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Abstract

Large Language Models (LLMs) have made re-
markable advancements in the field of natural
language generation. However, the propensity
of LLMs to generate inaccurate or non-factual
content, termed “hallucinations”, remains a sig-
nificant challenge. Current hallucination detec-
tion methods often necessitate the retrieval of
great numbers of relevant evidence, thereby in-
creasing response times. We introduce a unique
framework that leverages statistical decision
theory and Bayesian sequential analysis to op-
timize the trade-off between costs and bene-
fits during the hallucination detection process.
This approach does not require a predetermined
number of observations. Instead, the analysis
proceeds in a sequential manner, enabling an
expeditious decision towards “belief” or “disbe-
lief” through a stop-or-continue strategy. Exten-
sive experiments reveal that this novel frame-
work surpasses existing methods in both effi-
ciency and precision of hallucination detection.
Furthermore, it requires fewer retrieval steps
on average, thus decreasing response times1.

1 Introduction

In the era of information overload and the prolif-
eration of misleading or false information, auto-
matic fact checking has become an essential tool
for verifying the veracity of claims and combating
misinformation. Large Language Models (LLMs),
such as GPT-4 (OpenAI, 2023),PaLM (Chowdhery
et al., 2022) and LLaMA (Touvron et al., 2023),
have made significant advancements in the field of
natural language generation (NLG). However, the
inherent tendency of LLMs to generate inaccurate
or non-factual content, commonly referred to as
“hallucinations” (Bang et al., 2023; Ji et al., 2022),
continues to present a significant challenge.

One previous work utilizes the sampled-based
approach for detecting hallucination (Manakul

1Our code is available at https://github.com/
xhwang22/HallucinationDetection.

EvidenceClaim

Response: “Giuseppe Mariani 
was an Italian professional 
footballer who played as a 
forward. He was born in Milan, 
Italy, and died in Rome, Italy. 
[truncated]”

Document Retrieval

EvidenceClaim

Faculty

Hallucination

Prior work: Retrieve consistent 
number of documents

Our method: Decide whether to 
retrieve additional evidence via 

Bayesian sequential analysis

①

②

③

④Bayesian Risk 
Decision

Hallucination 
Classifier

Hallucination 
Classifier

Figure 1: Evidence-based hallucination detection based
on Bayesian sequencial analysis. Prior works often re-
trieve a predetermined number of documents and over-
looked the variability among different inputs. In our
framework, (1) we first retrieve one document from
the search engine; (2) External evidence and the claim
generated by the LLM are input into the hallucination
classifier to calculate the veracity score; Then we make
a decision on whether to stop observing and make a
veracity judgment based on the available evidence or to
continue observing additional evidence. This decision is
made based on the Bayesian risk decision and sequential
analysis. (3) If stopping and making a determination
carries a higher risk, we choose to continue observing
additional evidence; (4) Otherwise, we choose to deter-
mine the veracity of the claim.

et al., 2023), they assume that LLMs are capable
of producing similar responses and contain consis-
tent facts related to a given concept. However, this
method necessitates many samplings of the LLM,
leading to tremendous costs in practical applica-
tions. Another commonly employed strategy in
fact checking entails retrieving relevant evidence
from various sources, such as texts (Thorne et al.,
2018; Augenstein et al., 2019), knowledge graphs
(Kim et al., 2023) and the webs (Chen et al., 2023;
Kamoi et al., 2023) to validate or challenge claims.
These methods usually retrieve a predetermined
number of documents across diverse cases. How-
ever, the effectiveness of these approaches heavily
depends on the selection of the number of docu-
ments to retrieve. While these methods can ensure
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a certain level of consistency, in practical applica-
tions, different claims may require varying amounts
of external evidence for verification. This should be
determined by the nature of the claim itself and the
documents retrieved, rather than predetermined pa-
rameters. The optimal number of external evidence
sources needed to validate a claim should be dy-
namically determined based on the specific context
and characteristics of the claim, taking into account
factors such as complexity, ambiguity, and the avail-
ability of relevant information. This study aims to
investigate the feasibility of gradually collecting
relevant information and adopting a data-driven
approach to document retrieval in the context of
hallucination detection for large language models
(LLMs) in real-world scenarios. By employing
such an approach, we can enhance retrieval effi-
ciency and reduce unnecessary retrieval attempts.

In this paper, we propose a novel framework that
leverages Bayesian sequential analysis (Wetherill,
1961; Arrow et al., 1949; Carlin et al., 1998) to en-
hance the retrieval efficiency for detecting whether
claims generated by LLMs are hallucinated or fac-
tual in the wild. Recognizing that a single sentence
may contain a mixture of factual and nonfactual
information, we first decompose a claim into sub-
claims, each focusing on a single entity and its
associated attributes (Kamoi et al., 2023). In the
subsequent stage, we employ a search engine to
retrieve relevant documents for each subclaim in-
dividually. These retrieved documents, in conjunc-
tion with their corresponding subclaims, are then
input into a classifier to estimate their veracity (Nie
et al., 2020). As illustrated in Figure 1, we con-
sider the retrieved documents as a sequence and
make informed decisions on whether additional
information should be retrieved for a given case
via Bayesian sequential analysis through a stop-or-
continue strategy. Once the information gained is
enough to decide whether claims are hallucinations,
we stop and make an evaluation. Otherwise, we
retrieve additional documents and make a decision
in the next step. Finally, we aggregate the assess-
ments of the subclaims to determine the overall
veracity of the input claim.

To evaluate the effectiveness of our framework,
we conducted experiments on the dataset of Self-
CheckGPT (Manakul et al., 2023), containing
1, 908 sentences from 238 articles generated by
GPT-3, each labeled with its corresponding verac-
ity. The experimental results demonstrate that our

framework outperforms sample-based methods in
terms of efficiency and accuracy in hallucination
detection. In the task of sentence-level hallucina-
tion detection, our framework achieves comparable
performance to the baseline approach. However, in
the passage-level task, we observe an improvement
of 6.43% in terms of Spearman’s correlation coef-
ficient. Furthermore, across different sets of hyper-
parameter configurations, our framework consis-
tently reduces the number of retrieved documents
compared to the approach with a fixed number of
retrieved documents. These results indicate the
superiority of our approach in detecting hallucina-
tions with improved efficiency and precision, show-
casing its potential for practical applications.

2 Related Work

2.1 Hallucination Detection for Large
Language Models

Several studies have explored the phenomenon of
hallucination (Su et al., 2022; Lee et al., 2022; Dai
et al., 2022) in large language models and have pro-
posed various approaches for its causation and de-
tection. Bang et al. (2023) conducted an evaluation
of ChatGPT’s hallucination on fact-checking test
sets and knowledge-based QA tasks, highlighting
the model’s susceptibility to extrinsic hallucination
compared to intrinsic hallucination (Ji et al., 2022).

In terms of detection, Kadavath et al. (2022)
and Mündler et al. (2023) conducted a study to
investigate whether language models can assess
the validity of their own claims, aiming to explore
the self-evaluative capabilities of language models.
Azaria and Mitchell (2023) employed the internal
state of LLMs to determine the truthfulness of state-
ments by leveraging the hidden-layer activations
as input to the classifier. Manakul et al. (2023) in-
troduced a sample-based detection method for hal-
lucination detection. They emphasized that when
a language model is well-acquainted with a given
concept, the sampled responses are likely to be
similar and contain consistent facts. This method
relies on analyzing the consistency of the generated
samples to identify potential hallucinations. Unlike
their approach, we employ an evidence-based fact-
checking method, where we verify the correctness
of claims based on external documents.

2.2 Evidence-based Fact Checking

Evidence-based fact-checking has gained signifi-
cant attention as an effective approach to combat
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misinformation and ensure information accuracy.
FEVER (Thorne et al., 2018) utilized Wikipedia ev-
idence for fact verification, while Augenstein et al.
(2019) collected evidence from fact-checking web-
sites and proposed a method that combines veracity
predictions and evidence ranking.

Recent approaches include the use of knowledge
graphs (KG) by Kim et al. (2023), where a classi-
fier predicts relations and hops related to the claim,
and related sequences are retrieved from the KG
as evidence. Kamoi et al. (2023) put forward a
dataset constructed using real-world claims and
evidence. Their work focused on enhancing the
performance of entailment models by reducing the
complexity of claims through a decomposition pro-
cess. By breaking down the claims into simpler
components, they aim to facilitate a more effective
evaluation of entailment and improve the overall
performance of the models. Chen et al. (2023)
presented an automated pipeline for fact-checking
real-world claims, retrieving raw evidence from
the web. However, these methods retrieve a fixed
number of documents for all instances, whereas
our work focuses on adaptively retrieving a varying
number of documents for specific instances.

2.3 Bayesian Sequential Analysis

Sequential analysis (Wald, 1947) grounded in de-
cision theory and Bayesian inference (Gunst and
Shcherbakova, 2008; Box and Tiao, 1973), pro-
vides a valuable framework for making informed
decisions based on accumulating evidence. The
goal is to select decisions that minimize the ex-
pected loss, considering the associated costs. The
general approach to Bayesian sequential decision
problems involves backward induction (DeGroot,
2005; Berger, 2013), also known as stochastic dy-
namic programming (Ross, 2014). However, as the
complexity of the problem increases, this method
can become computationally intensive. To address
this issue, Cardillo and Fu (1968) proposed an ap-
proximation by assuming that the subsequent stage
is terminal, leading to a suboptimal solution. Ex-
panding on the backward induction method, Brock-
well and Kadane (2003) introduced a grid approx-
imation approach. This technique estimates the
expected loss at each decision time, significantly
reducing computation time to a linear complexity
relative to the number of decision stages.

In this paper, we utilize Bayesian sequential anal-
ysis to implement a stop-or-continue strategy for

retrieving external documents. We treat the re-
trieved documents as a sequence and dynamically
determine whether to continue or stop the retrieval
process based on the accumulated evidence. This
stop-or-continue strategy allows for efficient and
effective information retrieval, optimizing the pro-
cess by adapting to the evolving evidence and min-
imizing unnecessary retrieval attempts.

3 Method

In this paper, we propose a framework for detect-
ing hallucinations of LLMs by leveraging external
evidence.

Given a claim generated by the LLMs, we first
decompose it into subclaims that contain basic
knowledge and proceed to evaluate the veracity
of each subclaim individually.

Subsequently, we employ a search engine to re-
trieve web documents for each subclaim as external
evidence. Rather than predefining the number of
documents to retrieve, we adopt a dynamic retrieval
process that involves retrieving one document at
one step and determining the need for additional
retrieval based on the content of the retrieved docu-
ment.

Then, we utilize a specific classification model
to compute the entailment score between each doc-
ument and subclaim which represents the extent to
how well the evidence supports a given claim. The
entailment score is processed into features, and a
Naive Bayes classifier (NBC) is applied to calcu-
late the probability of the subclaim’s veracity based
on these features.

Next, we adopt a stop-or-continue strategy, em-
ploying Bayesian risk decision to choose among
three options: (1) stopping the retrieval process and
classifying the subclaim as faculty, (2) stopping the
retrieval process and classifying the subclaim as
a hallucination, (3) or continuing to retrieve addi-
tional documents and make a choice in the next
step. After making the decision to stop the retrieval
process and determine the veracity or reaching the
maximum retrieval times, we obtain the probability
that the subclaim is faculty.

Finally, by aggregating the probabilities of the
subclaims’ veracity, we evaluate the overall verac-
ity of the original claim and assess its potential as
a hallucination.

In the following subsections, we discuss in more
detail our method. In Section 3.1, we demonstrate
the process of claim decomposition. In Section
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3.2, we describe details of using a search engine to
retrieve web documents. Section 3.3 explains how
the entailment score is calculated and processed
into features required by the Naive Bayes Classifier
(NBC). In Section 3.4, we provide a specific de-
scription of the stop-or-continue strategy’s details.
Finally, in Section 3.5, we elaborate on how the
veracity probabilities of subclaims are aggregated.

3.1 Claim Decomposition

Given a claim generated by LLMs, the direct ve-
racity validation of the entire claim becomes chal-
lenging due to the presence of multiple knowledge
instances within the generated content. So we first
decompose the original claim into subclaims, with
each subclaim specifically focusing on a single
entity and its associated attributes. Kamoi et al.
(2023) show that similar method allows for a more
fine-grained analysis, enabling us to examine and
evaluate each entity and its attributes individually.
Simultaneously, we replace pronouns in sentences
with their corresponding entities. This approach is
implemented to enhance the retrieval of relevant
evidence from web documents, making the search
process more effective.

We employ a zero-shot prompt-based approach
using the GPT-3.5 (text-davinci-003) model to
perform claim decomposition and the full prompt
can be seen in Appendix A. For sentences that
have not been successfully decomposed, we solely
perform entity replacements for pronouns.

3.2 External Documents Retrieval

To validate the real-world efficacy of our frame-
work, we utilize the subclaims derived from the
previous decomposition step to retrieve external
documents from search engines. We input the sub-
claims as queries into the Bing Search API2 to
obtain URLs. We then utilize the newspaper3k3 to
extract web page content from the retrieved URLs.
Note that the external documents are treated as a
finite sequence with maximum length K and are
retrieved one by one. Therefore, we don’t pre-
determine a fixed number of retrieval times. We
disregard web content that is inaccessible, such as
PDF files or protected websites.

2http://www.microsoft.com/en-us/bing/apis/
bing-web-search-api

3https://github.com/codelucas/newspaper

Algorithm 1: Hallucination detection
Input: C : A claim generated by LLMs for

hallucination detection;
π1(0) : Initial probability of C being factual;
K : Maximum retrieval times;
CFA : Cost of false alarm;
CM : Cost of miss;

Cretrieve: Cost of retrieving an document;
Output: Pfactual(C): Probability of C being

factual;
1 {C1, C2, · · · , CL} ← ClaimDecompose(C);
2 for i← 1 to L do
3 n← 1 ;
4 while n ≤ k do
5 En ← RetrieveDocument(Ci);
6 fn ← CalEntailmentFeature(En, Ci);
7 π1(n)← NBC(π1(n− 1), fn);
8 Rstop(n)← min((1− π1(n))CM ,

(1− π0(n))CFA);
9 Rcontinue(n)←

Cretrieve + Efn+1(Rstop(n+ 1));
10 if Rstop(n) < Rcontinue(n) then
11 break;
12 else
13 n← n+ 1;
14 end
15 end
16 P i

factual = π1(n);
17 end
18 Pfactual(C) = min

i
Pfactual(C

i);

19 Return: Pfactual(C)

3.3 Entailment Score Calculation and
Discretization

We utilize a specific classification model to calcu-
late the entailment score between each document
and subclaim which represents the extent to how
well the evidence supports the given subclaim. A
higher entailment score indicates stronger support
from the external document for the corresponding
subclaim. In this study, we use the DeBERTa-v3
(He et al., 2021) model fine-tuned on Natural Lan-
guage Inference (NLI) dataset (Laurer et al., 2022)
to perform a two-label classification (entailment
and not entailment). Let C refer to a subclaim and
E refer to a retrieved document, the entailment
score s(C,E) is the probability of the entailment
label obtained by inputting the claim and evidence
into DeBERTa-v3. Therefore, s(C,E) ∈ (0, 1)
and s(C,E) → 1 if the evidence completely sup-
port the claim.

To overcome the limitation of the model’s input
length, we divide the document E into text spans
{E1, E2, · · · , El}. Each text span comprises m
tokens, with a step size of n (n < m) tokens. This
means that we divide the document into text spans
of length m tokens and move the segmentation
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window by n tokens for each step. We calculate
the entailment score between each text span and
the corresponding subclaim, and select the highest
entailment score as the entailment score for the
original document:

s(C,E) = max
i

(s(C,Ei)) (1)

This approach ensures that the document’s over-
all entailment score reflects the strongest evidence
found within it.

Score Discretization
The entailment score is indeed a continuous value
ranging between 0 and 1. To simplify the repre-
sentation of the document characteristics, we trans-
form the entailment score into a discrete entailment
feature based on the assumption that two docu-
ments with similar entailment scores possess the
same feature:

f(C,E) = ⌊10 · s(C,E)⌋ (2)

where s is the continuous value of entailment score
and f ∈ {0, 1, 2, · · · , 8, 9} is the discrete entail-
ment feature given claim C and evidence E. The
entailment feature is then input into a Naive Bayes
Classifier (NBC) to calculate the veracity of the
claim in Equation 4.

3.4 Stop-or-Continue Retrieval Strategy
Given a subcliam C that needs to be evaluated for
veracity, and a finite sequence of retrieved external
documents {E1, E2, · · · , EK}, we use the entail-
ment features of each document to access the verac-
ity θ of C. We denote θ = θ0 to represent that C is
a hallucination and θ = θ1 if C is factual. At time
n < K, we use π1(n) to represent the probability
of C being factual, given features f1, f2, · · · , fn:

π1(n) = P (θ = θ1|f1:n) (3)

where the f1:n is the entailment features of E1:n

and C calculated using Equation 2.
At step n+1, we use π1(n) as the prior probabil-

ity and calculate the posterior probability π1(n+1)
based on π1(n) and fn+1:

π1(n+1) =
π1(n)P (fn+1|θ1)

(1− π1(n))P (fn+1|θ0) + π1(n)P (fn+1|θ1)
(4)

which comes by recursively applying Bayes’ rule
(Appendix B). This is the probability that C is fac-
tual, given features f1, f2, · · · , fn, fn+1, with an

assumption of independence between the features.
In our approach, we assume that the content gen-
erated by the large language model (LLM) has an
equal prior probability of being hallucinations or
factual information and set π1(0) = 0.5.

One of the difficulties in calculating the
above probability is the conditional probability
P (fn+1|θ1) and P (fn+1|θ0). We use a sampling
method to compute this term required in Equation 4.
We sampled a set that consists of s factual claims
and s nonfactual claims. For each claim, we re-
trieved a piece of external evidence and computed
the entailment features of the claim and evidence.
Then we estimate P (fn+1|θ1) and P (fn+1|θ0) by
counting the factual and nonfactual claims (plus a
smoothing term) that have the entailment feature
equal to fn+1.

Bayesian Sequential Analysis
For a subcliam C, external document comes one by
one in sequence. At step n < K, we retrieve docu-
ments {E1, E2, · · · , En} and calculate the proba-
bility that C is factual using Equation 4. Then we
have three options:

• Decide θ = θ1: We stop observing additional
evidence and determine the subclaim C is fac-
tual.

• Decide θ = θ0: We stop observing additional
evidence and determine the subclaim C is a
hallucination.

• Keep test: The previous evidence is not
enough to evaluate the veracity of the sub-
claim C and decide to retrieve additional doc-
uments.

If we choose the first two options, we stop observ-
ing additional external evidence. However, if we
choose to continue with “keep test”, we retrieve an
additional document and make the choice among
the three options again at step n+ 1. We assume
that the document sequence is finite, and when the
maximum step K is reached, we no longer choose
“keep test”.

We make decisions based on the minimization
of Bayesian risk. In this study, we consider three
possible risk costs:

• CFA: Cost of false alarm, we declare θ = θ0
but C is factual. In this condition, we incur
a cost when mistakenly classifying factual in-
formation as hallucinations.
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• CM : Cost of miss, we declare θ = θ1 but C
is a hallucination. In this condition, we incur
a cost when mistakenly classifying hallucina-
tions as factual information.

• Cretrieve: Cost of retrieve an external evi-
dence. In this work, we assume that the cost of
retrieving external evidence is equal for each
retrieval.

We choose to stop only when the cost of stopping
is less than the minimum expected cost of retrieving
one more document. If we stop and declare θ,
the cost due to “miss” would be π1(n)CM and
the cost due to “false alarm” would be π0(n)CFA.
Therefore, if we make the decision to stop at step
n, the expected risk Rstop(n) is:

Rstop(n) = min((1− π1(n))CM , (1− π0(n))CFA) (5)

where Rstop(n) is the expected cost of choose the
stop option. If the cost due to “miss” is smaller than
the cost due to “false alarm”, we declare θ = θ1 and
determine that C is factual. Otherwise, we declare
θ = θ0 and determine that C is a hallucination.

If we choose to retrieve an additional document
and make a choice in the next step, because we do
not know the retrieved document En+1 at step n,
so we calculate the minimum expected risk:

Rcontinue(n) = Cretrieve+
9∑

fn+1=0

R(n+1)·P (fn+1) (6)

where fn+1 is the entailment feature of En+1 and
C. Rcontinue is the minimum expected risk to re-
trieve an additional document and make a choice in
the next step. R is the overall minimum expected
cost of the three options:

R(n) = min(Rcontinue(n), Rstop(n)) (7)

We use this recursive equation to obtain the op-
timal solution. We stop and determine the prob-
ability of C being factual is π1(n) and evaluate
the veracity of C if this action results in minimum
expected cost Rstop(n). Specifically, if Rstop(n)
results in the cost of miss, we consider C to be
factual. Otherwise, we consider C to be a hallu-
cination. On the other hand, if the measurement
of Rcontinue(n) yields the minimum expected cost,
the process continues and an additional document
En+1 is retrieved.

To obtain the optimal Bayesian decision in the fi-
nite sequential setting at any step other than the

last, one must consider the probability of data
values that have not yet been observed. This re-
quires working the problem backward (from the
max step K back to time 0), a process referred
to as backward induction (DeGroot, 2005; Berger,
2013). However, computing Equation 6 is a bit
awkward, as we need to consider all discrete values
for subsequent steps. The computation complexity
that implements the backward induction solution
increases exponentially in the number of backward
steps. Therefore, we use the truncation approxima-
tion made one-step-ahead (Cardillo and Fu, 1968)
which leads to the suboptimal solution. In each
step, the choice is made based on the assumption
that the next step is the final step, meaning that only
the first two options are considered. In this case,
Equation 5 still hold, but R(n+ 1) is replaced by
Rstop(n+ 1) in Equation 6:

Rcontinue(n) = Cretrieve+
9∑

fn+1=0

Rstop(n+1) ·P (fn+1)

(8)

By using this approach, the computational complex-
ity decreases from exponential to linear. Specifi-
cally, it reduces from O(10K) to O(K).

3.5 Aggregation
Finally, we calculate the original claim’s probabil-
ity of factual by considering the minimum proba-
bility of factual among the subclaims:

Pfactual(C) = min
i

Pfactual(C
i) (9)

Where Pfactual is the probability of factual and
the original claim C is decomposed into L sub-
claims {C1, C2, · · · , CL}. This is based on the
assumption that if any portion of the original claim
is nonfactual, we consider the whole sentence to be
a hallucination.

4 Experiments

We conducted experiments on the hallucination
detection classification task. First, we compared
our framework with SelfCheckGPT to evaluate the
effectiveness of our approach in hallucination de-
tection at both the sentence-level and passage-level.
Next, we performed a comparative experiment us-
ing a fixed number of retrieved documents as ex-
ternal evidence to validate the efficiency of our
framework in improving retrieval efficiency and
reducing the number of external evidence. Finally,
we conducted ablation study to evaluate the neces-
sity of the claim decomposition step.
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Method Sentence-level (AUC-PR) Passage-level (Corr.)
Evidence Num Nonfact Factual Acc Pearson Spearman

Self-Detection - - - 31.01 - -
w/ BERTScore 20 81.96 44.23 - 58.18 55.90

SelfCheckGPT w/ QA 20 84.26 48.14 - 61.07 59.29
w/Unigram (max) 20 85.63 58.47 - 64.71 64.91

Combination 60 87.33 61.83 - 69.05 67.77

Our Framework CM = 14, CFA = 24 3.05 82.42 57.01 80.24 71.37 64.55
CM = 28, CFA = 96 6.22 86.45 61.96 82.39 81.18 74.20

Table 1: Follow prior work (Manakul et al., 2023), we report the Area Under the Precision-Recall Curve (AUC-PR)
at the sentence-level and the Pearson and Spearman’s rank correlation coefficient w.r.t human judgments at the
passage-level. Additionally, we report the number of external evidence. For SelfCheckGPT, “Evidence Num”
represents the number of samples obtained from GPT-3. For our framework, “Evidence Num” represents the average
number of retrieved external documents. Furthermore, for our framework, we also report the sentence-level accuracy.
BERTScore, QA and Unigram are three metrics to evaluate the consistency of samples in SelfCheckGPT.

4.1 Experiment setup
Dataset We use the dataset of SelfCheckGPT
(Manakul et al., 2023) which contains 1, 908 sen-
tences from 298 article generated by GPT-3. Each
sentence is labeled with one of the three verac-
ity labels: “Accurate”, “Minor Inaccurate” and
“Major Inaccurate”. In the experiments, “Ma-
jor Inaccurate” and “Minor Inaccurate” sentences
are labeled as non-factual class, while sentences
labeled as “Accurate” are considered factual class.
Baseline SelfCheckGPT samples from GPT-3
multiple times and utilizing consistency between
samples to identify hallucinations. We use Self-
CheckGPT as the baseline to evaluate the perfor-
mance of our framework for hallucination detection
at sentence-level and passage-level. We also query
ChatGPT itself to determine whether it constitutes
hallucination as an additional baseline(Mündler
et al., 2023).
Hyperparameters Settings For calculation of
the conditional probability of Equation 4, we used
s = 200 and a smoothing term of 1 in the experi-
ments reported here. In section 4.3, we adjust CFA

and CM on our framework for hyperparameter ex-
periments. For the experiments conducted outside
of that section, we set the value of the three possible
costs of Bayesian sequential analysis CFA = 24,
CM = 14 and Cretrieve = 1. For the length of text
spans and the step size during document segmenta-
tion, we set m = 400 and n = 100. Additionally,
we set the maximum retrieval time K = 10.
Evaluation Metrics Following SelfCheckGPT,
we report AUC-PR for sentence-level detection
tasks. For passage-level detection, we calculate
the average score of all sentences in a passage to
obtain the passage’s veracity score. Passage-level
ranking performances are measured by Pearson

correlation coefficient and Spearman’s rank corre-
lation coefficient w.r.t. human judgments.

For our framework, we also report average
search time and accuracy (ACC) for sentence-level
detection tasks. To validate the advantage of our
method in terms of sample cost, we report the num-
ber of external evidence. For SelfCheckGPT, we
consider the number of times they perform sam-
pling from GPT-3 as the quantity of external evi-
dence. For our framework, we report the average
number of retrieved documents at the sentence-
level. To validate our advantage in terms of sam-
pling cost, we assume that SelfCheckGPT incurs
the same cost for one GPT-3 sample as it does for
searching an external document.

4.2 Results of Hallucination Detection

The results of our experiments can be found in
Table 1, which provides an overview of the per-
formance of our framework in hallucination de-
tection. When the average number of retrieved
documents per sentence is 3.05, our framework out-
performs SelfCheckGPT with single consistency
metric, which rely on 20 external evidence, in terms
of passage-level performance. As the average num-
ber of retrieved documents increased to 6.22, our
framework shows slightly lower performance in
Nonfact detection but uses less external evidence.
In Factual detection and passage-level evaluation,
we achieve significant improvements over the base-
line. These results demonstrate the effectiveness of
our framework in hallucination detection.

4.3 Effectiveness for Reducing Retrieval
Times

In this section, we conducted comparative experi-
ments using a fixed number of retrieved documents.
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Figure 2: The performance of Bayesian sequential anal-
ysis method on ranking passages (Spearman’s) versus
strategies with fixed number of retrieval documents.

For the case of using a fixed number of retrieved
documents, we considered three methods to aggre-
gate the features of these documents:

• Naive Bayes Classifier (NBC): We treated the
documents as a fixed number of features and
used a Naive Bayes classifier, as described in
Eq.4, for hallucination detection.

• Average: For each document, we compute an
entailment score and then average the scores
of all the documents to obtain the veracity
score of the claim.

• Maximum: We calculated an entailment score
for each document and selected the highest
score as the veracity score for the sentence.
This approach is based on the assumption that
hallucinations usually lack any supporting ev-
idence in external documents. Therefore, if
there are documents that can validate a sen-
tence, we consider the sentence factual.

The CM and CFA hyperparameters represent
the costs involved in making Bayesian risk deci-
sions. Different values of CM and CFA can lead
to different decisions by the strategy, for the same
π1(n) and Cretrieve, thereby influencing the aver-
age number of retrieved documents. To evaluate
the effectiveness of our framework in improving re-
trieval efficiency and reducing search frequency, we
conduct comparative experiments using the fixed
number of retireved documents. We randomly se-
lect five sets of CM and CFA values and compare
the results with the fixed search times approach.

The results obtained from the experiments are
presented in Figure 2, which illustrates the rela-
tionship between the average number of retrieved
documents in our framework and the Spearman’s
correlation coefficient at the passage-level halluci-
nation detection. Based on the results, we observe
that as the average number of retrieved documents
in our framework approaches the fixed number of
retrievals, there is a higher Spearman’s correlation
coefficient at the passage-level hallucination de-
tection. This implies that our framework achieves
better performance in hallucination detection with
fewer retrievals compared to the fixed number of
retrievals. These findings indicate that our frame-
work effectively reduces the number of retrievals re-
quired while maintaining or even improving the per-
formance of hallucination detection. This demon-
strates the efficacy of our approach in enhancing
retrieval efficiency and reducing search frequency
in the context of hallucination detection tasks.

Method Sentence-level (AUC-PR)
Nonfact Factual Acc

w/o Decomposition 80.04 53.71 79.19
w Decomposition 82.42 57.01 80.24

Table 2: The performance at the sentence-level by
directly using the original sentence for hallucination
detection.

4.4 The Effect of Claim Decomposition

In this section, we validate the contribution of
the claim decomposition step to the overall per-
formance. We consider the scenario where only the
decomposed subclaims are used for document re-
trieval and directly perform hallucination detection
on the original sentence.

The results in Table 2 demonstrate that when
subclaims are only used for document retrieval, the
performance of the framework decreases to some
extent at both the sentence level and passage level.
This indicates that directly determining the verac-
ity of a sentence that contains multiple pieces of
knowledge is challenging. It highlights the neces-
sity of the problem decomposition step.

5 Conclusions

In this study, we propose a framework that utilizes
Bayesian sequential analysis for detecting hallu-
cinations in large language models (LLMs). We
consider the retrieved documents as a sequence
and employ a stop-or-continue strategy to make in-
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formed decisions on whether to retrieve additional
information for a given case. By applying Bayesian
sequential analysis, our framework achieves com-
petitive results on annotated GPT-3 responses, sur-
passing sample-based methods and retrieval strate-
gies with a fixed number of search documents. Ad-
ditionally, we validate the practical applicability of
our framework by conducting searches for relevant
documents on the web, demonstrating the feasi-
bility of our approach in corroborating the claims
made by LLMs with real-world information.

Limitations

In this study, the implemented strategy amalga-
mates individual pieces of information extracted
from a search engine at each iterative stage. An
inherent limitation of this methodology is the po-
tentially extended duration required for inference.
For future studies, it would be better to consider
the integration of information drawn from multiple
documents concurrently, which could significantly
enhance the speed of the inference process.
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A Claim Decomposition Prompts

The zero-shot prompt we use to decompose the
claim is shown in Figure 3.

Follow these steps to process the text in the triple delimiter:

Step 1: Rewrite the text while use the original names of entities instead of pronouns when referring to 

them.

Step 2: Decompose the text into basic knowledge, requiring each piece of knowledge to contain only 

one entity and one attribute of that entity and one value of the attribute.

Step 3: Express each decomposed piece of knowledge in a natural language sentence.

Step 4: Output which sentence in step three was obtained from the original text.

Output the result in JSON format, the key of JSON is 'step1', 'step2', 'step3’ and 'step4', the value of 

step3 should be a list of sentences and the value of step4 should be pairs of sentence in step3 and 

original sentence in the original text and the index of the sentence in the original text.

```{ passage }```

Output:

Figure 3: The zero-shot prompt for decompose the sen-
tence of the passage into subclaims.

B Derivation of Equation 4

Given a subcliam C that needs to be evaluated for
veracity, and a finite sequence of retrieved external
documents {E1, E2, · · · , EK}, we use the entail-
ment features of each document to access the verac-
ity θ of C. We denote θ = θ0 to represent that C is
a hallucination and θ = θ1 if C is factual. At time
n < K, we use π1(n) to represent the probability
of C being factual, given features f1, f2, · · · , fn:

π1(n) = P (θ = θ1|f1:n) (10)
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where the f1:n is the entailment features of E1:n

and C calculated using Equation 2.

π1(n+ 1) (11)
= P (θ = θ1|f1:n+1) (12)

=
P (θ1, f1:n+1)

P (f1:n+1)
(13)

=
P (θ1)P (f1:n+1|θ1)

P (f1:n+1|θ1)P (θ1) + P (f1:n+1|θ0)P (θ0)
(14)

=
P (θ1)Π

n+1
i=1 P (fi|θ1)

P (θ1)Π
n+1
i=1 P (fi|θ1) + P (θ0)Π

n+1
i=1 P (fi|θ0)

(15)

=
P (fn+1|θ1)P (f1:n, θ1)

P (fn+1|θ1)P (f1:n, θ1) + P (fn+1|θ0)P (f1:n, θ0)
(16)

=
P (fn+1|θ1)P (θ1|f1:n)

P (fn+1|θ1)P (θ1|f1:n) + P (fn+1|θ0)P (θ0|f1:n)
(17)

=
π1(n)P (fn+1|θ1)

(1− π1(n))P (fn+1|θ0) + π1(n)P (fn+1|θ1)
(18)

Deriving Equation 15 from Equation 14 based on
the assumption of independence between the fea-
tures.

C Self-Detection Prompts

For querying ChatGPT itself to see whether it’s
hallucination, we use the prompt shown in Figure
4.

I give you one statement, please conclude whether the statement 
is nonfactual with Yes or No.

Statement: {Hypothesis}

Figure 4: The zero-shot prompt for querying ChatGPT
itself to see whether it’s hallucination.
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