese encoders by generalizing
the principle of integrated gradients to models
with multiple inputs. The output takes the form
of feature-pair attributions and in case of STs
it can be reduced to a token—token matrix. Our
method involves the introduction of integrated
Jacobians and inherits the advantageous formal
properties of integrated gradients: it accounts
for the model’s full computation graph and is
guaranteed to converge to the actual prediction.
A pilot study shows that in case of STs few
token pairs can dominate predictions and that
STs preferentially focus on nouns and verbs.
For accurate predictions, however, they need
to attend to the majority of tokens and parts of
speech.

1 Introduction

Siamese encoder models (SE) process two inputs
concurrently and map them onto a single scalar
output. One realization are sentence transformers
(ST), which learn to predict a similarity judgment
between two texts. They have lead to remarkable
improvements in many areas including sentence
classification and semantic similarity (Reimers
and Gurevych, 2019), information retrieval (IR)
(Thakur et al., 2021) and automated grading (Bexte
etal., 2022). However, little is known about aspects
of inputs that these models base their decisions on,
which limits our understanding of their capabilities
and limits.

Nikolaev and Padé (2023) analyze STs with sen-
tences of pre-defined lexical and syntactic structure
and use regression analysis to determine the relative
importance of different text properties. MacAvaney

et al. (2022) analyze IR models with samples con-
sisting of queries and contrastive documents that
differ in certain aspects. Opitz and Frank (2022)
train an ST to explicitly encode AMR-based prop-
erties in its sub-embeddings.

More is known about the behavior of standard
transformer models; see Rogers et al. (2020) for
an overview. Hidden representations have been
probed for syntactic and semantic information (Ten-
ney et al., 2019; Conia and Navigli, 2022; Jawahar
et al., 2019). Attention weights have been ana-
lyzed with regard to linguistic patterns they capture
(Clark et al., 2019; Voita et al., 2019) and have
been linked to individual predictions (Abnar and
Zuidema, 2020; Vig, 2019). However, attention
weights alone cannot serve as explanations for pre-
dictions (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019). To obtain local explanations for indi-
vidual predictions (Li et al., 2016), Bastings and Fil-
ippova (2020) suggest the use of feature attribution
methods (Danilevsky et al., 2020). Among them,
integrated gradients are arguably the best choice
due to their strong theoretic foundation (Sundarara-
jan et al., 2017; Atanasova et al., 2020) (see Ap-
pendix A). However, such methods are not directly
applicable to Siamese models, which compare two
inputs instead of processing a single one.

In this work, we derive attributions for an SE’s
predictions to its inputs. The result takes the form
of pair-wise attributions to features from the two
inputs. For the case of STs it can be reduced to
a token—token matrix (Fig. 1). Our method takes
into account the model’s full computational graph
and only requires it to be differentiable. The com-
bined prediction of all attributions is theoretically
guaranteed to converge against the actual predic-
tion. To the best of our knowledge, we propose
the first method that can accurately attribute pre-
dictions of Siamese models to input features. Our
code is publicly available.

1https: //github.com/lucasmllr/xsbert
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2 Method

2.1 Feature-Pair Attributions
Let f be a Siamese model with an encoder e which
maps two inputs a and b to a scalar score s:

f(a,b) =e’(a)e(b) = s (1)

Additionally, let r be reference inputs that always
result in a score of zero for any other input c:
f(r,c) = 0. We extend the principle that Sun-
dararajan et al. (2017) introduced for single-input
models (Appendix A) to the following ansatz for
two-input models, and reformulate it as an integral:

f(a7 b) - f(aa I‘a) - f(bv rb) + f(rllv rb)

b ra 32
/r,, /ra 0x;0y; J (2)

B Z (a—ra); (Jng)ij (b—rp);

This Ansatz is entirely general to any model with
two inputs. In the last line, we then make explicit
use of the Siamese architecture to derive the final
attributions (details in Appendix B). Indices ¢ and
j are for dimensions of the two inputs a and b,
respectively. Individual summands on the right-
hand-side can be expressed in an attribution matrix,
which we will refer to as A;;.

By construction, all terms involving a reference
input on the left-hand-side vanish, and the sum over
this attribution matrix is exactly equal to the model
prediction:

fla,b) => " Ay(a,b) 3)
ij

In the above result, we define the matrices J as:

(T = /1 Oer(x(a)) ;.

=0 Ox;
1 i e (x(ay,))
N — 6Xz’

The expression inside the integral, Oey /0x;, is the
Jacobian of the encoder, i.e. the matrix of partial
derivatives of all embedding components k w.r.t.
all input components 7. We therefore, call J an
integrated Jacobian. The integral proceeds along
positions « on an integration path formed by the
linear interpolation between the reference r, and
input a: x(a) =r,+a(x—r,).
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Figure 1: An example token—token attribution matrix to
layer nine. The model correctly relates not... good to
bad and matches coffee. Similarity score: 0.82, attribu-
tion error: 10~3 for N =500.

Intuitively, Eq. 4 embeds all inputs between r,
and a along the path x(«) and computes their sensi-
tivities w.r.t. input dimensions (Samek et al., 2017).
It then collects all results on the path and com-
bines them into the matrix J,; analogously for Jy.
Eq. 2 combines the sensitivities of both inputs and
computes pairwise attributions between all feature
combinations in a and b.

In a transformer model, text representations are
typically of shape S x D, where S is the sequence
length and D is the embedding dimensionality.
Therefore, A quickly becomes intractably large.
Fortunately, the sum in Eq. 2 allows us to combine
individual attributions. Summing over the embed-
ding dimension D yields a matrix of shape S, X Sp,
the lengths of the two input sequences. Figure 1
shows an example.

Since Eq. 3 is an equality, the attributions pro-
vided by A are provably correct and we can say
that they faithfully explain which aspects of the
inputs the model regards as important for a given
prediction. For efficient numerical calculation, we
approximate the integral by a sum of N steps cor-
responding to equally spaced points «a, along the
integration path (Eq. 4). The resulting approxima-
tion error is guaranteed to converge to zero as the
sum converges against the integral. It is further per-
fectly quantifiable by taking the difference between
the left- and right-hand side in Eq. 3 (cf. § 3.2).

2.2 Adapting Existing Models

For our attributions to take the form of Eq. 3, we
need to adapt standard models in two aspects:

Reference input. It is crucial that f consistently
yields a score of zero for inputs involving a refer-
ence r. A solution would be to set r to an input
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that the encoder maps onto the zero vector, so that
f(c,r) =eT(c)e(r) = e’'(c) 0 = 0. However, it
is not trivial to find such an input. We avoid this
issue by choosing an arbitrary reference and shift-
ing all embeddings by r in the embedding space,
e(c) = €'(c) — €/(r), where €’ is the original en-
coder, so e(r) = 0. For simplicity, we use a se-
quence of padding tokens with the same length as
the respective input as reference r.

Similarity measure. Sentence transformers typi-
cally use cosine distance to compare embeddings,
normalizing them to unit length. Unfortunately,
normalization of the zero vector, which we map
the reference to, is undefined. Therefore, we re-
place cosine distance with the (unnormalized) dot
product when computing scores as shown in Eq. 1.

2.3 Intermediate Representations

Different from other deep models, in transformers,
due to the sequence-to-sequence architecture and
the language-modeling pre-training, intermediate
representations still correspond to (the contexts of)
input tokens. Therefore, attributing predictions to
inputs is one option, but it is also interesting to con-
sider attributions to intermediate and even output
representations. In these cases, f maps the given
intermediate representation to the output. Attribu-
tions then explain, which dimensions within this
representation the model consults for its prediction.

3 Experiments and Results

In our experiments, we evaluate the predictive per-
formance of different model configurations and
then test their attribution accuracy. Generally, the
two are independent, so that a model with excellent
attribution ability may not yield excellent predic-
tions or vice versa. In the following, we analyze
statistical characteristics of attributions. To demon-
strate our method, we perform a pilot on which
parts of speech (POS) models attend to.

3.1 Predictive Performance

We begin by evaluating how much the shift of em-
beddings and the change of objective affect the
predictive performance of STs. To this end, we
fine-tune STs off different pre-trained base models
on the widely used semantic text similarity (STS)
benchmark (Cer et al., 2017) We tune all base mod-
els in two different configurations: the standard
setting for Siamese sentence transformers (NON-
ADJUSTED, Reimers and Gurevych 2019), and with

Base model adjusted cosine dot
S-MPNet '; g g?g
S-distillIRoBERTa ')/( 22:2 3(7):1
MPNet ‘; 22 ; %
distillRoBERTa ‘; 22:2 ;2:3
N

Table 1: Spearman correlations between labels and
scores computed by cosine distance and dot product
of embeddings. We evaluate pre-trained sentence trans-
formers (top) and vanilla transformers (bottom). Ad-
Jjusted indicates modification according to Sec. 2.2. Best
results for (non-)adjusted models are (underlined) bold.

our adjustments from § 2.2 applied for the model to
obtain exact-attribution ability (ADJUSTED). Train-
ing details are provided in Appendix H. For all
models, we report Spearman correlations between
predictions and labels for both cosine distance and
dot product of embeddings.

Our main focus is on already pre-trained sen-
tence transformers. Results for them are shown
in the top half of Table 1. Generally, adjusted
models cannot reach the predictive performance
of standard STs. However, the best adjusted model
(S-MPNet) only performs 1.7 points worse (cosine)
than its standard counterpart. This shows that the
necessary adjustments to the model incur only a
modest price in terms of downstream performance.

The bottom half of the table shows performances
for vanilla transformers that have only been pre-
trained on language modeling tasks. Results for
these models are more diverse. However, we do not
expect their predictions to be comparable to STs,
and we mostly include them to evaluate attribution
accuracies on a wider range of models below.

3.2 Attribution Accuracy

As shown in § 2.1, all attributions in A must sum
up to the predicted score s if the two integrated Ja-
cobians are approximated well by the sum in Eq. 4.
We test how many approximation steps N are re-
quired in practice and compute the absolute error
between the sum of attributions and the prediction
score as a function of N for different intermediate
representations. Fig. 2 shows the results for the
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Figure 2: Layer-wise attribution errors for the S-MPNet
(top) and the RoBERTa based model (bottom). Standard
deviations are shown exemplary.

S-MPNet model. Generally, attributions to deeper
representations, which are closer to the output, can
be approximated with fewer steps. Attributions to
e.g. layer 9 are only off by (545)x10~3 with as few
as N =50 approximation steps. Layer 7 requires
N =1000 steps to reach an error of (2 4 3) x 103
and errors for shallower layers have not yet started
converging for as many as N = 2500 steps, in this
model. In contrast, in the equally deep RoBERTa
model, errors for attributions to all layers including
input representations have started to converge at
this point. The error for attributions to input repre-
sentations remains at only (141)x10~2 - evidently,
attribution errors are highly model specific.

Our current implementation and resources limit
us to N < 2500. However, we emphasize that
this is not a fundamental limit. The sum in Equa-
tion 4 converges against the integral for large IV,
thus it is only a matter of computational power to
achieve accurate attributions to shallow layers in
any model.

3.3 Distribution of Attributions

For an overview of the range of attributions that
our best-performing model S-MPNet assigns to
pairs of tokens, Fig. 3 shows a histogram of attri-
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Figure 3: Distribution of individual token—token attri-
butions to different intermediate representations of the
S-MPNet model.

butions to different (intermediate) representations
across 1000 STS test examples. A large fraction
of all attributions to intermediate representations
is negative (38% for layer 11). Thus, the model
can balance matches and mismatches. This be-
comes apparent in the example in Fig. 4. The word
poorly negates the meaning of the sentence and
contributes negatively to the prediction. Interest-
ingly, attributions to the output representation do
not capture this characteristic, as they are almost
exclusively positive (95%). Other models behave
similarly (Appendix E).

It further interests us how many feature-pairs the
model typically takes into consideration for indi-
vidual predictions. We sort attributions by their
absolute value and add them up cumulatively. Av-
eraging over 1000 test-instances results in Fig. 5.
The top 5% of attributions already sum up to
(774133)% 2 of the model prediction. However,
the large standard deviation (blue shading in Fig. 5)
shows that these top attributions alone do not yet
reliably explain predictions for all sentence pairs.
For a trustworthy prediction with a standard devi-
ation below 5% (2%), the model requires at least
78% (92%) of all feature-pairs.

3.4 POS Relations

We evaluate which combinations of POS the model
relies on to compute similarities between sentences.
For this purpose, we combine token- to word-
attributions by averaging. We then tag words with
a POS-Classifier.’

Fig. 6 shows shares of the ten most frequent POS-
relations among the highest 10%, 25%, and 50%

Zcumulative sums of top attributions can be negative.
3https://huggingface.co/flair/pos-english
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Figure 4: Attributions of the same example to different representations in the S-MPNet model.
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Figure 5: Mean cumulative prediction and standard-

deviation of token—token attributions sorted by their

absolute value.

of attributions on the STS test set. Within the top
10%, noun-noun attributions clearly dominate with
a share of almost 25%, followed by verb-verb and
noun-verb attributions. Among the top 25% this
trend is mitigated, the top half splits more evenly.
When we compute predictions exclusively from
attributions to specific POS-relations, nouns and
verbs together explain (53 & 90)%, and the top ten
POS-relations (cf. Fig. 6) account for (66 + 98)%
of the model prediction. The 90% most important
relations achieve (95 &+ 29)%. Thus, the model
largely relies on nouns (and verbs) for its predic-
tions. This extends the analysis of Nikolaev and
Padé (2023), who find in a study on synthetic data
that SBERT similarity is determined primarily by
the lexical identities of arguments (subjects / ob-
jects) and predicates of matrix clauses. Our find-
ings show that this picture extends largely to natu-
ralistic data, but that it is ultimately too simplistic:
on the STS corpus, the model does look beyond
nouns and verbs, taking other parts of speech into
account to make predictions.

NN: Noun mm top 10%
v 0.20 VB: Verb _ top 25%
o PT: Punctuation mmm top 50%
- .
=1 DT: Determiner
£ 0.15 A . Adjecti
5° JJ: Adjective
< IN: Preposition
g 0.10 - PR: Pronoun
i
S
@
EO.OS-‘ |“| “l | | |
oo LI M I M N 1Im
Z O 0 k- Z2 Z2 0 2 3
zZ>z25%=2z23>z08%£¢9
z8zhp=2z})F &
POS Relation

Figure 6: Distribution of the highest 10%, 25% and 50%
attributions among the most attributed parts of speech.

4 Conclusion

Our method can provably and accurately attribute
Siamese model predictions to input and intermedi-
ate feature-pairs. While in sentence transformers
output attributions are not very expressive and at-
tributing to inputs can be computationally expen-
sive, attributions to deeper intermediate represen-
tations are efficient to compute and provide rich
insights.

Referring to the terminology introduced by
Doshi-Velez and Kim (2017) our feature-pair attri-
butions are single cognitive chunks that combine
additively in the model prediction. Importantly,
they can explain which feature-pairs are relevant to
individual predictions, but not why (Lipton, 2018).

Improvements may be achieved by incorporating
the discretization method of Sanyal and Ren (2021),
and care must be applied regarding the possibility
of adversarially misleading gradients (Wang et al.,
2020). In the future, we believe our method can
serve as a diagnostic tool to better analyze the pre-
dictions of Siamese models.
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Limitations

The most important limitation of our method is the
fact that the original model needs to be adjusted and
fine-tuned in order to adopt to the shift of embed-
dings and change of objective that we introduced
in Section 2.2. This step is required because the
dot-product (and cosine-similarity) of shifted em-
beddings does not equal that of the original ones.*
Therefore, we cannot directly analyze off-the-shelf
models.

Second, when a dot-product is used to compare
two embeddings instead of a cosine-distance, self-
similarity is not preserved: without normalization,
the dot-product of an embedding vector with itself
is not necessarily one.

Third, our evaluation of predictive performance
is limited to the task of semantic similarity and the
STS benchmark (which includes multiple datasets).
This has two reasons: we focus on the derivation
of an attribution method for Siamese models and
the evaluation of the resulting attributions. The
preservation of embedding quality for downstream
tasks in non-Siamese settings is out of the scope of
this short paper.

Ethics Statement

Our work does not involve sensitive data nor appli-
cations. Both, the used pre-trained models and
datasets are publicly available. Computational
costs for the required fine-tuning are relatively
cheap. We believe our method can make Siamese
models more transparent and help identify potential
errors and biases in their predictions.
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A Integrated Gradients

Our method builds on the principle that was in-
troduced by Sundararajan et al. (2017) for models
with a single input. Here we derive the core concept
of their integrated gradients.

Let f be a differentiable model taking a single
vector valued input x and producing a scalar output
s € [0,1]: f(x) = s. In addition let r be a refer-
ence input yielding a neutral output: f(r) = 0. We
can then start from the difference in the two inputs
and reformulate it as an integral (regarding f an
anti-derivative):

ey = [ s

r ax,-

fa) -
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This is a path integral from the point r to a in
the input space. We use component-wise notation,
and double indices are summed over. To solve the
integral, we parameterize the path from r to a by
the straight line x(a) = r+«(a—r) and substitute
it:

_ /1 0f (x(a)) Oxi(e) , - ©)

-0 Oxi(a) O«

The first term inside the above integral is the
gradient of f at the position x(«). The second term
is the derivative of the straight line and reduces to
dx(a)/da = (a — r), which is independent of «
and can be pulled out of the integral:

1
~(a-r) [ Vifxl)da )

This last expression is the contribution of the

" input feature to the difference in Equation 5.
If f(r) = 0, then the sum over all contributions
equals the model prediction f(a) = s. Note, that
the equality between Equation 5 and Equation 7
holds strictly. Therefore, Equation 7 is an exact
reformulation of the model prediction.

B Detailed Derivation

For the case of a model receiving two inputs, we
extend the ansatz from Equation 5 to:

f(av b) - f(a7 I‘a) - f(b7rb) + f(I‘a, rb)
= [f(av b) - f(ra’ b)] - [f(av rb) - f(rav rb)}
b
= [ gy ey~ syl ay,
b ra 2
= /rb /r ax?ayj f(xy) dxidy;
3

We plug in the definition of the Siamese model
(Equation 1), using element-wise notation for the
output embedding dimensions &, and again, omit
sums over double indices:

[

Neither encoding depends on the other integra-
tion variable, and we can separate derivatives and
integrals:

o ayj (x)er(y)dxidy; (9)

_[® Oep(x) /b Oei(y)
— /r Tox, dx; .y, dy;

Different from above, the encoder e is a vector-
valued function. Therefore, dey(x)/0x; is a Jaco-
bian, not a gradient. We integrate along straight
lines from r to a, and from r, to b, parameterized
by « and 3, respectively, and receive:

= (a—r1,); [/(%;ﬁc{fa)) da

dei(y(B)) )
/53yj dﬁ] (b —1yp);
(11)

(10)

With the definition of integrated Jacobians from
Equation 4, we can use vector notation and write
the sum over the output dimension k in square
brackets as a matrix product: JI Ji,. If r consis-
tently yields a prediction of zero, the last three
terms on the left-hand-side of Equation 8 vanish,
and we arrive at our result in Equation 2, where
we denote the sum over input dimensions ¢ and j
explicitly.

C Intermediate Attributions

Fig. 4 shows attributions for one example to differ-
ent representations in the S-MPNet model. Attribu-
tions to layer eleven and seven capture the negative
contribution of poorly, which is completely absent
in the output layer attributions. As Fig. 3 shows
output attributions are less pronounced and almost
exclusively positive.

D Attribution Accuracy

In Fig. 7 we include the attribution accuracy plot
for the shallower S-distillRoBERTa model. Attri-
butions to all layers converge readily for small V.

E Attribution Distribution

Fig. 8 shows distribution plots for attributions
to different intermediate representations of the
RoBERTa and the S-distillRoBERTa models. In
both cases we also observe positivity of attributions
to the output representation. For RoOBERTa this
characteristic proceeds to the last encoder layers.
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G Prediction Failures

Fig. 10 shows examples in which the S-MPNet
prediction is far off from the label. In the future,
a systematic analysis of such cases could provide
insights into where the model fails.

H Training Details

We fine-tune all models in a Siamese setting on
the STS-benchmark train split. Models either use
shifted embeddings combined with a dot-product
objective or normal embeddings together with a
cosine objective. All trainings run for five epochs,
with a batch size of 16, a learning rate of 2 x 107
and a weight decay of 0.1 using the AdamW-
optimizer. 10% of the training data is used for
linear warm-up

I Implementation

This sections intends to bridge the gap between
the shown theory and its implementation. In Eq. 4
e(x(ay,)) is a single forward pass for the input
X (av,) through the encoder e. dey(x(a,))/0x; is
the corresponding backward pass of the k" em-
bedding dimension w.r.t. the i*" input (or inter-
mediate) dimension. In order to calculate either
integrated Jacobian, N such passes through the
model need to be computed for all interpolation
steps n € {1,..., N} along the integration paths
between references and inputs.

Fortunately, they are independent for different in-
terpolation steps and we can batch them for parallel

Individual Token Attributions

Figure 8: Attribution Distributions for the RoOBERTa-
based model (top), and the S-distilRoBERTa model

(bottom).

Model Link
S-MPNet all-mpnet-base-v2
S-distillRoBERTa  all-distilroberta-v1
MPNet mpnet-base
distillRoBERTa distilroberta-base
RoBERTa roberta-base

Table 2: Links to huggingface weights of the used mod-
els.

computation. Regarding computational complex-
ity, this process hence requires N/B forward and
backward passes through the encoder, where B is
the used batch size. Attributions to intermediate
representations do not require the full backward
pass and are thus computationally cheaper. Once
the two integrated Jacobians are derived, the com-
putation of the final attribution matrix in the last
line of Eq. 8 is a matter of matrix multiplication.

J Model Weights

Table 2 includes links to the huggingface model
weights that we use in this paper.
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Figure 10: Failure cases of the M-PNet. Examples in the top row show over estimations, the bottom row shows
under estimations of semantic similarity.
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