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Abstract

Recently, the topic of table pre-training has
attracted considerable research interest. How-
ever, how to employ table pre-training to boost
the performance of tabular prediction remains
an open challenge. In this paper, we propose
TAPTAP, the first attempt that leverages table
pre-training to empower models for tabular pre-
diction. After pre-training on a large corpus
of real-world tabular data, TAPTAP can gen-
erate high-quality synthetic tables to support
various applications on tabular data, including
privacy protection, low resource regime, miss-
ing value imputation, and imbalanced classifi-
cation. Extensive experiments on 12 datasets
demonstrate that TAPTAP outperforms a total
of 16 baselines in different scenarios. Mean-
while, it can be easily combined with vari-
ous backbone models, including LightGBM,
Multilayer Perceptron (MLP) and Transformer.
Moreover, with the aid of table pre-training,
models trained using synthetic data generated
by TAPTAP can even compete with models
using the original dataset on half of the experi-
mental datasets, marking a milestone in the de-
velopment of synthetic tabular data generation.
The code and datasets are available at https:
//github.com/ZhangTP1996/TapTap.

1 Introduction

Recently, pre-trained language models (LMs) have
attracted a lot of research interest in different do-
mains, especially in the area of natural language
processing. After pre-training on a large-scale
unstructured text corpus with a self-supervised
training objective, e.g., masked language modeling
(MLM) proposed by BERT (Devlin et al., 2019),
LMs can significantly benefit downstream tasks.
Furthermore, recent progress on generative LMs
(Radford et al., 2019; Raffel et al., 2020; Lewis
et al., 2020) suggests that it is possible to unify dif-
ferent tasks via one LM. The remarkable success
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Figure 1: An illustration of different table-related tasks
with representative table pre-training models, including
TAPAS (Herzig et al., 2020), TaBERT (Yin et al., 2020),
Intermediate (Eisenschlos et al., 2020), TAPEX (Liu
et al., 2022) and our TAPTAP.

of pre-trained LMs has inspired much research in
pre-training over structured tables, one of the most
common types of data used in real-world applica-
tions (Benjelloun et al., 2020). Different from text,
tables usually contain rich and meaningful struc-
tural information, and thus LMs on text corpus are
not well suited for tabular data. To this end, there
has been a growing amount of recent work on table
pre-training (Herzig et al., 2020; Yin et al., 2020;
Wang et al., 2021b; Liu et al., 2022).

However, the vast majority of existing table
pre-training works aim to enhance joint reasoning
over text and table (e.g., table question answering,
tableQA), while neglecting tabular prediction, an
important task in real-world applications. The goal
of tabular prediction is to predict a specified tar-
get (e.g., the income) based on a set of features
(e.g., the age and the occupation). As illustrated in
Figure 1, most pre-trained LMs on tables such as
TAPAS (Herzig et al., 2020) typically apply MLM
variants on crawled tables and text segments to
boost their joint reasoning capability in tableQA.

Nevertheless, as of yet, there is little evidence
that these table pre-training methods can enhance
the performance of tabular prediction tasks. This
is probably because tabular prediction tasks are
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quite challenging. In contrast to the exceptional
performance of deep learning in many domains,
recent studies (Shwartz-Ziv and Armon, 2022; Gor-
ishniy et al., 2021) question the necessity of deep
learning models for tabular prediction, as their per-
formance is usually outperformed by traditional
machine learning models. To summarize, it is still
an open challenge to employ table pre-training to
boost models for the tabular prediction task.

In this paper, we present TAPTAP (Table Pre-
training for Tabular Prediction), which is the first
attempt that leverages pre-training of language
models on tables to significantly benefit tabular pre-
diction tasks. To benefit different backbone models,
we apply table pre-training from a data perspec-
tive, i.e., we utilize TAPTAP to synthesize high-
quality examples that can be used to train back-
bone models. Based on the widely used generative
language model GPT (Radford et al., 2019), after
ongoing pre-training on a large-scale corpus of real-
world tabular data, TAPTAP is expected to capture
a generic tabular data distribution. Then, TAPTAP
can be quickly adapted to downstream tables via
fine-tuning and can generate high-quality synthetic
tables to support various applications on tabular
data, including privacy protection, low resource
regime, missing value imputation, and imbalanced
classification. Meanwhile, such a design decouples
the backbone model from the pre-trained model
architecture, allowing TAPTAP to benefit different
backbone models. Extensive experiments on 12
public datasets demonstrate that generative table
pre-training can empower models on tabular pre-
diction in various ways, and TAPTAP outperforms
a total of 16 baselines in different scenarios and
supports three state-of-the-art (SOTA) backbone
models. The contributions of this paper can be
summarized as follows:

* To our knowledge, we are the first to success-
fully apply table pre-training of language mod-
els to tabular prediction. With carefully de-
signed generation strategies, our method com-
bines the advantages of backbone models for
tabular prediction and pre-trained LMs.

* To accomplish the pre-training, we collect and
filter out 450 public tabular datasets from Kag-
gle, UCI, and OpenML platforms, and finally
construct a large-scale pre-training corpus.

* To systematically evaluate the proposed table
pre-training method, we build a comprehen-

sive benchmark covering four practical set-
tings in tabular prediction. Experimental re-
sults on the benchmark demonstrate that TAP-
TAP can be easily combined with different
SOTA backbone models and outperforms a
total of 16 baselines across 12 datasets.

2 Related Work

Table Pre-training Previous works on table pre-
training can be categorized by the applicable
downstream tasks and can be divided into four
lines (Dong et al., 2022): table question answering
which outputs the answer for questions over tables
(Yin et al., 2020; Herzig et al., 2020; Yu et al., 2021;
Liu et al., 2022; Andrejczuk et al., 2022), table fact
verification which verifies whether a hypothesis
holds based on the given table (Eisenschlos et al.,
2020), table to text which generates textual descrip-
tions from the given table (Gong et al., 2020; Xing
and Wan, 2021) and fable structure understanding
which aims at identifying structural types in the
given table (Tang et al., 2021; Wang et al., 2021b;
Dengetal., 2021). Our work is different from theirs
because we focus on the application of table pre-
training on tabular prediction. There were some
previous studies that performed tabular pre-training
for tabular prediction (Wang and Sun, 2022; Arik
and Pfister, 2021; Yoon et al., 2020; Bahri et al.,
2022). The major difference between TAPTAP
and the previous studies is that, TAPTAP performs
cross-table pre-training on language models using
a large number of tables to leverage the knowledge
embedded in language models, and previous works
usually perform single-table pre-training (Arik and
Pfister, 2021) (or few tables with lots of overlapped
columns (Wang and Sun, 2022)) on models specifi-
cally designed for tabular data.

Table Generation TAPTAP supports backbone
models by generating synthetic tables, and thus
it is close to the line of table generation. Exist-
ing methods for the generation of synthetic tab-
ular data mostly leverage generative adversarial
networks (Choi et al., 2017; Park et al., 2018; Mot-
tini et al., 2018; Xu et al., 2019; Koivu et al., 2020)
or variational autoencoders (Xu et al., 2019; Ma
et al., 2020; Darabi and Elor, 2021). However, it is
hard for these methods to leverage the textual se-
mantics in tables. More recently, GReaT (Borisov
et al., 2022) has successfully applied LMs in gen-
erating synthetic tabular data. There are some sig-
nificant differences between GReaT and TAPTAP:
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Figure 2: The illustration of our method. The TAPTAP model is firstly pre-trained on the pre-training corpus,
and then fine-tuned on the downstream table. During both pre-training and fine-tuning, tables are serialized into
sequences via textual encoding, and TAPTAP is trained to predict them token by token. During inference, TAPTAP

is prompted to sample values for “__”

in data prompts, and the filled values build up a synthetic table. Finally, once

the backbone model has yielded labels for the synthetic table, it can be used to strengthen the backbone model.

1) We successfully apply table pre-training, which
brings significant improvements over GReaT. 2)
We design a delicate pre-training and data synthe-
sis procedure, including number encoding and data
labeling, which greatly benefit TAPTAP. 3) GReaT
only exploits existing LMs for the privacy protec-
tion setting, along with basic backbone models like
linear regression and decision trees. However, our
proposed table pre-training can notably enhance
the performance of three SOTA backbone models
for tabular prediction across a range of scenarios.

Tabular Prediction Due to the tremendous suc-
cess of deep learning and transfer learning in var-
ious domains, there has been a lot of research
interest to extend this success to tabular predic-
tion (Song et al., 2019; Wang et al., 2021a; Arik
and Pfister, 2021). As for deep learning, we refer
readers to Gorishniy et al. (2021) for a comprehen-
sive comparison of different deep learning models
for tabular data. Our work is technically orthogonal
to these efforts, as it can be integrated with differ-
ent backbone models (e.g., Transformer). As for
transfer learning, there has been some pioneering
attempts (Levin et al., 2022; Wang and Sun, 2022).
More recently, researchers even explore the ability
of LMs on zero/few-shot classification of tabular
data (Hegselmann et al., 2022). However, there is
often some gap between their experimental setup
and real-world applications. For example, Levin
et al. (2022) only investigates transfer learning on
tables with lots of overlapping columns. Despite all
these efforts in advancing deep learning on tabular
data, recent studies (Shwartz-Ziv and Armon, 2022;
Gorishniy et al., 2021) found that machine learning
models like XGBoost (Chen and Guestrin, 2016)

and LightGBM (Ke et al., 2017) still outperformed
those deep-learning counterparts. Therefore, TAP-
TAP aims at synthesizing high-quality examples,
which is able to empower both machine learning
and deep learning models.

3 Methodology

3.1 Preliminary of Tabular Prediction

A tabular data usually contains two parts, the fea-
tures and the label. Given the features as the input,
the goal of tabular prediction is to predict the la-
bel. Taking the example from Figure 1, the task is
to predict the income (label) of a person based on
her/his age, education and occupation (features).
Below we formalize tabular prediction using the
binary-classification task, and the formulation can
be easily extended to multi-class classification or re-
gression problems. Formally, a tabular data with n
samples (i.e., rows) and m features (i.e., columns)
can be represented by D ={(x;, ¥;) }i=1,....n Where
X; = (:L’Z'71, gyt ,Z‘@m) € R™ and Y; €
{0, 1}. The j-th feature has a feature name f; (e.g.,

“age”). A model F' takes the features x; as input to

predict the label y;. Our goal is to train a model
such that the test error is as small as possible.
Existing works on improving F' either design
better model architectures (Gorishniy et al., 2021)
or improve the quality of training data (Zhang et al.,
2022). We follow the second path to improve the
model performance by generating synthetic data.
There are four typical scenarios where high-quality
synthetic samples are helpful: (1) Privacy pro-
tection (Gascoén et al., 2017). In many application
domains, each party only has part of the dataset and
several parties can collaboratively train a model on
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a joint dataset. But tabular data usually contains
sensitive personal information or confidential busi-
ness secrets that cannot be directly shared with
other parties. In this case, TAPTAP can be used to
generate synthetic data D; to replace the real data
D, while achieving similar model performance. (2)
Low resource regime. Data collection can be very
expensive in some applications and hence handling
the small data regime is an important challenge.
For example, over 44% classification datasets on
the UCI platform (Asuncion and Newman, 2007)
have less than 1000 samples. In this case, we can
leverage TAPTAP to perform data augmentation in
order to boost the backbone model. (3) Missing
value imputation. Missing values are ubiquitous
in tabular data (Stekhoven and Biihlmann, 2012).
In this case, TAPTAP is able to impute the missing
values to improve the performance of the model. (4)
Imbalanced classification. It is common to have
a long-tail label distribution in tabular data (Cao
et al., 2019). In this case, TAPTAP can be used to
balance the class distribution by conditional sam-
pling (from the minority classes).

3.2 Overview

As shown in Figure 2, TAPTAP consists of four
steps. (1) Pre-training: train an auto-regressive
LM on the table pre-training corpus compiled by
lots of public tabular datasets. (2) Fine-tuning:
train the LM on the downstream table; (3) Data
Sampling: prompt the fine-tuned LM to sample
synthetic tables with only tabular features. (4) Data
Labeling: assign pseudo labels to the synthetic
tables via downstream backbone models. Below
we describe these steps in details.

3.3 Pre-training

Corpus Construction To build the pre-training
corpus, we leverage publicly available tabular
datasets from Kaggle', UCI (Asuncion and New-
man, 2007), and OpenML (Vanschoren et al., 2013)
platforms. We believe the table pre-training should
be performed on tabular data with rich semantic
information, therefore we eliminate datasets with
meaningless column names (e.g., V1). After the fil-
tering, we finally collect 450 tabular datasets with
a total of nearly 2 million samples. To illustrate
it better, we show in Figure 3 a word cloud com-
posed of feature names and feature values. Note
that we are careful to guarantee that the tabular

1https://www.kaggle.com/
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datasets used in pre-training and the downstream
benchmark datasets are non-overlapping, so there
is no data leakage issue.

3.3.1 Textual Encoding

Table Serialization Since TAPTAP starts with
the GPT model, we follow the previous
work (Borisov et al., 2022; Liu et al., 2022) to
serialize each sample into a sequence of tokens
to reduce the difficulty of table pre-training. As
suggested by Hegselmann et al. (2022), we take
the text template serialization strategy and serialize
samples using the “[Feature] is [Value]” tem-
plate. Taking the example in Figure 2, the first
sample in the fine-tuning table is converted into a
sentence “Age is 18, Education is HS-grad, Occu-
pation is Machine-op-inspct, Income is < 50K”.
Formally, given a table D = {(x;,v;)}, let z; ;
be the j-th feature value in x; and f; be the j-th
feature name. The textual encoding is to transform
the i-th sample x; into a splice of sentences sepa-
rated by commas t; = (5.1, ti2, -+, tim),
where ti,j = (fj, “iS”, xi,j)-

Number Encoding Numerical features (e.g.,
age) are important and widely used in tabular data
- over 70% of features in our pre-training corpus
are numerical features, but how to properly encode
these features has always been neglected in previ-
ous work of tabular prediction. Meanwhile, recent
studies on LMs show that they are not good at
dealing with numbers (Pi et al., 2022) and suggest
the character-level representation is better suited
to capture the number semantics than its counter-
parts (Wallace et al., 2019). Therefore, we use the
character-level representation for all numerical fea-
tures, which means that the phrase “Age is /8" in
Figure 2 would be converted into “Age is 1 8.

Permutation Function The features in the tab-
ular data are not ordered, but they are encoded as
an ordered sentence, which introduces spurious
positional relationships in textual encoding. In or-
der to reconstruct the order independence among
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Table 1: Properties of benchmark datasets.

Classification Regression
Dataset
LO AD HE CR SI BE DI CA GE ME AG DU
# samples (k) 06 49 99 150 38 14 102 21 27 1.3 39 19
# numerical features 5 6 23 10 6 16 8 8 6 3 7 34
# categorical features 6 8 0 0 22 0 39 0 3 3 1 2
# classes 2 2 2 2 2 7 3 - - - - -

features, we follow previous work (Borisov et al.,
2022) to apply a permutation function P to ran-
domly shuffle the order of features when encod-
ing a table. Therefore, the encoded sentence be-
comes t; = (L, tikyr 5 s bik,n )» Where
k1, k2, -+ km] = P([1,2,---,m]). Such per-
mutation enables conditional sampling when do-
ing inference on downstream tables (Borisov et al.,
2022), i.e., TAPTAP can generate a synthetic sam-
ple conditioned on any set of known features. We
take a step further to demonstrate that the condi-
tional sampling helps TAPTAP perform well in the
missing value imputation scenario.

3.3.2 Pre-training Procedure

As mentioned before, the pre-training follows an
auto-regressive manner, i.e., TAPTAP is trained to
predict the encoded sentence token by token. As-
suming we have ¢ tabular datasets for pre-training,
the whole pre-training corpus 7 can be obtained
by combining each tabular data after textual en-
coding as {tgl) U---U tgq)}. Then, each sen-
tence t € 7T can be encoded into a sequence
of tokens using (wi,--- ,wy) = tokenize(t).
In general, TAPTAP factorizes the probability
of generating t in an auto-regressive manner as
p(t) = [1, plwglws, - ,wy_y). During pre-
training, TAPTAP is optimized towards maximiz-
ing the probability H‘gl p(t;) on the entire pre-
training corpus. The pre-training can start with any
auto-regressive LM such as GPT (Radford et al.,
2019), so that TAPTAP can benefit from the com-
mon knowledge already learned by these LMs.

3.4 Fine-tuning

Fine-tuning TAPTAP on the downstream table fol-
lows a similar procedure as in pre-training. The
only difference is that the encoded sentences for
fine-tuning are generated by applying textual en-
coding to the downstream table.

3.5 Data Sampling

Given the sequence (wy, - - ,wg_1) as the prompt,
TAPTAP is able to output the categorical distribu-
tion of the next token wy € V after fine-tuning,
where )V denotes the vocabulary. In general, wy, is
sampled from the conditioned probability distribu-
tion p(wg|wy, -+ , wg_1).

Since we also employ permutation during fine-
tuning, the fine-tuned TAPTAP is able to gener-
ate synthetic samples given any prompt. We em-
ploy three kinds of prompting strategies for dif-
ferent application scenarios (Borisov et al., 2022).
(1) Feature name as prompt. This strategy is
used in the privacy protection and low resource
regime, where only feature names in the tabular
data are selected as the prompt. The synthetic sam-
ples are generated by TAPTAP according to the
prompt “[Feature] is ”. (2) One feature-value
pair as prompt. This strategy is used in the im-
balanced classification scenario, where the feature
names and the minority label(s) are both provided
as the prompt. With the label treated as a feature,
TAPTAP generates synthetic samples based on the
prompt “[Feature] is [Valuel, ”. (3) Multiple
feature-value pairs as prompt. This strategy is
used in the missing feature scenarios, where the
feature names and available feature values are pro-
vided as the prompt. TAPTAP generates synthetic
samples according to the prompt “[Featurel] is
[Valuell, [Feature2] is [Value2], ---, ”. The
order of the given features in the prompt is random.
Data prompt examples can be found in Figure 2.

3.6 Data Labeling

An accurate label is arguably one of the most cru-
cial ingredients in synthetic samples. Noisy labels
can severely degrade the generalization capability
of backbone models (Gorishniy et al., 2021). In
contrast to the previous work relying on LMs to
generate labels (Borisov et al., 2022), we propose
to assign pseudo labels using the SOTA backbone
models. We argue that LMs are not yet the best
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Table 2: The experimental results in privacy protection. Here we present the difference in metrics between the
model trained on the synthetic data and the one trained on the original data, the lower the better. A gap close to
zero suggests that the synthetic data is of comparable quality to the original data. Below the backbone model is
LightGBM. Results of MLP and Transformer can be found in Table 13 and 14.

Diff. w.r.t. Origin | LO AD HE CR SI BE DI CA GE ME AG DU  Avg. Rank
CTGAN 121 37 86 872 4 242 56 384 143 101.1 275 1041 5.88=£0.91
CopulaGAN 142 34 87 0.2 4 278 55 573 145 83.6 26.6 1057 5.79£1.47
TVAE 14 57 038 1.4 7.6 79 26 167 5.1 1094 337 342 5.00+ 141
GReaT-distill 1.4 2 28 24 198 48 2238 8.1 8.4 7.6 87.7 4.50+1.09
GReaT 25 09 37 26 145 1.7 13.1 2.4 0.7 4.5 257 375+£129
TAPTAP-distill 0 07 04 0 1.1 04 1.6 3.7 0.7 0.2 0.6 16.7 1.71 £0.45
TAPTAP 0 05 03 0 0.6 04 1.6 2.5 1.5 0 4.6 128 1.38 £0.64

Table 3: The experimental results in low resource regime. “+ Ori” means training with the original data. “+ Ori
+ Synthetic Data” means training with the original data plus the synthetic data. Below the backbone model is
Transformer with piece-wise linear encoding. The full results on all datasets can be found in Table 15 and 16.

Metric 1 LO HE BE SI CA GE ME AG DU Avg Rank
Transformer + Ori  76.8 72.5 927 985 829 982 86.6 526 96.5 -
Transformer + Ori + Synthetic Data by Models

CTGAN 7477 715 927 97.8 815 963 721 516 717 5834127
CopulaGAN 747 71.8 925 978 81.7 959 728 520 86.8 539+1.32
TVAE 762 728 925 974 820 972 857 473 80.0 4.564+2.01
GReaT-distill 76.1 720 92,6 983 779 96.6 862 524 790 4.894+1.05
GReaT 745 72,1 927 984 80.5 98.1 864 533 803 4114145
TAPTAP-distill 762 725 928 985 837 982 869 538 982 1.78+0.67
TAPTAP 775 725 929 985 837 982 867 535 979 1444053

choice for label generation, since most commonly
used tabular prediction models (e.g., LightGBM)
are carefully designed for tabular data and generally
more accurate at predicting the labels (Hegselmann
et al., 2022; Shwartz-Ziv and Armon, 2022).

Formally, given a downstream table D =
{(xi,9i)}, we first fine-tune TAPTAP on it to gen-
erate synthetic tabular features {x/}. Next, a back-
bone model F' is trained to fit the original table D.
Then, the synthetic labels y; can be derived using
the well-trained model via y, = F'(x}). Finally, the
synthetic labels and the synthetic tabular features
make up the final synthetic table D, = {(x],y})}.
The following model analysis in the Section 4.3
reveals that our design of data labeling (i.e., not
using LMs for label generation) is crucial for the
superior performance of our approach.

4 [Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics We collect
12 diverse real-world datasets from various do-
mains (Asuncion and Newman, 2007; Vanschoren
et al., 2013). Each dataset is split into a train set
(75%) and a test set (25%), and all experiments

share the same splits. We provide some important
statistics of each dataset in Table 1 and more details
in Appendix A. Following previous works (Grin-
sztajn et al., 2022; Borisov et al., 2022), we use
accuracy and R2 score as the evaluation metrics for
the classification and regression tasks. For the im-
balanced classification scenario, we employ AUC
as the evaluation metric. All the experimental re-
sults are averaged over 10 different random seeds.

Backbone Models To comprehensively evalu-
ate TAPTAP, we experiment with various SOTA
backbone models for tabular prediction, includ-
ing LightGBM (Ke et al., 2017), MLP, and Trans-
former (Gorishniy et al., 2021). Modern GBDT
models (such as LightGBM and XGBoost) have
been the most popular models for tabular predic-
tion in the past few years (Shwartz-Ziv and Armon,
2022). We choose LightGBM in our experiments.
Recently, MLP and Transformer with piece-wise
linear encoding (Gorishniy et al., 2022) are pro-
posed to be competitive against LightGBM.

Language Models. TAPTAP uses the original
GPT2 (Radford et al., 2019) with 355M parameters,
while TAPTAP-distill uses the distilled version of
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GPT2 (Sanh et al., 2019) with 82M parameters.

4.2 Main Results

We measure the quality of the synthesized samples
by their performance in the application scenarios.

Privacy Protection Following the previous work
(Borisov et al., 2022), we include baselines CT-
GAN (Xu et al., 2019), TVAE (Xu et al., 2019),
CopulaGAN (Patki et al., 2016), GReaT-distill and
GReaT (Borisov et al., 2022). All methods are
used to generate the same amount of synthetic data
as the original dataset. The backbone models are
trained on the synthetic data, and then evaluated
on the original test set. The experimental results
are presented in Table 2. One can observe that
TAPTAP and TAPTAP-distill outperform most of
the baseline methods. Noticing that GReaT also
utilizes GPT2, the fact that TAPTAP surpasses it by
a large margin suggests the superiority of table pre-
training. More importantly, with table pre-training,
the quality of the synthetic data generated by TAP-
TAP can even match that of the original data. On
half of the privacy protection datasets, Light GBM
models trained with our synthetic data achieve al-
most the same performance as with the original
data. This is highly impressive, especially when
considering that none of the synthetic samples ap-
pear in the original dataset.

Low Resource Regime We perform data aug-
mentation to mitigate the low resource dilemma.
The baseline methods are identical to those in pri-
vacy protection. During fine-tuning, following the
experience of multi-task learning in TS5 (Raffel
et al., 2020), we first use the synthetic data to fine-
tune a backbone model. Then, we use the original
data to continually fine-tune the model. Experimen-
tal results on 9 datasets with less than 30k samples
are presented in Table 3, which show that TAPTAP
is able to perform comparably or better than all
baseline methods on most datasets. Furthermore,
TAPTAP contribute significant gains to 4 of the 9
datasets, which is highly non-trivial.

Missing Value Imputation We compare with
top methods as baselines in a recent benchmarking
study (Jarrett et al., 2022), including GAIN (Yoon
et al., 2018), HyperImpute (Jarrett et al., 2022),
MICE (Van Buuren and Groothuis-Oudshoorn,
2011), MissForest (Stekhoven and Biihlmann,
2012), MIWAE (Mattei and Frellsen, 2019), and
Sinkhorn (Muzellec et al., 2020). Following previ-

TAPTAP-distill (Full)
w.o. character | 78.7
w.o. feature name T
w.o. datalabeling [ 742
w.o. pre-training [ ]70.2
| | |
70.0 75.0 80.0

Figure 4: Experimental results in the ablation study. The
y-axis is the average metric values across all datasets in
the privacy protection setting with LightGBM.

ous work (Jarrett et al., 2022), two missing mech-
anisms are used to yield missing values: missing
completely at random (MCAR) and missing at ran-
dom (MAR). The miss ratio is set to be 0.3. We
present the results in Table 4. As observed, TAP-
TAP always outperforms most baseline methods
using one LM and receives the highest average
ranking, indicating its superiority.

Imbalanced Classification By generating syn-
thetic samples for the minority class, TAPTAP
addresses the imbalanced classification problem.
Therefore, we compare our methods against pop-
ular oversampling methods (Camino et al., 2020),
including Random, SMOTE (Chawla et al., 2002),
ADASYN (He et al., 2008), Borderline (Han et al.,
2005), SMOTE+ENN (Alejo et al., 2010) and
SMOTE+Tomek (Zeng et al., 2016). Following
the standard approach (Buda et al., 2018), we
down-sample the minority class of each binary-
classification dataset so that the imbalanced ratio
is 50 (#majority / #minority =50). Experimental
results on five binary-classification datasets are pre-
sented in Table 5, where TAPTAP still has the high-
est average ranking among all baselines.

Overall Summarization First, TAPTAP gener-
ally improves the performance of different back-
bone models in tabular prediction and outperforms
the majority of baseline methods on various tabu-
lar prediction scenarios. Second, the advantage of
TAPTAP over TAPTAP-distill suggests that table
pre-training can also benefit from scaling up LMs.
Third, TAPTAP is the first to successfully gener-
ate synthetic data for comparable backbone model
performance to original data.

4.3 Ablation Study

To investigate the effectiveness of each component
in TAPTAP, we conduct an ablation study. We
name TAPTAP without different components as
follows: (1) w.o. pre-training refers to TAPTAP
without table pre-training. (2) w.o. data labeling
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Table 4: The experimental results in missing value imputation. “+ M-Ori” means training with the original data
processed by the MCAR mechanism. “+ M-Ori + Synthetic Data” means training with the M-Ori data where the
missing values are imputed by different models. Below the backbone model is MLP. Results using LightGBM and
Transformer as backbone models can be found in Table 17 and 18. Results with the MAR mechanism can be found

in Appendix B.6. X denotes the method cannot run successfully on the dataset due to too many missing values.

Metric 1 LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
MLP + M-Ori 732 854 71.1 93,6 956 903 574 631 930 684 414 70.6 -
MLP + M-Ori + Synthetic Data by Models
MIWAE 71.3 X 68.7 X 95.7 90.0 X 59.0 90.6 65.0 42,6 757 754+0.78
Sinkhorn 732 839 693 935 958 88.6 56,6 625 934 733 499 728 575+1.14
GAIN 862 862 729 576 976 909 538 549 929 694 442 820 5004249
MICE 73.1 845 70.0 936 960 883 572 630 938 723 531 911 4754+1.82
MissForest 729 798 699 9277 96.7 916 572 740 942 795 464 885 475+£154
HyperImpute 73.4 86.7 70.5 83.0 96.8 928 X 7777 962 784 581 90.6 3.54+1.78
TAPTAP-distill 749 869 722 937 975 934 572 785 945 726 53.6 692 283+1.90
TAPTAP 73.6 87.0 73.0 937 969 931 578 827 973 812 532 855 1.83&£1.11
Table 5: Experimental results in imbalanced classi- 8 S
fication. “I-Ori” is the imbalanced data. Below the % 80 [ 771 T84 -
backbone model is LightGBM. X denotes the method £ 5l i
cannot run successfully on the dataset due to too few i ol 702 108 |
samples in the minority class. The metric is AUC. z o m H
! 1 ! ! !
0 002 01 05 2(Full

Metric 1
LightGBM + I-Ori

LO AD HE CR SI
712 902 823 84.0 994

Avg. Rank

LightGBM + I-Ori + Synthetic Data by Models

SMOTE+ENN X 879 777 837 989 7.30£097
SMOTE+Tomek X 893 803 841 995 580E1.44
ADASYN X 895 79.6 840 995 5.30£0097
Random 51.7 894 823 829 99.7 5.004+2.00
SMOTE X 895 803 841 995 5.00+1.37
Borderline 712 89.6 793 835 99.8 4.20+2.68
TAPTAP-distill 73.0 91.3 83.8 84.8 99.7 1.80+045
TAPTAP 855 913 83.0 850 99.7 1.60+0.89

refers to TAPTAP using LMs to generate labels. (3)
w.o. character refers to TAPTAP without using the
character-level representations for numerical fea-
tures. (4) w.o. feature name. The column names
of each dataset are replaced by dummy names (e.g.,
“V1”°) to remove semantic information.

The experimental results are visualized in Figure
4. We present the average metric values (i.e., Acc.
or R2) of each method across 12 datasets in the pri-
vacy protection setting, since it is the most straight-
forward setting to indicate the quality of synthetic
data. We can see that pre-training and data label-
ing are particularly important for TAPTAP. The
semantic information in column names and the
character-level representation to enhance number
encoding also provide considerable improvement.

Amount of Pretraining Corpus (Millions)
Figure 5: The influence of pre-training scale on the
downstream performance. The value of each method
is the average metric values across all datasets in the
privacy protection setting with Light GBM.

Table 6: The comparison between TAPTAP and TAP-
TAP with additional web tables for pre-training.

AD HE CR SI DI CA
TAPTAP 875 722 938 976 578 815
+ Web Tables 87.7 723 938 982 57.6 82.1

4.4 Analysis

The Scale of Pre-training Corpus Figure 5 il-
lustrates the influence of the pre-training scale on
the downstream performance. We present the re-
sults with 0.02, 0.1, 0.5 and 2 million samples. As
one can observe, scaling up the pre-training corpus
brings positive effects. However, the number of
high-quality real-world tabular datasets is limited.
Therefore, it may be helpful to take advantage of
the millions of tables available on the Web.

Pre-training using Web Tables To explore the
above direction, we present a preliminary study
on using tables from Web for pre-training. We
parse over 130k Web tables with a total of 8 million
samples from the WikiTables corpus (Bhagavatula
et al., 2015). We use the Web tables together with
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the tabular datasets for pre-training. The results
of the privacy protection setting are presented in
Table 6. We can see that even with a large number
of Web tables, it is still hard to further boost the
backbone models. We attribute it to the quality
issue. The collected tabular datasets have already
been examined by the platforms, and usually have
higher quality than noisy Web tables. How to au-
tomatically identify high-quality tables from the
huge number of Web tables for pre-training is a
promising future direction.

5 Conclusion & Future Work

In this paper, we propose TAPTAP, a table pre-
training method to empower models for tabular
prediction. It can be combined with various back-
bone models and boost them via synthesizing high-
quality tabular data. A large-scale empirical study
demonstrates that TAPTAP can benefit different
SOTA backbone models on four tabular prediction
scenarios. In the future, we plan to extend TAPTAP
to process tables with a large number of features.
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Limitations

The major limitation of TAPTAP is the scalability.
While we enjoy the advantages of LMs, we also
introduce the drawbacks of LMs. In practice, TAP-
TAP usually requires more running time and GPU
memory than other methods. Detailed comparison
can be found in Appendix B.3. In addition, TAP-
TAP can only process tabular data with less than
100 features due to the input length limitation that
GPT can process (i.e., 1024 tokens).

Ethics Statement

In this paper, we collected and filtered out 450
publicly available tabular datasets to construct the
pre-training corpus for TAPTAP. As these datasets
have been reviewed by well-known machine learn-
ing platforms such as Kaggle, they should have
no private information about individuals. How-
ever, we cannot confirm whether these datasets
contain potential biases since the corpus contains

millions of samples. For example, there may be
tables that have the potential to wrongly associate
recruitment result to gender. Also, since our model
is pre-trained based on GPT, readers may be con-
cerned that the synthetic tables generated by our
model contain offensive content. On this point, we
argue that one might not be worried too much since
for categorical features, our model can be easily
tuned to only generate the values that appear in the
downstream table, which is relatively controllable.
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Figure 6: Sampling diversity in terms of the coverage
score averaged across datasets.

A Datasets

We provide the urls of the public datasets in Table
7. These datasets are publicly available, and their
license permits usage for research purposes.

B Additional Experiments

B.1 Distance to Closest Record

In order to demonstrate that TAPTAP generates
synthetic samples similar to the original data
instead of copying the original data, following
the standard approach (Borisov et al., 2022), we
calculate each sample’s distance to the closest
record (DCR) in the original training data D. For
each synthetic sample z, its DCR is DCR(x) =
min{ Distance(x,z;)|x; € D}. We use the Ly
distance for numerical features. For categorical
features, we set the distance to be 0 for equal cate-
gories and 1 otherwise. We present the results of
California Housing and HELOC in Figure 7 and 8.

B.2 Sampling Diversity

We employ the coverage score (Naeem et al., 2020)
to quantitatively evaluate the sampling diversity
of TAPTAP and baseline methods. The coverage
refers to the proportion of actual records that con-
tain at least one synthetic record within its mani-
fold. A manifold is defined as a sphere surrounding
the sample, with a radius of r determined by the
distance between the sample and its k-th nearest
neighbor. We present the averaged coverage score
in Figure 6.

B.3 Running Time Comparison

We analyze the running time of TAPTAP, TAPTAP-
distill, and baseline methods. The experiments are
carried out on a single NVIDIA GeForce RTX 3090
with 24 GB RAM, 64 system RAM, and Intel(R)
Xeon(R) Platinum 8350C CPU @ 2.60GHz with
16 cores. For the privacy protection setting, we
present the running time of training/fine-tuning and
sampling separately. We present the results of the
Adult Income dataset in Table 8. For the missing
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Table 7: The urls of test datasets.

Dataset Link

Adult Income (AD) (Kohavi, 1996) https://archive.ics.uci.edu/ml/datasets/Adult

HELOC (HE) https://www.kaggle.com/datasets/averkiyoliabev/home-equity-line-of-creditheloc
California Housing (CA) (Pace and Barry, 1997) https://www.kaggle.com/datasets/camnugent/california-housing-prices
Diabetes (DI) (Strack et al., 2014) https://www.kaggle.com/c/10561lab-diabetes-readmission-prediction

Credit Scoring (CR) (Credit Fusion, 2011) https://www.kaggle.com/competitions/GiveMeSomeCredit/overview

Loan (LO) https://www.openml.org/search?type=data&status=active&sort=match&id=43595
Dubai Housing (DU) https://www.kaggle.com/datasets/dataregress/dubai-properties-dataset

Crab Age (AG) (Sidhu, 2021) https://www.kaggle.com/datasets/sidhus/crab-age-prediction

Medical Cost (ME) https://www.kaggle.com/datasets/mirichoi@218/insurance

Gem Price (GE) https://www.kaggle.com/datasets/colearninglounge/gemstone-price-prediction
Bean Type (BE) (Koklu and Ozkan, 2020) https://archive.ics.uci.edu/ml/datasets/Dry+BeantDataset

Sick Record (SI) (Quinlan, 1987) https://www.openml.org/search?type=data&sort=runs&id=38&status=active

value imputation setting, we present the running
time of the California Housing dataset in Table 9.
We can see that TAPTAP and TAPTAP-distill re-
quires more running time than most of the baseline
methods. While we enjoy the benefits of lever-
aging LMs to achieve top performance, we also
introduce the drawbacks of LMs in requiring more
computational resources. However, there are im-
portant real-world applications such as healthcare
or finance where achieving better performance out-
weighs saving computational time. In addition, the
fine-tuning and sampling time can be reduced by
using more computational resources.

B.4 Privacy Protection

Table 2, 13 and 14 show the performance of our
method and baseline methods in privacy protection
setting with LightGBM, MLP, and Transformer as
the backbone.

B.S Low Resource Regime

Table 15 and 16 show the performance of our
method and baseline methods in low resource
regime setting with MLP and Transformer as the
backbone. Note that both low resource datasets and
high resource datasets are presented in the table.

B.6 Missing Value Imputation

Table 17, 4 and 18 show the performance of our
method and baseline methods in missing value
imputation setting using MCAR mechanism with
LightGBM, MLP, and Transformer as the back-
bone. Table 19, 20 and 21 show the performance of
our method and baseline methods in missing value
imputation setting using MAR mechanism with
LightGBM, MLP, and Transformer as the back-
bone. MIWAE and HyperImpute fail on some
datasets because one feature in the dataset contains
too many missing values. For example, 96.9% of

data points in the “weight” column in the Diabetes
dataset are missing. However, the methods require
at least one valid value for each training batch.

B.7 Imbalance Classification

Table 5 shows the performance of our method and
baseline methods in the imbalance classification
setting with LightGBM as the backbone. Smote-
based methods fail on the Loan dataset because
there are fewer than 10 minority class data, which
results in the number of sampled data points being
less than the number of neighbors(Chawla et al.,
2002) required.

C Hyperparameters Optimization

We use optuna (Akiba et al., 2019) to tune the hy-
perparameters of our backbone models, i.e. Light-
GBM, MLP, and Transformer. For each specific
dataset and model, we first use the original data to
tune the hyperparameters of the model. Then the
set of hyperparameters are used throughout all the
experiments of the dataset on all the methods for a
fair comparison.

C.1 LightGBM

When tuning the hyperparameters of LightGBM,
the following hyperparameters are fixed:

1. boosting = “gbdt”
2. early_stopping_round = 50
3. n_estimators = 1000

Other hyperparameters and the search space for
tuning are in Table 10.

C2 MLP

We follow the implementation in Gorishniy et al.
(2022). We present the hyperparameters space for
searching in Table 11.
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Table 8: The running time in seconds on the Adult Income dataset of different methods in the privacy protection
setting. The number of fine-tuning steps for GReaT and TAPTAP was 10k. A total of 36k samples were generated.

CTGAN CopulaGAN TVAE GReaT-distil GReaT TAPTAP-distill TAPTAP
Training/Fine-tuning Time 873 846 360 960 3770 910 3680
Sampling Time 9 11 3 895 1395 506 1185

Table 9: The running time in seconds on the California Housing dataset of different methods in the missing value
imputation setting. The number of fine-tuning steps for GReaT and TAPTAP was 10k. A total of 15k samples were

imputed.

MIWAE Hyperlmpute

GAIN MICE MissForest

Sinkhorn TAPTAP-distil TAPTAP

Running Time 210 175 8 336

47 565 1215 4008

Table 10: LightGBM hyperparameter space

Distribution

Uniform[0.01,0.05]
UniformInt[10,100]
LogUniform[1le-5,1e-1]
UniformlInt[2,100]
Uniform[0.5,1.0]
Uniform[0.5,1.0]

# Iterations 100

Parameter

learning_rate
num_leaves
min_child_weight
min_child_samples
subsample
colsample_bytree

Table 11: MLP hyperparameter space

Parameter Distribution
# Layers UniformInt[1,16]
Layer size UniformlInt[1,1024]
Dropout Uniform[0,0.5]
Learning rate {0, Uniform[0,0.5]}
Weight decay  LogUniform[5e-5,0.005]
# Iterations 100

C.3 Transformer

We follow the implementation in Gorishniy et al.
(2022). We present the hyperparameters space for
searching in Table 12.

D Reproducibility Details

For the baseline methods of CT-GAN, TVAE,
and CopulaGAN in the privacy protection
and low resource regime setting, we use
the implementation in https://sdv.dev/SDV/
user_guides/single_table/models.html. For
GReaT-distill and GReaT, we use the implemen-
tation in https://github.com/kathrinse/be_
great. For the baseline methods of GAIN, Hy-
perlmpute, MICE, MissForest, MIWAE, Sinkhorn
in the missing value imputation setting, we
use the implementation in https://github.com/
vanderschaarlab/hyperimpute. For the base-

Table 12: Transformer hyperparameter space

Parameter Distribution
# Layers UniformlInt[1,4]
Embedding size UniformInt[96,512]
Residual dropout {0, Uniform[0,0.2]}
Attetion dropout Uniform[0,0.5]
FFN dropout Uniform[0,0.5]
FEN factor Uniform[2/3,8/3]
Leaning rate LogUniform[1le-5, 1e-3]
Weight decay LogUniform[1e-6, 1e-4]
# Iterations 100

line methods of Random, SMOTE, ADASYN,
Borderline, SMOTE+ENN, SMOTE+Tomek in
the imbalanced classification setting, we use
the implementation in https://github.com/
scikit-learn-contrib/imbalanced-learn.

We use the implementation of GPT2 and the
distilled version of GPT?2 in the huggingface plat-
form (Wolf et al., 2019). We pre-train TAPTAP
and TAPTAP-distill for 80,000 steps. We finetune
the TAPTAP, TAPTAP-distill, GReaT, and GReaT-
distill model for 10,000 steps, except for the Credit
Scoring (CR) and Sick Records (SI) datasets, which
we finetune the model for 20000 steps. The batch
size is 64 for all the datasets. In the privacy protec-
tion, low resource regime, and imbalanced classi-
fication setting, we use the one feature-value pair
as prompt sampling method. We start sampling
with the target feature following the previous ap-
proach (Borisov et al., 2022). The missing value
imputation setting does not require pseudo label
generation, as the missing mechanism only drops
the feature values and the labels are always pro-
vided. In the imbalanced classification setting, we
generate synthetic samples on the minority class
until the number of samples is the same for the
minority and majority class.
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Table 13: The experimental results in privacy protection. “+ Ori”’ means training with the original data. Below the
backbone model is MLP with piece-wise linear encoding.

Metric 1 LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
MLP + Ori 76.6 8777 724 938 983 927 587 81.8 981 857 529 995 -
MLP + Synthetic Data by Models

CTGAN 649 843 654 6.6 947 657 538 464 835 -167 310 -106 6.17+0.62
CopulaGAN 63.2 84.1 640 935 947 623 539 312 836 103 314 -154 596=+1.25
TVAE 649 827 717 924 957 709 56.1 608 93.8 -22.0 19.0 66.2 5.04=+1.36
GReaT-distill 744 858 69.8 913 97.1 909 539 654 90.6 80.6 47.1 157 4.42+1.00
GReaT 739 86.7 710 915 974 90.7 57.6 720 96.6 847 492 69.5 3.25+0.97
TAPTAP-distill 77.0 874 723 938 975 922 572 805 981 867 533 776 1.83+0.58
TAPTAP 771 874 723 938 978 92.6 573 819 97.1 852 51.6 864 1.33+049

Table 14: The experimental results in privacy protection. “+ Ori” means training with the original data. Below the
backbone model is Transformer with piece-wise linear encoding.

Metric 1 LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
Transformer + Ori  76.8 87.4 725 938 985 927 58.7 829 982 86.6 526 965 -

Transformer + Synthetic Data by Models

CTGAN 65.1 84.1 652 6.6 947 559 538 483 843 -143 245 -124 6.17+0.58
CopulaGAN 613 842 643 935 946 580 539 305 833 11.1 232 -16.1 6.08+1.24
TVAE 65.6 825 71.7 920 956 657 562 589 928 -242 19.1 49.8 5.00+1.35
GReaT-distill 742 854 69.1 913 96.8 905 540 646 90.7 834 446 142 425+0.87
GReaT 723 865 687 913 972 903 57.6 719 964 856 481 604 325+1.14
TAPTAP-distill 76.7 872 722 938 973 920 572 815 981 869 535 63.1 1.75+0.62
TAPTAP 771 873 72.1 938 981 925 573 831 960 86.1 514 752 1.50+0.67

Table 15: The experimental results in low resource regime. “+ Ori” means training with the original data. “+ Ori +
Synthetic Data” means training with the original data plus the synthetic data. Below the backbone model is MLP
with piece-wise linear encoding.

Metric 1 LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
MLP + Ori 76.6 87.7 724 938 983 927 587 81.8 98.1 857 529 995 -
MLP + Ori + Synthetic Data by Models

CTGAN 764 874 7T1.1 848 962 930 585 802 956 692 503 839 6.08+£1.00
CopulaGAN 765 875 714 938 974 930 585 80.0 951 70.6 519 979 4.83+1.27
TVAE 76.6 86.8 725 937 973 928 584 813 969 849 477 916 4.83+1.53
GReaT-distill 765 87.6 724 93.6 98.0 927 584 77.6 964 849 530 904 5.17+1.27
GReaT 758 87.6 72.1 935 982 930 585 80.1 979 858 534 914 4.08+1.44
TAPTAP-distill 76.8 87.7 72.6 93.8 98.5 93.0 58.6 83.6 98.2 859 542 99.5 1.67+0.49
TAPTAP 76.9 87.7 72.6 93.8 984 93.1 58.7 83.6 98.1 86.0 539 995 133+£049
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Table 16: The experimental results in low resource regime. “+ Ori” means training with the original data. “+
Ori + Synthetic Data” means training with the original data plus the synthetic data. Below the backbone model is
Transformer with piece-wise linear encoding.

Metric T LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
Transformer + Ori  76.8 87.4 725 93.8 985 927 587 829 982 866 526 965 -

Transformer + Ori + Synthetic Data by Models

CTGAN 747 872 715 848 97.8 927 585 815 963 721 51.6 71.7 5.794+1.20
CopulaGAN 747 872 718 938 97.8 925 585 81.7 959 728 520 86.8 5.12+1.38
TVAE 762 86.8 728 937 974 925 584 820 972 857 473 800 4.83+1.90
GReaT-distill 76.1 87.5 72.0 93.6 983 926 584 779 966 862 524 79.0 5.00+£1.13
GReaT 745 87.6 72.1 93.6 984 9277 585 805 98.1 864 533 803 3.92+£1.68
TAPTAP-distill 762 87.6 725 93.8 98.5 928 58.6 83.7 982 869 538 982 1.83+£0.58
TAPTAP 775 875 725 93.8 985 929 58.7 837 982 867 535 979 1.50+£0.67

Table 17: The experimental results in missing value imputation. “+ M-Ori” means training with the original data
processed by the MCAR mechanism. “+ M-Ori + Synthetic Data” means training with the M-Ori data where the
missing values are imputed by different models. Below the backbone model is LightGBM. X denotes the method
cannot run successfully on the dataset due to too many missing values.

Metric 1 LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
LightGBM + M-Ori 733 862 71.3 937 97.0 91.1 574 680 93.1 666 442 835 -

LightGBM + M-Ori + Synthetic Data by Models

MIWAE 710 X 693 X 968 903 X 643 902 656 413 814 7.21+09%4
Sinkhorn 73.8 845 694 937 96.8 892 57.0 665 933 679 50.8 81.2 6.00+1.21
MICE 745 853 699 936 96.1 89.6 572 662 940 71.0 529 895 5.17+147
GAIN 854 864 743 76.1 97.8 90.8 60.4 628 933 673 44.6 851 4.67+2.64
MissForest 67.7 86.4 715 937 97.8 915 57.0 735 946 77.0 464 90.7 442+1.62
HyperImpute 69.6 88.0 71.0 917 97.7 927 X 808 963 79.8 573 922 3.46+250
TAPTAP-distill 752 873 724 937 983 934 573 805 94.6 700 539 702 3.00+191
TAPTAP 74.8 874 728 937 97.8 932 577 850 975 778 537 858 2.08+0.90

Table 18: The experimental results in missing value imputation. “+ M-Ori” means training with the original data
processed by the MCAR mechanism. “+ M-Ori + Synthetic Data” means training with the M-Ori data where the
missing values are imputed by different models. Below the backbone model is Transformer. X denotes the method
cannot run successfully on the dataset due to too many missing values.

Metric 1 LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
Transformer + M-Ori 734 855 712 93.6 9677 90.6 574 63.8 935 71.0 419 67.1 -

Transformer + M-Ori + Synthetic Data by Models

MIWAE 727 X 687 X 963 89.8 X 61.0 909 68.8 428 74.0 7.46=+0.66
Sinkhorn 72.1 83.6 69.5 93.6 967 89.1 56.6 63.8 935 744 504 79.8 5.67+1.56
GAIN 772 86.1 70.1 52.1 97.8 90.3 53.8 505 933 69.6 44.6 752 533+2.19
MICE 73.0 847 699 93.6 955 89.0 57.6 642 938 741 52.1 767 5.25+1.66
MissForest 73.0 839 707 928 973 916 573 746 947 787 463 82.8 4.00+1.28
HyperImpute 753 86.7 69.8 836 972 928 X 777 964 80.0 56.8 855 346+2.15
TAPTAP-distill 746 869 723 93.6 98.0 933 572 79.0 946 750 532 684 292+193
TAPTAP 73.1 87.0 727 937 975 932 578 836 97.6 825 524 786 192+1.24
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Table 19: The experimental results in missing value imputation. “+ M-Ori” means training with the original data
processed by the MAR mechanism. “+ M-Ori + Synthetic Data” means training with the M-Ori data where the
missing values are imputed by different models. Below the backbone model is LightGBM. X denotes the method
cannot run successfully on the dataset due to too many missing values.

Metric 1 LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
LightGBM + M-Ori 77.1 869 72.1 937 973 91.8 585 80.1 93.7 505 520 829 -

LightGBM + M-Ori + Synthetic Data by Models

Sinkhorn 77.1 863 699 938 973 912 58.7 786 935 498 503 613 6.08+1.83
MIWAE 782 864 699 X 973 916 X 791 927 481 518 79.0 5.88+1.68
MICE 77.1 86.7 704 938 96.6 912 583 794 937 628 524 932 533+1.78
GAIN 788 87.0 754 97.0 972 90.0 528 69.7 883 459 55.0 740 4.92+3.09
MissForest 770 87.1 68.7 959 979 923 585 80.1 93.8 842 519 590 4.67+2.19
HyperImpute 77.1 900 70.7 945 979 923 X 836 96.0 858 514 609 3.96+238
TAPTAP-distill 773 87.6 725 938 983 928 585 81.0 939 73.1 53.0 833 2831094
TAPTAP 773 875 726 938 98.0 931 586 839 97.0 77.7 53.1 79.1 233+1.15

Table 20: The experimental results in missing value imputation. “+ M-Ori” means training with the original data
processed by the MAR mechanism. “+ M-Ori + Synthetic Data” means training with the M-Ori data where the
missing values are imputed by different models. Below the backbone model is MLP. X denotes the method cannot
run successfully on the dataset due to too many missing values.

Metric 1 LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
MLP+M-Ori 773 862 720 93.6 964 917 584 769 935 53.0 521 769 -

MLP + M-Ori + Synthetic Data by Models

Sinkhorn 773 853 699 937 963 915 584 765 932 455 514 767 6.29+1.39
MIWAE 718 856 696 X 967 915 X 768 922 469 521 742 6.12+1.71
MICE 772 86.0 70.1 93.7 957 91.0 583 77.1 933 615 519 972 550+1.73
GAIN 781 85.7 753 97.0 955 87.6 553 61.6 783 469 545 70.1 525£322
MissForest 773 86.1 704 96.6 973 922 584 784 93.6 83.6 523 759 4.04+1.18

HyperImpute 773 88.6 708 944 981 926 X 80.6 955 86.1 512 772 3.50+£242

TAPTAP-distill 773 87.0 725 938 97.6 934 585 792 936 73.8 525 842 2.83+1.03
TAPTAP 713 87.0 73.1 938 974 932 358.6 812 97.0 774 526 817 246+134

Table 21: The experimental results in missing value imputation. “+ M-Ori” means training with the original data
processed by the MAR mechanism. “+ M-Ori + Synthetic Data” means training with the M-Ori data where the
missing values are imputed by different models. Below the backbone model is Transformer. X denotes the method
cannot run successfully on the dataset due to too many missing values.

Metric 1 LO AD HE CR SI BE DI CA GE ME AG DU Avg Rank
Transformer + M-Ori  76.0 862 722 937 970 91.8 584 779 93.6 546 519 722 -

Transformer + M-Ori + Synthetic Data by Models

MIWAE 76.8 856 69.6 X 969 916 X 778 925 490 517 699 633+1.42
GAIN 764 850 743 974 960 875 553 634 793 48.1 543 710 5.83+3.01
Sinkhorn 76.6 851 69.8 937 966 91.6 584 771 933 483 51.7 749 5.67+1.30
MICE 76.8 86.1 70.0 937 964 913 583 77.6 935 632 51.8 88.6 5.17+1.70
MissForest 769 863 70.6 96.7 977 919 584 787 9277 849 51.6 709 4.08+1.78
HyperImpute 764 88.8 70.1 943 976 924 X 81.0 958 87.7 504 76.0 3.96=+2.60
TAPTAP-distill 77.0 869 722 938 985 929 585 79.6 938 764 52.1 802 2.58+1.16
TAPTAP 76.8 869 73.0 938 977 93.0 58.6 817 971 79.0 51.8 71.1 238+1.33
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Figure 7: Distance to closest record (DCR) distribution of the California Housing dataset. “Original” denotes the
DCR of the original test set with respect to the original train set. The experimental results illustrate that each method

does not copy samples from the train set.
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Figure 8: Distance to closest record (DCR) distribution of the HELOC dataset.
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