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Abstract

Prompting with natural language instructions
has recently emerged as a popular method of
harnessing the capabilities of large language
models (LLM). Given the inherent ambiguity
present in natural language, it is intuitive to
consider the possible advantages of prompting
with less ambiguous prompt styles, like pseudo-
code.

In this paper, we explore if prompting via
pseudo-code instructions helps improve the
performance of pre-trained language models.
We manually create a dataset' of pseudo-code
prompts for 132 different tasks spanning classi-
fication, QA, and generative language tasks,
sourced from the Super-Naturallnstructions
dataset (Wang et al., 2022b). Using these
prompts along with their counterparts in natural
language, we study their performance on two
LLM families - BLOOM (Scao et al., 2023),
CodeGen (Nijkamp et al., 2023). Our experi-
ments show that using pseudo-code instructions
leads to better results, with an average increase
(absolute) of 7-16 points in F1 scores for classi-
fication tasks and an improvement (relative) of
12-38% in aggregate ROUGE-L scores across
all tasks. We include detailed ablation studies
which indicate that code comments, docstrings,
and the structural clues encoded in pseudo-code
all contribute towards the improvement in per-
formance. To the best of our knowledge, our
work is the first to demonstrate how pseudo-
code prompts can be helpful in improving the
performance of pre-trained LMs.

1 Introduction

Prompting with natural language instructions has
recently emerged as a popular method of harness-
ing the capabilities of large language models. In
addition to fine-tuning, models are often fine-tuned
using instructions on a large collection of datasets

*Equal contribution

'Code and dataset available at https://github.com/
mayank31398/pseudo-code-instructions

Listing 1 An example pseudo-code instruction for
the task from Wang et al. (2022b). A successful
model is expected to use the provided pseudo-code
instructions and output responses to a pool of eval-

uation instances.
def generate_sentiment(sentence: str) -> str:

1
2 """For the given sentence, the task is to
3 predict the sentiment. For positive
4 sentiment return "positive” else return
5 "negative”.

6

7 Parameters:

8 sentence (str): input sentence
9 Returns:

10 str: sentiment of the input

11 e

12

13 # predict the sentiment

14 if sentiment_is_positive(sentence):

15 return "positive”

16 else:

17 return "negative”

19 >>> generate_sentiment(
20 "that has a charmingly bourbon air.”

to help improve the ability of LMs to follow in-
structions and performance on unseen tasks (Wei
et al., 2022a; Wang et al., 2022b).

However, natural language instructions can be
ambiguous and under-specified, and therefore have
multiple interpretations — including detailed in-
structions may not always be beneficial, as it can
add to the complexity of reasoning for models.
This has led to the growing body of work around
‘prompt-engineering’ where specialized prompt-
ing strategies are developed for different domains
and task types (Zhao et al., 2021; Reynolds and
McDonell, 2021; Arora et al., 2023; Liu et al.,
2023; Zamfirescu-Pereira et al., 2023). In ad-
dition, inference-time prompting strategies that
specifically aid multi-step reasoning have also been
found to be helpful — e.g: the inclusion of chain-
of-thought reasoning in few-shot settings results
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in improved performance over standard prompts
(Wei et al., 2022b), the infamous “Let’s think step-
by-step”-prompt for boosting 0-shot performance
(Kojima et al., 2022).

Algorithm 1 Attention Block

1: function TRANSFORMERS_ATTENTION_BLOCK(Q, K, V)
: Input: @, K, and V': input matrices.

3: Output: The output of the attention block.
: scores +— Q- KT

4
5: attention_weights < softmaz(scores)
6: weighted_values < attention_weights - V'
7: output < > 7| weighted_values;
8:  return output
9: end function

Given the inherent ambiguity present in natural
language, it is intuitive to consider the advantages
of prompting with less ambiguous prompt styles,
such as the use of pseudo-code. Pseudo-code is an
informal set of code-like constructs, which tend to
be easy to interpret for humans but are not neces-
sarily compilable/executable. They are often used
to express complex ideas, processes, and flows —
for example, Algorithm 1 expresses a summarized
version of what happens within a Multi-Head At-
tention block (Vaswani et al., 2017) in pseudo-code.
Arguably, expressing the same ideas in natural lan-
guage could result in ambiguity and would perhaps
require detailed text for clarity, which adds to the
complexity.

In light of recent successes in NLP tasks
achieved by code models (Madaan et al., 2022;
Zhang et al., 2023a,b), this study aims to exam-
ine the efficacy of using pseudo-code instructions
for prompting as a means of enhancing model per-
formance. This study is driven by the hypothesis
that using pseudo-code as prompts could offer a
natural advantage to models in NLP tasks, owing
to the concise and clearer expression of ideas in
pseudo-code. To test the hypothesis that prompt-
ing large language models with pseudo-code in-
stead of natural language data could be helpful,
we created pseudo-code prompts? for 132 different
tasks spanning 28 distinct task types, sourced from
the Super-Naturallnstructions dataset (Wang et al.,
2022b) (see Listing 1 for an example). Using these
prompts along with their counterparts from natural
language, we study their performance on two LLM
families: BLOOM (Scao et al., 2023) and Code-
Gen (Nijkamp et al., 2023). Both LLM families
have been trained on natural language as well as
code data.

’The pseudo-code instructions for each of these tasks were
created by the authors of this paper.

We compare the performance of both styles of
prompts on classification tasks, QA tasks, as well
as a mix of other language generation tasks. Our
experiments indicate that prompting with pseudo-
code instructions indeed helps, and they result in
an absolute gain of 7-16 points in F1 scores on clas-
sification tasks, and 12-38% relative improvement
in aggregate ROUGE-L scores across all tasks.

Contributions: In summary, our paper makes the
following contributions: (i) We release a dataset
of 132 pseudo-code prompts spanning 28 differ-
ent task types; (ii) Through a series of detailed
experiments on two publicly available open-access
LLM families, we demonstrate how prompting
with pseudo-code instructions results in a marked
improvement in performance over prompting with
natural language instructions; (iii) We include de-
tailed ablation studies indicating that code com-
ments, docstrings, and the structural clues encoded
in pseudo-code all contribute towards the improve-
ment in performance.

To the best of our knowledge, our work is the
first to demonstrate how pseudo-code prompts> can
be helpful in improving the performance of pre-
trained LMs. Our findings not only emphasize the
significance of leveraging pseudo-code for prompt-
ing but also shed light on the specific elements
within pseudo-code that contribute to the observed
improvements.

2 Related Work

Finetuning large language models on instruction
datasets can enhance their performance and even
their ability to generalize to unseen tasks (Wei et al.,
2021; Chung et al., 2022). Many aspects of instruc-
tion finetuning such as the number of tasks, model
size, and finetuning on chain-of-thought data have
been found to be useful (Chung et al., 2022). Con-
sequently, significant efforts have been invested in
manually creating instruction datasets, as well as
using existing generative models to train and eval-
uate language models (Mishra et al., 2021; Bach
et al., 2022; Wang et al., 2022b,a). The instructions
available in instruction tuning datasets are mostly
in natural language, but have been applied for both
natural language tasks and programming tasks. But
alternatives to natural language instructions such
as programming language code, pseudo-code, sym-
bols (MacCartney and Manning, 2007) etc. have

3In the rest of the paper, we use the words ‘pseudo-code’
and ‘code’ interchangeably when referring to prompts.
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not been thoroughly explored even for program-
ming tasks. Compared to natural language, code or
pseudo-code has less ambiguity due to its inherent
nature of using functions or steps that contribute
towards accomplishing a task. This makes them a
natural choice for specifying instructions. Recently,
few works (MarvinAl; Madaan et al., 2022; Zhang
et al., 2023a,b) have explored code and pseudo-
code as inputs. Unlike contemporaneous work by
Zhang et al. (2023a) we find that pseudo-code in-
structions indeed provide better performance over
NL instructions on a wide variety of tasks.

3 Dataset

The Super-Naturallnstructions dataset (Wang et al.,
2022b) comprises 1,616 diverse NLP tasks, and
each task contains the task instruction, positive/neg-
ative examples, and instances. We sampled a mix-
ture of 132 tasks that did not require multilingual
capabilities and re-wrote instructions for a subset
of this dataset using Python constructs. Note that
we borrow Python constructs only to express our
prompts in pseudo-code and our prompts do not
result in executable Python code. Further, we do
not include any additional steps/instructions that
were not present in the original natural language
instructions.

All task instructions follow the schema as de-
scribed in Listing 1. The schema consists of the
following elements.

Function Prototype: This defines the prototype
of the main pseudo-code function. The function
names are descriptive and summarize the task to be
performed. They also include all variables passed
as input along with their data types and return type.
We follow the PEP 8* style guidelines for writing
the pseudo-code and use strongly typed prototypes.
We avoid declaring global variables whenever pos-
sible and pass them as arguments to a method. To
the extent possible, we also avoid the use of classes
and enumerations. Line number 1 in Listing 1 pro-
vides an example function prototype for a senti-
ment classification task.

DocString: The docstring provides detailed in-
structions on the task to be performed in natural
language. Often, this is a paraphrased version of
the original natural language instruction. The doc-
string ends with a list of parameters (with their
types) being passed and the return type from the

4https ://peps.python.org/pep-0008/

function. An example docstring for the sentiment
classification task is presented in line numbers 2 to
13 in Listing 1.

Function Definition: This includes the bulk of
the pseudo-code instruction describing how to
solve the particular task. To the extent possible,
the function definitions do not leave out any infor-
mation contained in the docstring. Pseudo-code
in the function definition are written as sub-task
functions. These sub-task functions are usually not
defined and often use descriptive names, arguments
and variables. We include in-line comments indicat-
ing what is accomplished by the sub-task function
and the role of the arguments if required. We some-
times also define secondary sub-task functions if it
requires additional details or if the descriptive func-
tion name may not be adequate to specify the goal
of the sub-task function. We assume the availabil-
ity of basic helper functions such as concat_str,
search etc., and do not include any import state-
ments.

Line numbers 14 to 17 present function defini-
tion for sentiment classification task. The function
calls sentiment_is_positive sub-task function
which checks if the sentiment of the given sentence
is positive or not. This function is not explicitly
defined in the instruction.

Pre-processor: Since the pseudo-code instruc-
tions expect inputs as arguments, we need
to parse the inputs provided in the Super-
Naturallnstructions dataset (Wang et al., 2022b)
(which provides pre-formatted inputs). For each
pseudo-code instruction, we also include an ex-
ecutable python pre-processor which is used for
parsing the input.

3.1 Dataset Statistics

We created instructions for 132 tasks that have in-
structions and input/output pairs in English lan-
guage. We group the tasks into three classes: Clas-
sification Tasks (Table 1), QA tasks (Table 2) and
other language generation tasks (Table 3). These
tasks cover a total of 28 different categories and
span 72 unique datasets. For each task we sample
1000 instances for evaluation.

4 Evaluation

In order to study if instruction specification via
pseudo-code results in improved performance over
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baseline NL English instructions, we choose to ex-
periment with BLOOM (Scao et al., 2023), Code-
Gen (Nijkamp et al., 2023) models. Our choice of
models is motivated by the fact that these models
have not been instruction-fine-tuned on the Natural
Instructions dataset. In addition, they have both
been trained on code and natural language data.

O Answer Classification

3 O Question Understanding
O Sentiment Analysis

O Toxic Language Detection
O Textual Entailment

O Text Categorization

O Text Matching

O Others

Datasets

MultiRC (Khashabi et al.,, 2018), McTaco
(Ben Zhou and Roth, 2019), TWEETQA (Xiong
etal., 2019)

Task Category
Answer Classification

Answer Verification
Commonsense Classification
Coreference Selection
Dialogue Selection

Grammar Error Detection
Intent Identification

Irony Detection

Linguistic Classification
Prime Number Classification
Program Execution
Question Understanding

Section Classification

Sentiment Analysis

Text Categorization

Text Matching
Text Quality Classification
Textual Entailment

Toxic Language Detection

‘Wrong Candidate Generation

Table 1: Collection of classification tasks used in our

work

MultiRC (Khashabi et al., 2018)

ATOMIC (Sap et al., 2019)

Numeric Fused-Head (Elazar and Goldberg, 2019)
SPOLIN (Cho and May, 2020), DSTC3 (Henderson
etal., 2014)

CoLA (Warstadt et al., 2019)

DailyDialog (Li et al., 2017)

SemEval2018-Task3 (Van Hee et al., 2018)
SentEval (Conneau and Kiela, 2018)

Synthetic (Wang et al., 2022b)

Synthetic (Wang et al., 2022b)

McTaco (Ben Zhou and Roth, 2019), DROP (Dua
etal., 2019), TREC (Li and Roth, 2002), DREAM
(Sun et al., 2019), FreebaseQA (Jiang et al., 2019)
CODA-19 (Huang et al., 2020)

The Multilingual Amazon Reviews Corpus (Keung
et al., 2020), Sentiment140 (Go et al., 2009), SST-2
(Socher et al., 2013), PerSenT (Bastan et al., 2020),
Amazon Review Polarity (Face), PEC (Zhong et al.,
2020), Poem Sentiment (Sheng and Uthus, 2020)
MultiNLI (Williams et al., 2018), DDO (Durmus
and Cardie, 2019), SemEval-2020 Task 7 (Hossain
et al., 2020), Scruples (Lourie et al., 2021)

AFS (Misra et al., 2016), PAWS (Zhang et al., 2019)
McTaco (Ben Zhou and Roth, 2019)

MultiNLI (Williams et al., 2018), SNLI (Bow-
man et al., 2015), e-SNLI (Camburu et al., 2018),
Defeasible-NLI (Rudinger et al., 2020), ATOMIC
(Sap et al., 2019)

CAD (Vidgen et al., 2021), Jigsaw (cjadams et al.,
2019), Hate Speech Offensive (Davidson et al.,
2017)

McTaco (Ben Zhou and Roth, 2019)

The BLOOM models are trained on the ROOTS
corpus (Laurencon et al., 2022) consisting of 46
natural and 13 programming languages. On the
other hand, the CodeGen models are trained on the
Pile corpus (Gao et al., 2020), Google’s publicly
available BigQuery and BigPython datasets (Ni-
jkamp et al., 2023). The BLOOM models have
been trained on a mixture of natural language and
code simultaneously. As for the CodeGen mod-
els we utilize, they were initially trained on natu-
ral language and subsequently received additional

O Extractive QA
O Generative QA

0O MCQ

Qv

Datasets

ROPES (Lin et al., 2019a), Odd-Man-Out (Stanovsky and Hop-
kins, 2018), SQuADI.1 (Rajpurkar et al., 2016), Synthetic
(Wang et al., 2022b), MCScript (Ostermann et al., 2018), PICO
(Jin and Szolovits, 2018), MWSC (McCann et al., 2019), OPUS
(Tiedemann, 2012), CoQA (Reddy et al., 2019)

Quoref (Dasigi et al., 2019), McTaco (Ben Zhou and Roth,
2019), DROP (Dua et al., 2019), MultiRC (Khashabi et al.,
2018), PIQA (Bisk et al., 2020), Synthetic (Wang et al., 2022b),
BREAK (Wolfson et al., 2020), Natural Questions (Kwiatkowski
etal., 2019), AmbigQA (Min et al., 2020), CoQA (Reddy et al.,
2019), TriviaQA (Joshi et al., 2017)

MCQ Essential, QuaRel (Tafjord et al., 2018), WinoGrande (Sak-
aguchi et al., 2021), MultiNLI (Williams et al., 2018), ReCoRD
(Zhang et al., 2018), MMMLU (Hendrycks et al., 2021)

Task Category
Extractive QA

Generative QA

Table 2: Collection of QA tasks used in our work

[ List Operation

O Option Generation
k [ Paraphrasing

O Question Generation

O Rewriting

O Misc.

<

Datasets

CoNaLa (Yin et al., 2018), Synthetic (Tiedemann, 2012),
Youtube Caption Corrections (2dot7 1mily)

aNLI (Nie et al., 2020), ASSET (Alva-Manchego et al.,
2020), ROCStories (Mostafazadeh et al., 2017)

ZEST (Weller et al., 2020), PARANMT-50M (Wieting and
Gimpel, 2018)

CosmosQA (Huang et al., 2019), WinoGrande (Sakaguchi
et al., 2021), ROPES (Lin et al., 2019b), SQuADI1.1 (Ra-
jpurkar et al., 2016), StrategyQA (Geva et al., 2021),
SQuAD?2.0 (Rajpurkar et al., 2018), BoolQ (Clark et al.,
2019), CoQA (Reddy et al., 2019), QA-ZRE (Levy et al.,
2017)

WinoGrande (Sakaguchi et al., 2021), aNLI (Nie et al., 2020),
ASSET (Alva-Manchego et al., 2020), ZEST (Weller et al.,
2020), SNLI (Bowman et al., 2015)

Misc. DROP (Dua et al., 2019), WinoGrande (Sakaguchi et al.,
2021), QASC (Khot et al., 2020), Essential (Khashabi et al.,
2017), ROPES (Lin et al., 2019a), StoryCloze (Mostafazadeh
et al., 2016), Country Barcode Prefix dataset, Country Re-
gion in World dataset, Gigaword (Graff et al., 2003), GAP
(Webster et al., 2018), SPOLIN (Cho and May, 2020), XL-
WiC (Raganato et al., 2020)

Task Category
List Operation

Option Generation
Paraphrasing

Question Generation

Rewriting

Table 3: Collection of language generation tasks used
in our work

training focused specifically on Python code.

Our choice of models allows us to setup a con-
trolled environment where we can study the impact
of prompting in natural language and pseudo-code.
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Most recent instruction-tuned models have either
seen the Super-Naturallnstructions dataset (Wang
et al., 2022b) in some form (Longpre et al., 2023)
or they do not have tokenizers that will meaning-
fully process code syntax (Raffel et al., 2020), and
therefore can not be used in our study. By empiri-
cally studying the performance of models on these
prompts, we hope to inform future work on train-
ing an instruction-tuned model using pseudo-code
instructions.

4.1 Model Configurations

For all of the experiments conducted in this pa-
per, we use BLOOM-3B, BLOOM 7B (Scao et al.,
2023), CodeGen-mono 2B, and CodeGen-mono 6B
(Nijkamp et al., 2023) models. The inference was
performed using A100 80 GB GPUs. To accelerate
the inference of all models, we utilized DeepSpeed-
Inference (Aminabadi et al., 2022) in fp16, which
resulted in an average inference throughput im-
provement of around 1.7x, compared to the stan-
dard HuggingFace (Wolf et al., 2020) inference.
We used greedy decoding for all our experiments
for reproducibility and restricted generated outputs
to 100 tokens. Even for classification tasks, we
generate the class labels using auto-regressive de-
coding instead of picking the class label with low-
est perplexity. This is done because not all class
labels can be mapped to a single token for all tasks.
This technique of evaluating performance of classi-
fication tasks is often employed when using closed
LLMs, such as those behind APIs (eg: OpenAl’s
GPT4 (OpenAl, 2023), Google’s PaLM (Chowdh-
ery et al., 2022) etc).

4.2 Metrics

We adopt different metrics for each task-category:
we measure the performance of classification tasks
using micro, macro and weighted F1 scores, and
for QA and language generation tasks we use the
ROUGE-L metric. We report the ROUGE-L, Exact
Match (EM), and ANLS - Average Normalized
Levenshtein Similarity (Biten et al., 2019) for all
tasks.

4.3 Output post-processing

Since the models we experiment with have not
been fine-tuned for instruction following, they tend
to generate excess text after the output for the
given task. We therefore post-process the outputs
to ensure models are not penalized in our evalua-
tion due to excess generations. We post-process

all outputs by truncating by the newline charac-
ter '\n'. Furthermore, the output is subjected to
additional post-processing, including punctuation
removal and lower casing.

4.4 Results

Through our experiments we aim to answer the
following questions: (i) What is the difference in
performance between prompting pre-trained lan-
guage and code models with pseudo-code prompts
versus natural language prompts? (ii) How does
increasing model size affect the efficacy of pseudo-
code prompts? (iii) To what extent does structured
prompting, such as the use of function names, doc-
strings, inline comments, and arguments, impact
performance on tasks?

4.4.1 Prompting with Pseudo-code

Table 4 compares the performance of prompting
with pseudo-code (referred to as code instructions)
and natural language instructions in 0-shot settings.
Results have been grouped by model family and
size.

As can be seen, for all model families and sizes,
prompting with pseudo-code results in a significant
improvement in performance. The performance on
classification tasks is especially notable, for exam-
ple, the gains on weighted F1 vary between 7-16 F1
points (absolute). Furthermore, the relative perfor-
mance improvement on all other tasks, as measured
by ROUGE-L, varies between 12-38%. The over-
all performance as measured by ROUGE-L, ANLS
and Exact Match also report similar trends.

Comparison of CodeGen vs BLOOM Despite
most tasks being non-code tasks, CodeGen, a
model designed for code applications, outperforms
BLOOM models, even when using natural lan-
guage instructions (see metrics for ‘All Tasks’).
Similar behavior has been anecdotally reported (Fu
and Khot, 2022; Madaan et al., 2022), but has pos-
sibly not been investigated using as many tasks as
presented in this paper. Note, however, that using
pseudo-code prompts in the code models results in
better performance than any other prompt-model
configuration.

Performance on QA tasks Interestingly, we find
that on QA tasks, the performance of pseudo-code
instructions is better than natural-language instruc-
tions, when using the CodeGen model. However,
this is not the case when using BLOOM.
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Instruction

Model Format Classification Tasks ‘ QA Tasks ‘ Generation tasks All Tasks
| Macro F1 Micro F1 Weighted F1 | ROUGE-L | ROUGE-L | ROUGE-L  ANLS EM
Majority Class | 0.296 0.509 0.362 | | |
CodeGen 2B Code Instructions |~ 0.272 0.417 0.354 | 0.175 | 0.317 | 0.330 0.261 0.202
NL Instructions | 0.068 0.306 0.239 | 0.154 | 0.254 | 0.265 0.195 0.147
CodeGen 6B Code Instructions |  0.311 0.443 0.375 | 0.201 | 0.327 | 0.354 0.283 0.218
NL Instructions | 0.052 0.278 0.215 | 0.132 | 0.271 | 0.257 0.187 0.134
BLOOM 3B Code Instructions |  0.116 0.351 0.288 | 0.147 | 0.271 | 0.279 0.215 0.165
NL Instructions | 0.082 0.275 0.214 | 0.159 | 0.234 | 0.250 0.180 0.132
BLOOM 7B Code Instructions |  0.174 0.369 0.285 | 0.150 | 0.298 | 0.297 0.232 0.176
NL Instructions | 0.046 0.247 0.203 | 0.156 | 0.276 | 0.247 0.172 0.122

Table 4: Performance of models when prompted using pseudo-code instructions and natural language instructions in
0-shot settings. (i) In each model, prompting with pseudo-code instructions results in much higher performance in
almost all the tasks (ii) For each model family, increasing scale helps improve performance (iii) Prompting CodeGen
(a model designed for code) results in better performance than BLOOM. (iv) Prompting BLOOM models with

Natural Language instructions instead of code-instructions results in higher performance on QA tasks.

CodeGen 6B | BLOOM 7B
Code Instructions | NL Instructions | Code Instructions | NL Instructions
QA Task EM ROUGE-L ANLS ‘ EM ROUGE-L ANLS ‘ EM ROUGE-L ANLS ‘ EM ROUGE-L ANLS
Extractive QA 0.140 0.303 0.189 ‘ 0.045 0.188 0.077 ‘ 0.047 0.184 0.077 ‘ 0.047 0.227 0.086
Generative QA 0.045 0.129 0.068 ‘ 0.029 0.095 0.045 ‘ 0.028 0.101 0.042 ‘ 0.032 0.115 0.047
MCQ 0.196 0.213 0.210 ‘ 0.082 0.106 0.083 ‘ 0.184 0.201 0.197 ‘ 0.107 0.143 0.108

Table 5: 0-shot performance of CodeGen 6B and BLOOM 7B models on QA tasks from our dataset. As can be seen,
pseudo-code instructions applied on the CodeGen model results in the best overall performance on all categories
of QA tasks. However, comparing the performance of Natural Language Instructions, we find that it performs
marginally better than pseudo-code instructions on non-MCQ QA tasks when using the BLOOM 7B model.

We investigated this further and observed that for
most QA tasks, the instructions in pseudo-code are
not significantly more detailed or easier to under-
stand than natural-language instructions. As an ex-
ample, the pseudo-code instruction for answer gen-
eration from the SQuAD dataset merely contains
the following statement in its function definition:
return get_answer_from_passage(passage,
guestion) and reflects the details included in the
natural instructions.

We further analysed the results across QA task
categories and found that pseudo-code instructions
always help with multiple-choice questions (MCQ)
tasks (see Table 5 for a comparison between Code-
Gen 6B and BLOOM 7B). We believe that this
is because, understanding the instructions in such
tasks may be more involved. For illustration, in-
structions in MCQ tasks often include details about
how answers are expected — eg: “choose the correct
option A, B, C”, “Select Option 1 - Value 1, Option
2 - Value 2 . Depending on the instructions, the
models may be required to return options, values,
or both which adds a degree of complexity to the

instructions as compared to other types of QA.
The discrepancy in performance between Code-
Gen and BLOOM on QA tasks (see Table 5), could
be attributed to the fact that the structure from code
prompts could be better leveraged by code models
as programming languages and aspects of code syn-
tax (structure) are likely to be better represented
in a code model such as CodeGen. This brings us
to our next question — What is the contribution of
structure that may be present in prompts?

4.4.2 Contribution of Structure in prompts

The reasons behind the performance improvement
when using pseudo-code prompts are likely to be a
combination of factors, including the use of descrip-
tive function names that convey the function’s pur-
pose (such as get_answer (question)), a model
that can effectively utilize structured information,
and a structured prompt for a task that could further
benefit from few-shot examples.

We therefore experiment with different struc-
tured prompting styles and report their results in
Table 6. We study the performance of CodeGen and
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Model | Instruction Format | Classification Tasks

| QA Tasks | Generation Tasks | All Tasks

\ | MacroFl | MicroFl | Weighted FI | ROUGE-L | ROUGE-L | ROUGE-L | ANLS | EM
Code Instructions (0) 0.272 0.417 0.354 0.175 0.317 0.330 0.262 0.202
Function Declaration (0) 0.159 0.079 0.085 0.124 0.252 0.153 0.083 0.043
CodeGen 2B Function Declaration (2) 0.105 0.267 0.257 0.185 0.294 0.256 0.188 0.137
Function Invocation (2) 0.097 0.253 0.238 0.183 0.296 0.251 0.183 0.131
Generic Function Invocation (2) 0.064 0.282 0.244 0.167 0.257 0.245 0.185 0.131
NL Examples (2) 0.003 0.005 0.007 0.081 0.126 0.069 0.017 0.006
Code Instructions (0) 0.311 0.444 0.375 0.201 0.327 0.354 0.283 0.218
Function Declaration (0) 0.019 0.101 0.109 0.162 0.273 0.179 0.111 0.063
CodeGen 6B Function Declaration (2) 0.134 0.309 0.281 0.196 0.299 0.281 0.212 0.154
Function Invocation (2) 0.133 0.296 0.269 0.192 0.302 0.275 0.208 0.149
Generic Function Invocation (2) 0.062 0.244 0.215 0.167 0.262 0.239 0.175 0.121
NL Examples (2) 0.000 0.000 0.001 0.102 0.168 0.088 0.023 0.006
Code Instructions (0) 0.116 0.351 0.288 0.147 0.271 0.279 0.214 0.165
Function Declaration (0) 0.000 0.014 0.016 0.108 0.229 0.116 0.054 0.015
BLOOM 3B Function Declaration (2) 0.080 0.237 0.217 0.164 0.249 0.225 0.159 0.115
Function Invocation (2) 0.073 0.227 0.211 0.164 0.234 0.215 0.149 0.107
Generic Function Invocation (2) 0.032 0.173 0.168 0.161 0.246 0.203 0.137 0.086
NL Examples (2) 0.000 0.025 0.031 0.150 0.208 0.122 0.056 0.024
Code Instructions (0) 0.174 0.369 0.285 0.150 0.298 0.297 0.232 0.176
Function Declaration (0) 0.004 0.021 0.027 0.111 0.242 0.124 0.058 0.017
BLOOM 7B Function Declaration (2) 0.072 0.256 0.227 0.191 0.289 0.257 0.182 0.128
Function Invocation (2) 0.086 0.248 0.221 0.189 0.286 0.250 0.176 0.123
Generic Function Invocation (2) 0.039 0.199 0.178 0.187 0.276 0.232 0.155 0.097
NL Examples (2) 0.000 0.009 0.009 0.132 0.182 0.106 0.038 0.016

Table 6: Study of structured prompts: Performance of models when prompted using 0-shot pseudo-code instructions,
function declaration in 0-shot and 2-shot settings as well as 2-shot prompting with a ‘generic’ function name and
the use of only examples. The number N in the brackets indicates N-shot prompt. (i) Except for the performance
on QA tasks, in each model, prompting with pseudo-code instructions results in much higher performance which
indicates that detailed instructions are helpful (ii) For each model family, and prompting style, increasing model
scale improves performance (iii) As before, prompting a model designed for code, CodeGen, results in better

performance than BLOOM.

BLOOM with five types of prompts: (i) Pseudo-
code instructions, (ii) Prompts that make use of
function declaration (declare function name only),
(iii) a structured prompt consisting only of task ex-
amples in 2-shot settings using the task-descriptive
function name (iv) a structured prompt consisting
only of task examples in 2-shot settings using a
generic function name — ‘func’ (v) using the Nat-
ural Language examples (without instructions) in
2-shot settings. Details about each prompt have
been included in the Appendix.

We make three important observations from Ta-
ble 6. First, code-instructions in 0-shot settings con-
sistently yield the best overall performance com-
pared to other structured prompts. Second, on aver-
age, the CodeGen model consistently outperforms
BLOOM on all tasks. Lastly, the QA tasks in our
dataset, which are relatively easy to express in nat-
ural language instructions, also benefit from struc-
tured prompts, particularly when prompted with
examples.

It can be inferred from these observations that
the performance gains resulting from the use of
pseudo-code prompts are likely due to clearer task
instructions, and not just the exploitation of super-
fluous patterns from in-context learning. These
findings reinforce the results from the previous ex-

periment, which showed that code models are more
capable of exploiting structured prompts. In the
case of QA tasks in our dataset, it is worth noting
that since the pseudo-code instructions are not as
detailed, even utilizing a simpler structured prompt
with examples can significantly enhance perfor-
mance as compared to natural language prompts.

4.4.3 Impact of pseudo-code documentation

In this section, we study the contribution of com-
ments and docstrings present in our pseudo-code
instructions towards the improvement in perfor-
mance. We first study the performance of pseudo-
code prompts with and without the use of doc-
strings and code comments.

As can be seen in Table 7, the inclusion of com-
ments as well as the docstring in the pseudo-code
instruction prompt helps improve performance.
This indicates that not only is the structure of the
prompts being exploited by the model, the models
are also relying on additional helper text present in
the documentation. We, therefore, also investigate
if the use of these elements from pseudo-code could
also benefit natural language instruction prompts.

The lower half of table 7 studies the performance
of natural-language prompts with and without the
use of pseudo-code comments and docstring. We
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NL Instructions with

Model Instruction Format | Classification Tasks | QATasks | Generation Tasks | All Tasks
| MacroFI ~ MicroFl  Weighted FI | ROUGE-L | ROUGE-L | ROUGEL ANLS  EM
CodeGen 6B Code Instructions | 0311 0.444 0375 | 0201 | 0327 | 0354 0283 0218
g""_e Instructions without ‘ 0.263 0.409 0348 ‘ 0.195 ‘ 0327 ‘ 0335 0266  0.201
ocstrings and comments
BLOOM 7B Code Instructions | 0.174 0.369 0285 | 0150 | 0.298 | 0297 0232 0176
g"de Instructions without ‘ 0.145 0316 0.247 ‘ 0.144 ‘ 0.291 ‘ 0.269 0204  0.151
OCSLrlngb and comments
CodeGen 6B NL Instructions | 0052 0278 0215 | o032 | 0271 | 0257 0.187  0.134
a NL Instructions with ‘ 0.062 0312 0.254 ‘ 0.139 ‘ 0.293 ‘ 0275 0208  0.148
ocstrings and comments
BLOOM 7B NL Instructions | 0.046 0.247 0203 | 015 | 0.276 | 0247 0172 0.122

0.044 0.303

docstrings and comments

0.233

0.165 0.263 0.266 0.199 0.147

Table 7: Ablation: Zero-Shot Setting. (i) In each model, prompting with pseudo-code instructions results in much
higher performance on QA and classification tasks (ii) For each model family, increasing scale helps improve
performance (iii) As before, prompting a model designed for code, CodeGen results in better performance than
BLOOM. On average, in the CodeGen model, the use of code comments and docstrings helps improve the
performance of natural language prompts. However, it appears for BLOOM, only the larger-sized model is able to
consistently use the additional details in the prompt to improve performance.

find that the performance of natural language in-
structions also improves by the inclusion of com-
ments and docstring for each model family and
configuration. We hypothesize that the gains may
be attributable to a form of step-by-step reasoning
derived from pseudo-code comments especially in
complex tasks.

4.5 Summary of findings

We now summarize our findings for easy reference.
Effect of Prompting Style: From Table 4 we ob-
serve that 0-shot prompting of pre-trained models
with pseudo-code prompts results in better perfor-
mance than natural language prompts. This is true
for both code models and language models. The
gains are more pronounced for the code models.
Effect of Structure in prompts: Pseudo-code
prompts include many elements such as the func-
tion declaration, docstring, comments etc. From
Table 6 we find that while information from the
function declaration, and a task-indicative function
name help, using the complete pseudo-code prompt
is most useful.

Further, from Table 7 we find that the pseudo-
code instruction still works better than any prompt
created with natural language instructions, even
when docstring and comments from pseudo-code
are included in the natural language instruction.
This suggests the gains from prompting in pseudo-
code are not just due to comments and docstrings
(which could help reinforce the task instructions),
but also due to clearer instructions in pseudo-code.
Effect of Model Size: From Table 4 we find that

in 0-shot settings, with the increase in scale, the
performance of pseudo-code instructions improves
for both model families. However, when using
natural language instructions, this is not the case.
We hypothesize, that since none of these models
are instruction-tuned, larger scales exacerbate the
propensity of the models being primed for language
completion.

Code vs. Natural Language models: We find
that code models are better suited for exploiting
pseudo-code prompts compared to language mod-
els. As can be seen from Table 4 (see metrics for
‘All Tasks’), the use of natural language instruc-
tions on CodeGen results in better performance
than their use on BLOOM.

5 Conclusion and Future Work

In this paper we presented our work on prompting
with pseudo-code instructions. We created a col-
lection of pseudo-code instructions comprising of
132 NLP tasks from the Super-Naturallnstructions
dataset (Wang et al., 2022b). We evaluated the
performance of the following families of models -
CodeGen and BLOOM at different model sizes and
found that prompting all models with pseudo-code
instructions results in significant gains as compared
to prompting with NL instructions. Our work opens
up multiple directions of future work. It is inter-
esting to observe that not only do pseudo-code in-
structions help when used with code models, they
also work better on models designed for natural
language tasks. In addition, the fact that code mod-
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els used in our experiments perform better than NL
models, even when prompted with natural language
instructions, suggests that it could be useful to ex-
plore instruction tuning of code models instead of
pure NL models for NL applications. Based on
the findings of this paper it may also be useful to
consider the effects of instruction fine-tuning with
pseudo-code instructions as opposed to NL instruc-
tions.

Another aspect worth studying is how traditional
chain-of-thought may compare with pseudo-code
prompts — how would reasoning enabled by pseudo-
code instructions compare with chain-of-thought
reasoning with and without fine-tuning? Further,
pseudo-code instructions may not only be used as
direct inputs to a model, but they could also be used
to create intermediate responses that a model needs
to generate prior to returning a response.

Limitations

Our results have been reported on two model fam-
ilies — CodeGen and BLOOM at scales of 2-7B
parameters. It remains to be seen if our findings
would hold at larger model sizes. It is possible
that better reasoning enabled by larger model sizes
could reduce the benefit of prompting with pseudo-
code instructions but we have not investigated this
in our work. In addition, our work does not include
any multi-lingual NLP tasks — BLOOM was specif-
ically trained to be able to support multiple lan-
guages and it is possible this model design choice
could play a role in our findings when we com-
pare code (CodeGen) and NL (BLOOM) models
against each other. Moreover, both models have
been trained on different datasets and this also af-
fects the intrinsic reasoning capabilities of these
models. Lastly, and importantly, the use of pseudo-
code for prompting LLM:s is limited by the expec-
tation that it requires technical expertise to write
them, thus reducing their widespread usage.
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A Appendix
A.1 Results on an additional LLMs

We also perform experiments using the recently re-
leased, Falcon-7B (Almazrouei et al., 2023) model.
The results are presented in Table 8 and also demon-
strates improved performance with pseudo-code
prompts.

A.2 Pseudo-Code Validation

To ensure that the pseudo-code instructions fol-
low the guidelines provided, we run an automatic
test. The test code calls the preprocess func-
tion defined for each example from the Super-
Naturallnstructions dataset (Wang et al., 2022b)
for that task. The returned values from the
preprocess function are compared against the ar-
guments in the function prototype. Any mismatch
in the data type or the number of arguments results
in error. The instruction creator is given feedback
to correct the errors.

A.2.1 Prompt Styles

In this section, we describe the various prompting
styles used to study the effect of pseudo-code vs
NL prompting. Here, we show a simple task to
generate the sentiment of a given sentence. This is
task 833 in Super-Naturallnstructions dataset.

A.2.2 Prompting with Pseudo-code
instructions

For the pseudo-code prompting, we use the in-
structions that are created by the authors of this
paper. The pseudo-code instructions have a much
richer structure than natural language instructions
and are more elaborate and simple to understand.
They contain docstrings, return types and might
also contain comments, function invocations etc.
For preparing the few shot examples and the input
query, we treat the example as a python interpreter
running in the linux terminal and use the special
markers “>>>" for the input. We don’t use any spe-
cial markers for the outputs. An example for 0-shot
and 2-shot shot prompting is shown in Listings 2
and 3 respectively.

We also measure the impact of removing the
docstrings and comments from the code instruction.
An example for 0-shot and 2-shot prompting is
shown in Listings 4 and 5 respectively.

Listing 2 Code instructions (0-shot prompt) for

sentiment classification task

def generate_sentiment(sentence: str) -> str:
"""For the given sentence, the task is to
predict the sentiment. For positive sentiment
return "positive” else return "negative”.

Parameters:

sentence (str): input sentence
Returns:

str: sentiment of the input

nn

# predict the sentiment

if sentiment_is_positive(sentence):
return "positive”

else:
return "negative”

>>> generate_sentiment(
"that has a charmingly bourbon air.”

Listing 3 Code instructions (2-shot prompt) for

sentiment classification task

def generate_sentiment(sentence: str) -> str:
"""For the given sentence, the task is to
predict the sentiment. For positive sentiment
return "positive"” else return "negative”.

Parameters:

sentence (str): input sentence
Returns:

str: sentiment of the input

nnn

# predict the sentiment

if sentiment_is_positive(sentence):
return "positive”

else:
return "negative”

>>> generate_sentiment(
"tormented by the quickened blood of the "
"roots”

)

"negative”

>>> generate_sentiment(
"radiant as moses from the mount, he stood”

"positive”

>>> generate_sentiment(
"that has a charmingly bourbon air.”

)

A.2.3 Prompting with function prototype

We try prompting the models with function proto-
types with all docstrings, comments and code logic
removed from the base pseudo-code instruction.
The function prototype instructions are composed
of the function names, arguments and their types
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Instruction

Model Classification Tasks

‘ QA Tasks ‘ Generation tasks All Tasks

Format
| Macro F1 Micro F1 Weighted F1 | ROUGE-L | ROUGE-L | ROUGE-L  ANLS EM
Majority Class | 0.296 0.509 0.362 | - | - | - - -
Code Instructions | 0.068 0.339 0.259 | 0.152 | 0.265 | 0.275 0.207 0.161
Falcon 7B -
NL Instructions ‘ 0.017 0.206 0.197 ‘ 0.172 ‘ 0.273 ‘ 0.242 0.149 0.102

Table 8: Performance of models when prompted using pseudo-code instructions and natural language instructions in
0-shot settings. (i) In each model, prompting with pseudo-code instructions results in much higher performance in

almost all the tasks

Listing 4 Code instructions without docstrings and
comments (0-shot prompt) for sentiment classifica-

tion task
def generate_sentiment(sentence: str) -> str:
if sentiment_is_positive(sentence):
return "positive”
else:
return "negative”

>>> generate_sentiment(
"that has a charmingly bourbon air.”

)

Listing 6 Function prototype (0-shot prompt) for

sentiment classification task
def generate_sentiment(sentence: str) -> str:

>>> generate_sentiment(
"that has a charmingly bourbon air.”

)

Listing 7 Function prototype (2-shot prompt) for
sentiment classification task

Listing S Code instructions without docstrings and
comments (2-shot prompt) for sentiment classifica-

tion task
def generate_sentiment(sentence: str) -> str:
if sentiment_is_positive(sentence):
return "positive”
else:
return "negative”

>>> generate_sentiment(
"tormented by the quickened blood of the "
"roots”

)

"negative”

>>> generate_sentiment(
"radiant as moses from the mount, he stood”

)

"positive”

>>> generate_sentiment(
"that has a charmingly bourbon air.”

)

and the return types. This method of prompting is
devoid of any pseudo-code. An example for 0-shot
and 2-shot prompting is shown in Listings 6 and 7
respectively.

A.2.4 Prompting with NL instructions

For natural language prompts, we use the orig-
inal instructions provided as part of the Super-
Naturallnstructions dataset (Wang et al., 2022b).
For natural language instruction prompting, we

def generate_sentiment(sentence: str) -> str:

>>> generate_sentiment(
"tormented by the quickened blood of the "
"roots”

)

"negative”

>>> generate_sentiment(
"radiant as moses from the mount, he stood”

)

"positive”

>>> generate_sentiment(
"that has a charmingly bourbon air.”

)

use the prompts provided as part of the Super-
Naturallnstructions dataset without any modifica-
tion. We add special ‘input:” and ‘output:” markers
in the few shot examples and the input query to the
model as shown in Listings 8 and 9.

Listing 8 Natural instructions (0-shot prompt) for

sentiment classification task

In this task, you need to identify the sentiment
of the given sentence as one of "positive” or
"negative”.

input: that has a charmingly bourbon air.
output:
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Listing 9 Natural instructions (2-shot prompt) for

sentiment classification task

In this task, you need to identify the sentiment
of the given sentence as one of "positive” or
"negative”.

input: tormented by the quickened blood of the
roots
output: negative

input: radiant as moses from the mount, he stood
output: positive

input: that has a charmingly bourbon air.
output:

A.2.5 Prompting with NL instructions and NL
comments from the pseudo-code

We also try experimenting by adding the doc-
strings and comments to the NL instructions from
the Super-Naturallnstructions dataset (Wang et al.,
2022b) as shown in the example in Listings 10 and
11.

Listing 10 Natural instructions with docstrings (0-
shot prompt) for sentiment classification task

In this task, you need to identify the sentiment
of the given sentence as one of "positive” or
"negative”.

"""For the given sentence, the task is to
predict the sentiment. For positive sentiment
return "positive” else return "negative”.

Parameters:

sentence (str): input sentence
Returns:

str: sentiment of the input

nnn

# predict the sentiment

input: that has a charmingly bourbon air.
output:

A.2.6 Prompting without instructions

We also study the effect of prompting without in-
structions. We try this method of prompting in
three settings:

1. Function Invocation (refer Listings 12 and 13)
2. Generic Invocation (refer Listings 14 and 15)

3. Natural Language examples (refer Listings 16
and 17)

Listing 11 Natural instructions with docstrings (2-
shot prompt) for sentiment classification task

In this task, you need to identify the sentiment
of the given sentence as one of "positive” or
"negative”.

"""For the given sentence, the task is to
predict the sentiment. For positive sentiment
return "positive” else return "negative”.

Parameters:

sentence (str): input sentence
Returns:

str: sentiment of the input

nnn

# predict the sentiment

input: tormented by the quickened blood of the
roots
output: negative

input: radiant as moses from the mount, he stood
output: positive

input: that has a charmingly bourbon air.
output:

Listing 12 Function invocation (0-shot prompt) for

sentiment classification task
>>> generate_sentiment(
"that has a charmingly bourbon air.”

)

Listing 13 Function invocation (2-shot prompt) for

sentiment classification task

>>> generate_sentiment(
"tormented by the quickened blood of the
"roots”

n

)

"negative”

>>> generate_sentiment(
"radiant as moses from the mount, he stood”

)

"positive”

>>> generate_sentiment(
"that has a charmingly bourbon air.”

)

Listing 14 Generic function invocation (0-shot
prompt) for sentiment classification task

>>> func(
"that has a charmingly bourbon air.”

)
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Model | Instruction Format | Classification Tasks | QA Tasks | Generation Tasks | All Tasks
\ | MacroFl | MicroFl | Weighted FI | ROUGE-L |  ROUGE-L | ROUGE-L | ANLS | EM
CodeGen 2B Code Instructions 0.137 0.295 0.272 0.187 0.299 0.269 0.202 0.148
NL Instructions 0.000 0.004 0.006 0.082 0.130 0.071 0.017 0.006
CodeGen 6B Code Instructions 0.145 0.317 0.292 0.194 0.304 0.285 0.219 0.159
NL Instructions 0.000 0.001 0.002 0.101 0.172 0.089 0.024 0.006
BLOOM 3B Code Instructions 0.086 0.254 0.227 0.151 0.248 0.226 0.164 0.121
NL Instructions 0.005 0.060 0.060 0.151 0.207 0.140 0.070 0.038
BLOOM 7B Code Instructions 0.072 0.250 0.227 0.191 0.279 0.250 0.176 0.124
NL Instructions 0.000 0.120 0.014 0.137 0.186 0.109 0.041 0.018

Table 9: Performance with 2-shot prompts. (i) In each model, prompting with pseudo-code instructions results in
much higher performance (ii) For each model family, increasing scale helps improve performance (iii) As before,
prompting a model designed for code, CodeGen results in better performance than BLOOM. (iv) Surprisingly, as
compared to 0-shot prompting (Table 4), there is a marked drop in performance for all model configurations and all
tasks, except in QA tasks, where there is an improvement in performance.

Listing 15 Generic function invocation (2-shot
prompt) for sentiment classification task

>>> func(
"tormented by the quickened blood of the
"roots"”

"

)

"negative”

>>> func(
"radiant as moses from the mount, he stood”

)

"positive”

>>> func(
"that has a charmingly bourbon air.”

)

Listing 16 Natural examples (0-shot prompt) for

sentiment classification task
input: that has a charmingly bourbon air.
output:

Listing 17 Natural examples (2-shot prompt) for

sentiment classification task

input: tormented by the quickened blood of the
roots

output: negative

input: radiant as moses from the mount, he stood
output: positive

input: that has a charmingly bourbon air.
output:

A.3 2-shot Prompting with Pseudo-code
instructions

Given that structured prompts, such as those
based on function declarations, benefit from 2-shot
prompts, we investigate whether the performance
of pseudo-code prompts can be further improved

with 2-shot prompts. Table 9 reports the perfor-
mance of both families of models - CodeGen and
BLOOM when using pseudo-code prompts and
natural language instruction prompts in 2-shot set-
tings.

Interestingly we find that, as compared to the
results reported in Table 4 the performance of
each corresponding model-prompt configuration
is lower than its 0-shot counterpart. While this
may appear surprising, similar findings have been
reported in prior work (Reynolds and McDonell,
2021; Zhang et al., 2023a). Perhaps the perfor-
mance in few-shot settings could improve with ad-
ditional examples, but we do not experiment with
more than 2-shot settings due to limitations im-
posed by the size of input context length available
to models.

After a study of outputs generated by the mod-
els in 2-shot settings, we observe that in many
cases, in the absence of extensive task-specific
prompt-engineering and output processing, models
are likely to generate additional continuation exam-
ples instead of solving the task. The fact that the
pseudo-code prompts perform better indicate that
models seem to “interpret”’ the instructions better
in this form.

A.4 Ablation Experiments

As can be seen in Table 10 and 11, the inclusion of
comments as well as the docstring in the pseudo-
code instruction prompt and natural language in-
structions helps improve performance for smaller
models too.
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Model |  Instruction Format | Classification Tasks | QA Tasks | Generation Tasks | All Tasks
| | MacroFl | MicroFl | Weighted F1 | ROUGE-L | ROUGE-L | ROUGE-L | ANLS | EM
| NL Instructions | 0068 | 0306 | 0239 | 0154 | 0.254 | 0265 | 0195 | 0.147
CodeGen 2B - -
NL Instructions with 0.008 0.349 0.270 0.136 0.258 0.275 0208 | 0.161
docstrings and comments
CodeGen 68 | NL Instructions | 0052 | 0278 | 0215 | 0132 | 0271 | 0257 | 0187 | 0.134
‘ 4 NL Instructions with ‘ 0.062 ‘ 0312 ‘ 0.254 ‘ 0.139 ‘ 0.293 ‘ 0275 ‘ 0.208 ‘ 0.148
ocstrings and comments
BLooM 38 | NL Instructions | 0082 | 0275 | 0214 | 0159 | 0.234 | 0250 | 0180 | 0.132
‘ oL Instructions with ‘ 0.046 ‘ 0233 ‘ 0.209 ‘ 0.121 ‘ 0.202 ‘ 0213 ‘ 0.146 ‘ 0.111
OCbtrlngS and comments
sLoom7s | NL Instructions | 0046 | 0247 | 0203 | 0156 | 0.276 | 0247 | 0172 | 0122
‘ NL Instructions with ‘ 0.044 ‘ 0.303 ‘ 0233 ‘ 0.165 ‘ 0.263 ‘ 0.266 ‘ 0.199 ‘ 0.147

docstrings and comments

Table 10: Ablation: On average, in the CodeGen model the use of code comments and docstrings in 0-shot setting
helps improve performance of natural language prompts. However, it appears on BLOOM, only the larger sized
model is able to consistently use the additional details in the prompt to improve performance.

docstrings and comments

Model | Instruction Format | Classification Tasks | QA Tasks | Generation Tasks | All Tasks

\ | MacroFl | MicroFl | Weighted FI | ROUGE-L |  ROUGE-L | ROUGEL | ANLS | EM
CodeGen 2B | Code Instructions | 0272 | 0417 | 0354 | 0175 | 0.317 | 0330 | 0262 | 0.202
‘ g°de Instructions without ‘ 0.241 ‘ 0.389 ‘ 0.337 ‘ 0.159 ‘ 0.305 ‘ 0.309 ‘ 0.241 ‘ 0.185

ocsmngs and comments
CodeGen 6B | Code Instructions | 0311 | 0444 | 0375 | 0201 | 0.327 | 0354 | 0283 | 0.218
‘ €ode Instructions without ‘ 0.263 ‘ 0.409 ‘ 0.348 ‘ 0.195 ‘ 0.327 ‘ 0.335 ‘ 0.266 ‘ 0.201

ocstrings and comments
BLooM 3B | Code Instructions | o116 | 0351 | 0288 | 0147 | 0271 | 0279 | 0215 | 0165
Code Instructions without | g 0.302 0.249 0.132 0.259 0.248 0117 | 0183

docstrings and comments
BLooM 7B | Code Instructions | 0174 | 0369 | 0285 | 0150 | 0.298 | 0297 | 0232 | 0176
‘ Code Instructions without ‘ 0.145 ‘ 0316 ‘ 0.247 ‘ 0.144 ‘ 0.291 ‘ 0.269 ‘ 0.204 ‘ 0.151

Table 11: Ablation: Using 0-shot code instructions without docstrings and comments (i) In each model, prompting
with pseudo-code instructions results in much higher performance on QA and classification tasks (ii) For each model
family, increasing scale helps improve performance (iii) As before, prompting a model designed for code, CodeGen
results in better performance than BLOOM.
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