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Abstract

Large language models (LLMs) have exhib-
ited striking in-context learning (ICL) abil-
ity to adapt to target tasks with a few input-
output demonstrations. For better ICL, dif-
ferent methods are proposed to select repre-
sentative demonstrations from existing train-
ing corpora. However, such settings are not
aligned with real-world practices, as end-users
usually query LMs without access to demon-
stration pools. In this work, we introduce
SELF-ICL—a simple framework which boot-
straps LMs’ intrinsic capabilities to perform
zero-shot ICL. Given a test input, SELF-ICL
first prompts the model to generate pseudo-
inputs. Next, the model predicts pseudo-labels
for the pseudo-inputs via zero-shot prompting.
Finally, we perform ICL for the test input with
the pseudo-input-label pairs as demonstrations.
Evaluation on 23 BIG-Bench Hard tasks shows
SELF-ICL outperforms zero-shot baselines on
both average accuracy and head-to-head com-
parison. Moreover, with zero-shot chain-of-
thought, SELF-ICL achieves results comparable
to using real demonstrations. Additionally, we
conduct a range of analyses to validate SELF-
IcL’s effectiveness and provide insights for its
behaviors under different settings.'

1 Introduction

Large language models (LMs) have shown strik-
ing ability to adapt to new tasks at test time by
prompting with a few input-output exemplars, i.e.,
demonstrations (Brown et al., 2020; Wei et al.,
2022; Chowdhery et al., 2022; Wei et al., 2023).
This ability is refereed to as in-context learning
(ICL; Brown et al., 2020). Towards better ICL
performance, approaches for selecting representa-
tive demonstrations have been investigated exten-
sively (Sorensen et al., 2022; Levy et al., 2022;
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Figure 1: Our proposed SELF-ICL framework for zero-
shot in-context learning. SELF-ICL involves three steps:
(1) Given a query and a corresponding task description,
the LLM is prompted to generate k (e.g., k=3)
pseudo-inputs. (2) Collect the pseudo-inputs and pre-
dict their pseudo-labels via zero-shot prompting. (3)
Perform ICL with pseudo-demonstrations constructed
from the generated pseudo-input-label pairs. The same
LLM is used in all steps.

Zhang et al., 2022a; Gonen et al., 2022). Most tech-
niques assume the access to large-scale external
sources (e.g., training dataset or relevant text cor-
pus) is available, from which demonstrations can
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be selected with methods such as nearest neighbor
search or other pre-defined, sophisticated similarity
metrics (Liu et al., 2022; Rubin et al., 2022; Wu
et al., 2022). However, in most real-world scenario,
users query LLMs (e.g., through APIs or web in-
terface) without the access to existing corpus for
their target tasks. Also, spending additional effort
to handcraft demonstrations may negatively affect
their workflows.

Recently, a series of studies has been proposed
to shed lights on the inner working of ICL (Xie
et al., 2021; Reynolds and McDonell, 2021; Min
et al., 2022b). The evidence suggests that instead
of contributing explicit signals for learning new
tasks, demonstrations mainly expose LLMs’ in-
trinsic functionalities and guide models towards
target domains (Razeghi et al., 2022; Lyu et al.,
2022). Similar clues are also partly observed in
chain-of-thought (CoT) and instruction-augmented
ICL (Madaan and Yazdanbakhsh, 2022; Webson
and Pavlick, 2022). These findings indicate, to
some degree, LLMs carry underestimated zero-shot
abilities and are already equipped to fulfill various
target tasks.

Inspired by the above-mentioned literature, we
propose SELF-ICL—a simple prompting frame-
work for zero-shot in-context learning. SELF-ICL
bootstraps LLM’s intrinsic capabilities by self-
generated demonstrations which inform the input
and label space for performing ICL. Given a query,
i.e., a test input, SELF-ICL’s involves three steps:

1. The model is prompted to generate pseudo-
inputs conditioned on the given query and the
corresponding task description.

2. The model predicts pseudo-labels for pseudo-
inputs via zero-shot prompting.

3. The pseudo-input-label pairs form pseudo-
demonstrations, which are then prepended to
the query and proceed with standard ICL.

All steps adopt the same frozen LLM. Without the
requirement of candidate pool for demonstration
selection, SELF-ICL bridges the gap for end-user’s
practical needs.

To evaluate SELF-ICL’s effectiveness on chal-
lenging, unexpected tasks for which existing
demonstrations are hard to come by, we perform
evaluation on a set of 23 tasks from BIG-Bench
Hard (BBH; Suzgun et al., 2022). Results show that
SELF-ICL exhibits significant improvements on the

Method Inputs Labels
AuTto-CoT from training set no need
Z-1cL from external corpus  no need
SG-IcL no need given

SELF-ICL (ours) no need no need

Table 1: A comparison to prior attempts on zero-shot
ICL. SELF-ICL does not require any real inputs or labels
to construct demonstrations. See Section 6 for detailed
discussions.

all-task-average accuracy and in head-to-head com-
parisons. For instance, the results are 18-0-5 (win-
tie-lose) for SELF-ICL versus standard zero-shot on
the 23 tasks. Furthermore, with zero-shot Chain-of-
Thought (Kojima et al., 2022), SELF-ICL reaches
performance on par with using few-shot demonstra-
tions sampled from real data instances.

In addition, we perform an array of analyses to
validate SELF-ICL’s effectiveness under different
settings. We investigate various approaches for gen-
erated pseudo-inputs, the effect of number of shots,
and the impact of random pseudo-labels, providing
better insights for SELF-ICL’s behaviours. To the
best of our knowledge, we present the first attempt
for true zero-shot ICL that does not require any
external data from real distribution or pre-defined
label sets (See Table 1).

2 SELF-ICL

This section details the design of SELF-ICL for
constructing pseudo-inputs and pseudo-labels to
form ideal pseudo-demonstrations.

2.1 Pseudo-Input Construction (Step 1)

Generating pseudo-inputs can be easily achieved by
zero-shot prompting LLMs with the simple prompt
as shown in Figure 1 (Step 1). The given query
q (from real distribution) provides an outline of
ground-truth inputs, and the corresponding task
description 1" guides the model to generate rele-
vant information associated with the task domain.
From ¢ and T, model infers the underlying for-
mat and creates a new query (i.e., pseudo-input).
By specifying a number k£ (number of shots) in
the instruction, this process can generate multiple
pseudo-inputs with one inference pass.

2.2 Pseudo-Label Construction (Step 2)

After obtaining the pseudo-inputs, we then pre-
dict their labels (the pseudo-labels for constructing
pseudo-demonstrations) via zero-shot prompting
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Format:

Options:

(A) The 40-Year-Old Virgin
(B) Pineapple Express

(C) Step Brothers

(D) This Is The End

\A: Let's think step by step.

- Step 2
Task description: Recommend movies similar to the given list of movies.

Starting with "Therefore, the correct answer is ..." before giving your final answer.
If options are available, you must pick one as the final answer.

It's very important that you stick to the format.

Q: Find a movie similar to The Hangover, Bridesmaids, Superbad, Knocked Up:

Format:

Options:

(A) The 40-Year-Old Virgin
(B) Pineapple Express

(C) Step Brothers

(D) This Is The End

is (B) Pineapple Express.

Q:[.]
A: Let's think step by step. [...]

Q:[.]
A: Let's think step by step. [...]

Options:

(A) The Front Page

(B) Maelstrom

(C) The Lion King

(D) Lamerica

\A: Let's think step bv step.

s Step 3 ~
Task description: Recommend movies similar to the given list of movies.

Starting with "Therefore, the correct answer is ..." before giving your final answer.
If options are available, you must pick one as the final answer.

It's very important that you stick to the format.

Q: Find a movie similar to The Hangover, Bridesmaids, Superbad, Knocked Up:

A: Let's think step by step. The Hangover, Bridesmaids, Superbad, and Knocked
Up are all comedies that feature a group of friends. Therefore, the correct answer

Q: Find a movie similar to Batman, The Mask, The Fugitive, Pretty Woman:

J

Figure 2: Example prompts of SELF-ICL Steps 2 and 3 for the CoT prompting setting (movie recommendation).

the same LLM. Specifically, we employ two zero-
shot methods: Direct prompting and CoT prompt-
ing, described as follows.

Direct prompting In the direct prompting setup,
we construct pseudo-labels via standard zero-shot
prompting schema. Namely, we prompt the LLM
with only the task description and the generated
pseudo-input for a direct answer prediction (See
Figure 8 for an example prompt). We predict
pseudo-labels one by one, i.e., for k-shot demon-
stration, k inference passes are required for the &
pseudo-inputs.

CoT prompting For the CoT prompting setup,
SELF-ICL generates pseudo-labels by zero-shot
CoT (Kojima et al., 2022). Specifically, we prompt
the LLM with the task description, the current test
input, and a trigger phrase, “Let’s think step by
step.” for performing CoT reasoning. The trigger
phrase is appended at the very end of the prompt,

guiding the model to generate its intermediate rea-
soning steps which lead to a more accurate final
answer. We then take the trigger phrase and the gen-
erated reasoning chain containing the answer for
pseudo-inputs as the pseudo-labels for construct-
ing pseudo-demonstrations (See Figure 2 for an
example prompt).

2.3 Prediction (Step 3)

Here in Step 3, we construct pseudo-
demonstrations, i.e., pseudo-shots, by the
pseudo-inputs paired with their corresponding
pseudo-labels from previous steps, and predict
the final answer for the test input by the typical
few-shot ICL workflow. Namely, the pseudo-shots
(with instructions) are prepended to the test input
as the context for prompting the LLM. For CoT
prompting, only the final answers are evaluated.
For the example prompts on Step 3, see Figure 8
and 2. Note that both direct prompting and CoT
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Direct Prompting CoT Prompting

BBH Task ZS-Direct Self-ICL 6 2S-CoT Self-ICL & 3-shot
Boolean Expressions 84.00 87.20 3.20 85.60 85.60 0.00 89.60
Causal Judgement 55.61 61.50 5.88 58.29 58.82 0.53 62.03
Date Understanding 54.00 56.80 2.80 66.80 69.20 2.40 58.80
Disambiguation QA 64.00 68.00 4.00 64.80 67.60 2.80 68.80
Formal Fallacies 56.00 55.20 -0.80 55.20 56.80 1.60 58.80
Geometric Shapes 34.40 36.00 1.60 29.60 33.60 4.00 36.80
Hyperbaton 56.80 59.20 2.40 53.60 53.60 0.00 57.60
Logical Deduction (five objects) 41.20 40.40 -0.80 37.60 40.80 3.20 45.60
Logical Deduction (seven objects) 43.60 40.00 -3.60 39.60 36.00 -3.60 40.00
Logical Deduction (three objects) 56.00 65.60 9.60 58.80 64.80 6.00 64.40
Movie Recommendation 63.60 75.20 11.60 64.80 70.40 5.60 77.20
Navigate 49.20 68.00 18.80 53.60 57.60 4.00 52.80
Penguins in a Table 58.90 63.70 4.79 60.96 64.38 3.42 62.33
Reasoning about Colored Objects 59.60 61.20 1.60 68.00 67.60 -0.40 65.20
Ruin Names 54.40 66.40 12.00 48.80 56.40 7.60 84.00
Salient Translation Error Detection 51.20 57.20 6.00 50.80 54.00 3.20 65.20
Snarks 54.49 62.92 8.43 37.08 55.06 17.98 65.73
Sports Understanding 67.60 65.60 -2.00 71.20 69.20 -2.00 71.20
Temporal Sequences 57.60 35.60 -22.00 64.80 52.00 -12.80 39.20
Tracking Shuffled Objects (five objs) 18.00 19.60 1.60 25.20 29.60 4.40 16.40
Tracking Shuffled Objects (seven objs) 14.40 18.40 4.00 31.60 27.20 -4.40 15.20
Tracking Shuffled Objects (three objs) 26.40 28.00 1.60 36.00 46.00 10.00 30.40
Web of Lies 53.20 57.20 4.00 61.20 65.60 4.40 56.40
All Tasks (avg) 50.81 53.93" 3.12 53.22 55.541 2.32 55.49

Table 2: The main results of our proposed SELF-ICL evaluated on BBH. The 3-shot results are standard few-shot
prompting with real data as demonstrations. SELF-ICL exhibits consistent trends outperforming both direct and CoT
prompting baselines. We adopt one-sided McNemar’s test (McNemar, 1947) to test the statistical significance of
Self-ICL’s performance gain over baselines, where 1 denotes p value < 0.05.

prompting methods shared the same Step 1 prompt
(Figure 7).

3 Experiments

To evaluate the effectiveness of our proposed
method, we conduct a set of extensive experiments
for better comparison and analysis. We describe
the experimental settings and discuss the results in
detail.

3.1 Configurations

Language models We use InstructGPT
(text-davinci-003; Ouyang et al., 2022)
for all the experiments presented in Sec-
tion 4.1 and 5. We also conduct additional
experiments to validate the generalizability of
SELF-ICL, using text-bison-001> from the
PalLM-2 model family (Anil et al., 2023) and
gpt-3.5-turbo-instruct from the GPT-3.5
model family.> The results are presented in
Section 4.2.
2h'ctps://developers.generativeai.google/

models/language

Shttps://platform.openai.com/docs/models/
gpt-3-5

Implementation details For all LMs’ hyperpa-
rameters, we set the temperature to O and the the
maximum number of tokens as 1024. Other argu-
ments are kept as their default values. Regarding
the number of pseudo-demonstration shots &k, we
choose k=3 for our main experiments.

Dataset We adopt the BIG-Bench Hard (BBH)
benchmark for our evaluation. BBH consists of a
suite of tasks from the BIG-Bench benchmark (Sri-
vastava et al., 2022), which existing LMs have dif-
ficulty reaching the average human-rater perfor-
mance and are considered beyond current models’
capabilities. BBH contains a total of 27 tasks, from
which we select 23 tasks that are multiple-choice
tasks as our evaluation testbed for SELF-ICL. Each
BBH tasks has around 150 ~ 250 examples, and
the total number of instances is 5,511.

3.2 Baselines

ZS-Direct The baseline of direct prompting is
the typical zero-shot prompting setup, denoted as
ZS-Direct. Concretely, the LLM is prompted with
the task description and the current test input for a
direct answer prediction.
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Figure 3: The head-to-head comparison on the 23 tasks from BBH. The accuracy delta indicates the accuracy
difference between SELF-ICL and the baseline method (blue/orange indicates our method wins/loses). The results
are 18-0-5 (win-tie-lose) for the direct prompting setting; 16-2-5 for the CoT prompting setting; and 14-1-8 for

SELF-ICL without CoT (i.e., direct) versus ZS-CoT.

ZS-CoT For CoT prompting, the baseline is the
zero-shot CoT prompting proposed by Kojima et al.
(2022), which is one of the state-of-the-art method
for solving reasoning-heavy task in zero-shot. We
denoted it as ZS-CoT. Specifically, the LLM is
prompted by the task description, the current test
input, and a reasoning trigger phrase “Let’s think
step by step.” same as in SELF-ICL.

4 Results

4.1 Main Results

We present our main experimental results in Ta-
ble 2. On the all tasks average performance, SELF-
ICL surpasses baselines in both the direct and CoT
prompting settings. We also observe SELF-ICL
with direct prompting is comparable (slightly bet-
ter) with ZS-CoT prompting. Furthermore, SELF-
IcL with CoT prompting reaches performance
on par with few-shot prompting which uses real
demonstrations (the 3-shot column).

We illustrate head-to-head comparisons on the
23 tasks in Figure 3. The results of direct prompt-
ing are 18-0-5 (win-tie-lose) for SELF-ICL versus
the ZS-Direct baseline; for the CoT prompting set-
ting, the results are 16-2-5 for SELF-ICL versus the
ZS-CoT baseline. Interestingly, the results are 14-1-
8 for SELF-ICL without CoT (SELF-ICL with direct
prompting) versus ZS-CoT, and comparable or bet-
ter performance is exhibited on all tasks average as
well. This highly competitive result demonstrated
by SELF-ICL with direct prompting sheds light on
an alternative to elicit LMs’ reasoning ability in
zero-shot, without generating potentially biased or
misleading reasoning chains (Turpin et al., 2023).

4.2 Generalizability

To assess whether our proposed SELF-ICL frame-
work is able to generalize to other models, we
perform experiments on two popular LLMs, GPT-
3.5 and PalLM-2, beside InstructGPT. We com-
pare their results under the direct prompting set-
ting. The results are present in Table 3. As ob-
served, SELF-ICL demonstrates stronger overall
performance over the direct prompting baseline on
both PaLM-2 and GPT-3.5. Moreover, although
PalLM-2 exhibits relatively poor scores comparing
to InstructGPT and GPT-3.5, it can still improve
upon itself with our proposed SELF-ICL. Interest-
ingly, we find GPT-3.5 has a slightly inferior perfor-
mance comparing to InstructGPT. We hypothesize
this is because GPT-3.5 has a lower controllability,
thus, it is more prone to generate unintended con-
tent. For instance, the model might not follow the
formatting instructions presented in the prompts
(see Figure 8). In addition, the generated pseudo-
inputs are more likely to be invalid and could not
accurately represent the underlying tasks. In sum,
the results still suggests SELF-ICL is generalizable
for different models.

5 Analysis

In this section, we first illustrate the concept of
copying effect, and discuss its implication for SELF-
IcL. Next, we investigate SELF-ICL’s behaviors
under different settings, including different ap-
proaches for generated pseudo-inputs, performance
with varied number of shots, and the effect of ran-
domly assigning pseudo-labels. Following analy-
ses all focus on the setting of direct prompting.
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text-bison-001

gpt-3.5-turbo-instruct

BBH Task ZS-Direct Self-ICL 6 ZS-Direct Self-ICL 6
Boolean Expressions 60.16 58.94 -1.22 84.80 88.40 3.60
Causal Judgement 47.37 48.54 1.17 42.25 12.30 -29.95
Date Understanding 42.40 41.20 -1.20 59.20 57.60 -1.60
Disambiguation QA 33.33 33.82 0.49 60.00 63.20 3.20
Formal Fallacies 57.20 56.00 -1.20 52.00 50.40 -1.60
Geometric Shapes 15.20 19.20 4.00 34.00 36.40 2.40
Hyperbaton 57.43 68.27 10.84 82.40 82.80 0.40
Logical Deduction (five objects) 18.34 23.58 5.24 42.00 38.40 -3.60
Logical Deduction (seven objects) 10.88 13.99 3.11 41.60 34.80 -6.80
Logical Deduction (three objects) 37.89 37.00 -0.88 56.00 59.20 3.20
Movie Recommendation 26.23 26.23 0.00 74.80 76.00 1.20
Navigate 58.71 57.21 -1.49 42.80 64.80 22.00
Penguins in a Table 42.76 42.76 0.00 51.37 55.48 4.11
Reasoning about Colored Objects 62.40 70.80 8.40 54.80 56.40 1.60
Ruin Names 30.81 26.16 -4.65 70.80 64.80 -6.00
Salient Translation Error Detection 22.13 22.54 0.41 41.60 51.20 9.60
Snarks 54.86 50.86 -4.00 63.48 60.67 -2.81
Sports Understanding 46.45 45.90 -0.55 62.00 50.00 -12.00
Temporal Sequences 28.51 30.58 2.07 20.80 32.80 12.00
Tracking Shuffled Objects (five objects) 14.52 17.74 3.23 18.00 16.40 -1.60
Tracking Shuffled Objects (seven objects) 20.00 19.60 -0.40 17.60 12.40 -5.20
Tracking Shuffled Objects (three objects) 29.32 32.93 3.61 32.40 36.80 4.40
Web of Lies 57.20 50.40 -6.80 15.20 38.40 23.20
All Tasks (avg) 37.78 38.831 1.05 48.52 49.721 1.20

Table 3: The results of SELF-ICL using text-bison-001 and gpt-3.5-turbo-instruct evaluated on BBH. Over-
all, SELF-ICL exhibits consistent trends outperforming direct prompting. This suggests SELF-ICL is generalizable
for different models. We adopt one-sided McNemar’s test (McNemar, 1947) to test the statistical significance of
Self-ICL’s performance gain over baselines, where 1 denotes p value < 0.05.

5.1 Preliminary

Given a set of k-shot demonstrations denoted as
{(z1,y1), -, (Tk, y) }, Where x; is the input text
and y; is the label. As suggested by Min et al.
(2022b), four aspects are considered for the con-
struction of demonstrations, namely: (1) The input-
label mapping: whether x; is paired with a correct
yi. (2) The input space: the underlying distribution
behind 1, ..., . (3) The label space: the possible
label set inferred from y1, ..., yr.* (4) The pairing
format: the format representing the x;-y; pair. Min
et al. (2022b) inspect the role of demonstrations
along these four aspects, and present a surprising
finding—the input-label mapping is not a neces-
sary criteria for successful ICL. Empirically, they
find randomly swapping the ground-truth label of
demonstrations barely degrades end-task perfor-
mance. On the contrary, the other three aspects
all demonstrate great impacts. With these four as-
pects in mind, we now analyze the construction of
pseudo-demonstrations for SELF-ICL.

*Input with instruction-like descriptions could also inform
model of the label space.

5.2 The Entanglement of Input Space and
Input-Label Mapping

Among the four aspects, the label space is usu-
ally specified in the input (e.g., options presented
for multiple-choice) or described in the task de-
scription. For example, the label space {“True”,
“False"} of the boolean expressions task can be eas-
ily inferred from its description “Evaluate the result
of a random Boolean expression.”; the pairing for-
mat is the least concern as pseudo-demonstrations
are well formatted as “Q: input text, A: label text”.

The potentially problematic aspects are the in-
put space and input-label mapping. Naturally, one
may think input-label mapping is not an issue as
described in Section 5.1—the input does not need
to be paired with the correct label. However, this
intriguing discovery by Min et al. (2022b) is estab-
lished under the setting of standard ICL, where the
inputs are randomly sampled from the training set.

As the pseudo-inputs created by SELF-ICL is
based on only one reference, i.e., the given test
input, the generated pseudo-inputs are likely to be
of great semantic similarity with that test input,
and fail to capture the correct input space distri-
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bution. In such case, Min et al. (2022b)’s finding
does not hold since it has been shown that models
tend to copy the labels paired with inputs that are
very similar to the test input, known as the copy-
ing effect (Lyu et al., 2022). With no guarantee
for the correctness of SELF-ICL’s pseudo-labels,
the copying effect would potentially hurt the ICL
performance.

5.3 Different Approaches for Generating
Pseudo-Inputs

To mitigate the possible impact of copying effect,
increasing the pseudo-inputs’ diversity is essential.
Typically, this can be resolved by sampling demon-
stration inputs from different clusters of training set
inputs (Zhang et al., 2022b). However, no real data
is available in our SELF-ICL framework. To gain a
better understanding of SELF-ICL’s pseudo-input
generation and the potential copying effect, we
study three different approaches for constructing
pseudo-inputs: (1) Batch inference, (2) Prompt-
ing with diversity hints, and (3) Prompt without
diversity hints.

Batch inference In batch inference, we assume
an access to multiple test inputs in Step 1. Specif-
ically, the number of example instances in the
prompt equals the number of given test input, i.e.,
the batch size. The LM then generates the same
number of pseudo-inputs as in the original stream-
ing inference where we prompt one test input at
a time. The prompting template is provided in
Figure 9. In batch inference setup, all test in-
puts share the same pseudo-inputs, thus the same
pseudo-demonstrations in Step 3.

Prompting with diversity hints Prompting with
diversity hints is the method we adopt in our main
experiments. As shown in Figure 1 (Step 1), the
model is explicitly instructed to provide “new”,
“diverse”, and “creative” pseudo-input instances.

Prompting without diversity hints For prompt-
ing without diversity hints, we simply remove the
key words “new”, “diverse”, and “creative”’in the
instruction, and keep all other settings unchanged.

Our analysis results are shown in Figure 4. We
compute the cosine similarity between the pseudo-
inputs generated by the aforementioned approaches
and the test input. For each method, the reported
value is averaged across three pseudo-inputs (3-
shots) and all BBH tasks. We also report the result
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Figure 4: Semantic similarity between the pseudo-
inputs generated by different Step 1 approaches and
the test input. The similarity value is averaged across
three shots and all tasks.
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Figure 5: The all-task-average performance of using
pseudo-inputs generated by different Step 1 approaches,
different number of shots, and random pseudo-labels in
Step 2.

of using real inputs from BBH dataset for estab-
lishing a similarity baseline. We encode all inputs
by sentence transformers (Reimers and Gurevych,
2019) following Liu et al. (2022); Zhang et al.
(2022b).

As observed, batch inference produces pseudo-
inputs that is most similar to using real inputs. This
is somewhat intuitive as batch inference has access
to more example instances. Interestingly, looking
at results in Figure 5 we find using pseudo-inputs
generated by prompting with diversity hints (the
3-shot bar) and batch inference achieve essentially
the same final accuracy, although it exhibits the
lower similarity. This may suggest over diversify-
ing demo-inputs have little impact on empirical per-
formance. For prompting without diversity hints,
it demonstrates the highest similarity to test input
and lower final accuracy, which could be explained
by copying effect.

SWe adopt the all-MiniLM-L6-v2 model.
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5.4 Effect of Different Number of Shots

Here we investigate SELF-ICL’s performance under
different number of pseudo-demonstration shots.
The results are presented in Figure 5. The 3-shot
setting is our adopted method in SELF-ICL’s main
experiment, and 1-shot setting used a randomly
sampled shot from the 3 shots (here a shot refers to
a pseudo-demonstration). The 0-shot setting is the
ZS-Direct baseline. As observed, the 3-shot is the
top performing setup. Note that although inferior
to 3-shot, 1-shot still exhibits a notable gain over
0-shot, indicating the empirical effectiveness of
SELF-ICL.

5.5 Effect of Random Pseudo-Labels

To verify the quality of our pseudo-labels, we
replace the pseudo-labels obtained in step 2 by
randomly assigned labels, and construct pseudo-
demonstration with such random pseudo-labels to
predict the test inputs’ answers. As shown in Fig-
ure 5, the performance with random pseudo-labels
is inferior to 3-shot, 1-shot, and the no diverse
setup, but still benefit the performance comparing
to no demonstration at all (0-shot).

Although the performance drop using random
labels may indicate the possibility that some in-
stances encounter the copying effect, we hypothe-
size the LLMs’ abilities to overwrite the semantic
prior when demonstrations have contradicting la-
bels is another big factor (Wei et al., 2023). That is,
LLMs would recognize the demonstration labels
as the correct answers, and make predictions ac-
cordingly. Moreover, this phenomenon is further
extrapolated when using LMs with instruction tun-
ing. Exploring the underlying relationship between
the copying effect and Wei et al. (2023)’s findings
are left as future works.

5.6 A Deeper Look of SELF-ICL’s
Pseudo-Inputs

To increase the diversity of the generated pseudo-
inputs and mitigate the risk of facing the copy-
ing effect, we apply a simple and straightforward
method: prompting LLMs to be diverse with key
words “new”, “diverse”, and “creative”. To pro-
vide a more fine-grained analysis for individual
tasks, following we attempt to quantitatively ver-
ify whether our generated pseudo-inputs are di-
verse enough in comparison with the real inputs
randomly sampled from the training data, by mea-
suring the similarity gap of the query-input distance

0.2

o
-

Similarity Gap
o
o

|
o
-

—0.2}

web of lies |-

ruin names -
navigate |

snarks |-

date understanding |-

hyperbaton |
sports understanding -

logical deduction objects
tracking shuffled objects |
movie recommendation |-
geometric shapes |-
disambiguation qa |
salient translation error detection -
temporal sequences -
formal fallacies |
penguins in a table |
boolean expressions -
causal judgement
reasoning about colored objects -

Figure 6: The similarity gap of the query-inputs distance
between pseudo- and real-inputs. Most tasks fall into
a samll £5% range (the dotted lines), indicating the
pseudo-inputs are close to the real-inputs and are likely
robust against the copying effect.

between pseudo- and real-inputs.

Given a query ¢, i.e., test input, a set of k
randomly selected inputs {(z1,y1), ..., (T, yx)}
from the training set, and a set of £ pseudo-
inputs {(£1,91), ..., (2, Ux) } generated by SELF-
ICL conditioned on g. We first define the query-
input distance d(-) between using pseudo-input and
real-input as

k

k
Z sim anz _*ZSIm qvxz) (1)

=1

w\»—l

where the query and input are encoded by the same
sentence transformers model used in Section 5.3.
Next, we compute the similarity gap G(+) as

n

9(Q) = % > d(a) @
i=1
where () is a set of n queries {q1, ..., g, } for a task.
The similarity gaps for 23 tasks from BBH are
presented in Figure 6. The results are averaged
across five different random seeds (for training
data sampling) and we provide standard deviation
error bars. The larger the gap indicates the more
closer the queries are with the pseudo-inputs than
with real-inputs sampled from training set, and the

more likely to suffer from the copying effect. As
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observed, most of the tasks fall inside the +5%
similarity range (dotted lines), suggesting our de-
signed prompt is able to encourage the generation
of diverse pseudo-inputs, and sufficiently resemble
inputs sampled from real distributions to mitigating
the potential risk of the copying effect. We also
observe the three tasks with substantially higher
or lower similarity gap require heavy, multi-step
reasoning to solve. Thus the initial difficulties of
understanding those task could explain model’s
failure to capture suitable input spaces.

6 Related Work

Understanding ICL.  With the popularization of
various LLMs, ICL has emerged as a new paradigm
for the field of natural language processing (NLP).
However, the mechanisms behind ICL’s superior
ability are still an open question in the research
communities. To develop a deeper understanding
of ICL, Chan et al. (2022) investigate the train-
ing data distribution of LLLMs, and find specific
distributional properties and the transformer-based
architecture (Vaswani et al., 2017) could drive the
ICL behaviors. Recent studies also provide ex-
planations viewing LMs as meta-optimizers with
meta-gradients applied in the forward passes, and
show evidence of resemblances between ICL and
the explicit fine-tuning process (Dai et al., 2022;
von Oswald et al., 2022; Akyiirek et al., 2022).

Towards Zero-Shot ICL.  To achieve better em-
pirical performance with ICL, approaches for de-
signing ideal prompts and demonstrations have
been vastly investigated (Min et al., 2022a; Su et al.,
2022; Zhou et al., 2022; Lu et al., 2022a; Fu et al.,
2022; Lu et al., 2022b).

Recent work from Zhang et al. (2022b) ad-
dressed the need of human-annotated few-shot CoT
by utilizing zero-shot CoT to construct demon-
strations. Their method differs from ours as they
require an existing training set from which shots
are sampled as inputs to zero-shot CoT. Lyu et al.
(2022) attempt to exclude the need of pre-given
demonstration candidate set by selecting semanti-
cally relevant sentences from an raw text corpus
(which is not from the task datasets) as pseudo-
inputs. And pair the selected pseudo-inputs with
randomly assigned labels as demonstrations for
ICL. Though more similar to our setting, they still
need an access to external sources for construct-
ing pseudo-inputs. Moreover, they are limited to
classification tasks where a fixed set of labels is

shared among all inputs. On the contrary, SELF-
IcL generates different input-dependent options for
the multiple-choice tasks, and can easily extend to
other generation tasks.

The most similar work to ours is by Kim et al.
(2022), where they explore the possibility of gen-
erating pseudo-inputs by the LLM itself, without
any external data source. However, their frame-
work requires assess to the label set. They generate
the pseudo-input by conditioning the LM on a la-
bel given in the prompt. Such a design dose not
align with practical usage as it greatly restricts the
scenario to fixed classification tasks. As a result,
their evaluation is limited to only text classifica-
tions (sentiment classification and natural language
inference), which are relatively simple and well-
studied comparing to BBH in our evaluation.

7 Conclusions

In this work, we introduce SELF-ICL—a simple
yet effective framework for zero-shot in-context
learning, where only a test input and its task de-
scription are required. SELF-ICL consists of three
steps: (1) Construction of pseudo-inputs, (2) Con-
struction of pseudo-labels, (3) ICL with pseudo-
demonstrations, i.e., pseudo-input-label pairs. Eval-
uations on BBH show SELF-ICL outperforms zero-
shot (CoT) baselines on head-to-head and all-task
average accuracy. Additionally, we conduct exten-
sive analyses to provide a better insight of SELF-
IcL. To the best of our knowledge, we present the
first true zero-shot approach for ICL, and demon-
strate the potential of bootstrapping LMs’ inner
capabilities to improve zero-shot performance.

Limitations

Reliance on instruction-following models To
follow instructions, understand unseen target tasks
and generate pseudo-inputs and pseudo-labels via
zero-shot prompting, a key driver of our SELF-ICL
framework is the powerful instruction-following
LM. If the model is not equipped with such zero-
shot generalization capability, the results of SELF-
IcL would be inferior.

Better diversify approaches To mitigate poten-
tial risks of suffering from the copying effect, we
simply construct heuristic prompts to tell the LM
to generate diverse pseudo-inputs. Due to the
limited budget, we do not perform comprehen-
sive prompt searching or experiment with temper-
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ature adjustments. In the future, others should ex-
plore methods along the line of one- or few-shot
data augmentation for constructing optimal pseudo-
demonstrations.
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A Appendix
A.1 Details of Experimental Cost

Direct Prompting
3-shot 118.35
1-shot 27.29
SELE-Ici, Prompting without diversity hints ~ 135.58
random pseudo-labels 51.27
batch inference 63.15
3-shot 49.98
Standard  0-ghot 15.27
CoT Prompting
SELF-ICL  3-shot 203.10
Standard 0-shot 28.71
Sum 692.70

Table 4: The cost (in US dollar) of experiments using
InstructGPT (Section 4.1 and 5), estimated based on
number of tokens.

A.2 Example Prompts

~ Step 1 ~
Following is an example instance for the task:
Recommend movies similar to the given list of movies.
Please come up with 3 new, diverse, and creative
instances for the task.

Example instance:

Q: Find a movie similar to Batman, The Mask, The
Fugitive, Pretty Woman:

Options:

(A) The Front Page

(B) Maelstrom

(C) The Lion King
(D) Lamerica

New instance 1:
. _J

Figure 7: An example prompt of SELF-ICL Step 1 (The
movie recommendation task). Note that both the direct
prompting and CoT prompting settings shared the exact
same Step 1 prompt.

- Step 2 ~

Task description: Recommend movies similar to the
given list of movies.

Q: Find a movie similar to The Hangover, Bridesmaids,
Superbad, Knocked Up:
Options:
(A) The 40-Year-Old Virgin
(B) Pineapple Express
(C) Step Brothers
(D) This Is The End
&A.

Step 3

Task description: Recommend movies similar to the
given list of movies.

Q: Find a movie similar to The Hangover, Bridesmaids,
Superbad, Knocked Up:

Options:

(A) The 40-Year-Old Virgin

(B) Pineapple Express

(C) Step Brothers

(D) This Is the End

B)

A:
Q:[...]
A:l...]
Q:[...]
Al..]

Q: Find a movie similar to Batman, The Mask, The
Fugitive, Pretty Woman:

Options:

(A) The Front Page

(B) Maelstrom

(C) The Lion King

(D) Lamerica

N y,

Figure 8: Example prompts of SELF-ICL Steps 2 and 3
for the the direct prompting setting (The movie recom-
mendation task).

S Batch Inference - Step 1 E—

Following are [BATCH_SIZE] example instances for the
task: [task description]. Please come up with
[NUM_SHOT] new, diverse, and creative instances for
the task.

Example instances 1:
Q: [test input 1]

Example instances 2:
Q: [test input 2]

Example instances BATCH_SIZE:
Q: [test input BATCH_SIZE]

New instance 1:
Q:
\_ _J

Figure 9: The prompt template of batch inference (Step
1).
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