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Abstract
Chain-of-Thought (CoT) is a technique that
guides Large Language Models (LLMs) to de-
compose complex tasks into multi-step rea-
soning through intermediate steps in natural
language form. Briefly, CoT enables LLMs
to think step by step. However, although
many Natural Language Understanding (NLU)
tasks also require thinking step by step, LLMs
perform less well than small-scale Masked
Language Models (MLMs). To migrate CoT
from LLMs to MLMs, we propose Chain-of-
Thought Tuning (CoTT), a two-step reasoning
framework based on prompt tuning, to imple-
ment step-by-step thinking for MLMs on NLU
tasks. From the perspective of CoT, CoTT’s
two-step framework enables MLMs to imple-
ment task decomposition; CoTT’s prompt tun-
ing allows intermediate steps to be used in natu-
ral language form. Thereby, the success of CoT
can be extended to NLU tasks through MLMs.
To verify the effectiveness of CoTT, we conduct
experiments on two NLU tasks: hierarchical
classification and relation extraction, and the
results show that CoTT outperforms baselines
and achieves state-of-the-art performance.

1 Introduction

Chains-of-Thought (CoT) (Wei et al., 2022b; Fu
et al., 2023; Zhang et al., 2022) is a technique to
help language models think step by step (Kojima
et al., 2022). Through intermediate steps in natural
language form, CoT can guide language models to
decompose complex tasks into multi-step reason-
ing processes. Currently, CoT is mainly employed
in Large Language Models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; Touvron et al., 2023;
Zeng et al., 2023; OpenAI, 2023), as LLMs demon-
strate impressive complex reasoning capabilities
(Wei et al., 2022a; Zhao et al., 2023).

However, although LLMs achieved state-of-the-
art performance on a wide range of NLP tasks
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Text: … a computer-assisted framework,
… based on machine learning techniques.

Domain: CS

Area: MLLabel:

(a) Hierarchical Classification

Text: When SASAC was established 
in 2003, the number of SOEs was 196.

Subject Entity: SASAC → organization
Object Entity: 2003 → date

Relation: org:foundedLabel:

(b) Relation Extraction

Figure 1: In NLU tasks, various forms of intermediate
steps (drawn in gray) would exist as reasoning evidence
between Text and Label.

(Zhao et al., 2023), Yang et al. (2023); Kocon et al.
(2023); Lai et al. (2023) found that LLMs were less
competitive than small-scale Masked Language
Models (MLMs) (Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020) in many traditional Natural
Language Understanding (NLU) tasks (e.g. tasks
in GLUE (Wang et al., 2019b) and SuperGLUE
(Wang et al., 2019a)). The reasons for this are man-
ifold: on the one hand, LLMs are typically autore-
gressive models and are not well-suited for NLU
tasks (Liu et al., 2021; Raffel et al., 2020); on the
other hand, NLU tasks usually involve rich domain
knowledge (Fan et al., 2023a; Zhang et al., 2023)
and require fine tuning to master such knowledge
(Fan et al., 2023b,c; Wang et al., 2023). Therefore,
we wonder whether the success of CoT in LLMs
can be transferred to MLMs in NLU tasks.

In fact, many NLU tasks also require thinking
step by step. For example, in hierarchical classifi-
cation (Jr. and Freitas, 2011; Kowsari et al., 2017),
each text should follow a pre-defined taxonomic
hierarchy to generate multiple labels in turn, so
that high-level labels can be considered as the in-
termediate step, as shown in Fig. 1(a); in relation
extraction (Zhang et al., 2017; Alt et al., 2020; Sto-
ica et al., 2021), the entity types of the subject and
the object in each instance need to be determined in
advance of annotating the relation (Zhou and Chen,
2021), so the entity types can be considered as the
intermediate step, as shown in Fig. 1(b). Although

14774



previous studies (Chen et al., 2020b; Han et al.,
2021; Zhou and Chen, 2021) have also attempted to
incorporate intermediate steps into language mod-
els, in the perspective of CoT, these methods lack
both a decomposition process for tasks (not multi-
step reasoning) and explicit use of intermediate
steps (not in natural language form).

In this study, we propose Chain-of-Thought Tun-
ing (CoTT), a two-step reasoning framework based
on prompt tuning (Sun et al., 2022; Liu et al., 2022),
to implement step-by-step thinking for MLMs on
NLU tasks. The two steps of CoTT are:

Step I: MLM generates the intermediate step Î
based on the text x.
Step II: MLM predicts the final result y based
on the text x and the intermediate step Î .

CoTT effectively addresses the shortcomings of
previous methods: on the one hand, CoTT’s two-
step framework enables MLM to implement task
decomposition; on the other hand, CoTT is based
on prompt tuning, which allows intermediate steps
to be used in natural language form (Schick and
Schütze, 2021b; Gu et al., 2022). In order to in-
ject/generate intermediate steps flexibly in both
steps, we propose convertible slot [C], a new type
of template slot (Petroni et al., 2019; Liu et al.,
2022) in prompt tuning.

To evaluate the effectiveness of CoTT, we con-
duct extensive experiments on two traditional NLU
tasks: hierarchical classification and relation extrac-
tion, and the experimental results reveal that CoTT
obtains superior performance compared with base-
lines and achieves state-of-the-art performances.
Furthermore, due to the introduction of intermedi-
ate steps, CoTT is no longer an end-to-end method
but can display the reasoning process. Therefore,
we can further improve the ability of CoTT by mon-
itoring the reasoning process.

We summarize our contributions as follows:

• Based on the philosophy of CoT, we propose
a two-step reasoning framework to enable
MLMs to think step by step in NLU tasks, and
we call it Chain-of-Thought Tuning (CoTT).

• We propose convertible slot [C], a new type
of slot in prompt tuning, which can flexibly in-
ject or generate intermediate steps depending
on scenarios.

• We evaluate our CoTT on two NLU tasks:
hierarchical classification and relation extrac-

tion, and the experimental results demonstrate
the effectiveness of CoTT.

2 Related Work

2.1 Chain-of-Thought

Chain-of-Thought (CoT) (Wei et al., 2022b) is a
prompt technique that elicits LLMs to produce
intermediate reasoning steps leading to the final
answer. Recent studies (Zhou et al., 2023; Fu
et al., 2023; Zhang et al., 2022) have confirmed
that CoT can substantially improve the reason-
ing ability of LLMs. Studies (Zhang et al., 2022)
have shown that LLMs can perform CoT reason-
ing with zero-shot scenarios (Kojima et al., 2022)
or manually written few-shot scenarios (Wei et al.,
2022b). In zero-shot scenarios, Kojima et al. (2022)
showed that LLMs can generate decent interme-
diate steps, by adding certain magic phrases like
“Let’s think step by step”, Zelikman et al. (2022)
employed LLM to generate many intermediate
steps and those intermediate steps that can lead
to the final answer are chosen. In few-shot scenar-
ios, LLM’s reasoning ability can be improved by
a few effective demonstrations on multi-step rea-
soning tasks. Some studies discussed how to select
demonstrations efficiently: Fu et al. (2023) con-
sidered prompts with higher reasoning complexity
(more intermediate steps) to be efficient demonstra-
tions, Rubin et al. (2022) automatically constructed
demonstrations based on the semantic similarity of
texts. However, it is still unknown whether CoT
can be applied to small-scale language models.

2.2 Prompt Tuning

Since the advent of GPT-3 (Brown et al., 2020),
prompt tuning (Sun et al., 2022; Liu et al., 2022)
has received considerable attention. Prompt tuning
(Schick et al., 2020; Gu et al., 2022) aims to trans-
form the downstream tasks into the pre-training
tasks of Pre-trained Language Models (PLMs) with
appropriate manual prompts, which can bridge their
gap and better utilize PLMs (Han et al., 2021; Chen
et al., 2022a). Although the origin of prompt tuning
is large-scale autoregressive language models, the
following studies (Schick and Schütze, 2021a,b)
found that small-scale Masked Language Models
(MLMs) (Devlin et al., 2019; Liu et al., 2019; Lan
et al., 2020) can also achieve competitive perfor-
mance using prompt tuning. In practice, MLMs
can implement prompt tuning in the form of cloze-
style tasks (Devlin et al., 2019; Liu et al., 2019).
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With MLMs, prompt tuning has been applied to a
large variety of tasks such as factual probing (Perez
et al., 2021), text classification (Gao et al., 2021a;
Hambardzumyan et al., 2021), relation extraction
(Chen et al., 2022b), commonsense reasoning (Et-
tinger, 2020) and question answering (Khashabi
et al., 2020; Jiang et al., 2021), etc.

3 Preliminaries of Prompt Tuning

Formally, a text classification dataset can be de-
noted as D = {X ,Y}, where X is the text set and
Y is the class set. For each instance x ∈ X , it is
made up of several words x =

{
w1, w2, . . . , w|x|

}
,

and is annotated with a label y ∈ Y .
To bridge the gap between pre-training tasks and

downstream tasks (Schick et al., 2020; Gu et al.,
2022), prompt tuning is proposed as a cloze-style
task to tune MLMs. Prompt tuning consists of a
template T , a verbalizer ϕY(·) and a MLM M.
The template (Petroni et al., 2019; Liu et al., 2022)
is a textual string with two slots: a text slot [T]
for text x and an answer slot [A] (a <MASK> token)
for the cloze-style prediction. The verbalizer is
an injective mapping function ϕY : Y → VY that
bridges the class set Y and the label word set VY .
Specifically, when the text x is injected into the text
slot, we get the prompt Tx. Then, we can formalize
the label probability by feeding the prompt Tx into
MLMM as:

p(y|x) = pM(<MASK> = ϕY(y)|Tx)

=
exp(eϕY (y) · h<MASK>)∑
v∈VY exp(ev · h<MASK>)

,
(1)

where h<MASK> is the hidden vector of answer slot,
and ev is the embedding of each label word v ∈ VY .
Hereafter, we abbreviate <MASK> as <M>. In the
training process, we can maximize the learning
objective

∑
x∈X log p(<M> = ϕY(y)|Tx) to tuning

MLMM.

4 Chain-of-Thought Tuning

We propose Chain-of-Thought Tuning (CoTT), a
two-step reasoning framework for Masked Lan-
guage Models (MLMs) to think step by step, as
shown in Fig. 2. The core of CoTT is interme-
diate steps in natural language form. MLM first
generates the intermediate step in step I (Section
4.2), and then uses the generated intermediate step
to predict the final result in step II (Section 4.3).
We design convertible slot [C], a new type of slot

in templates, to introduce intermediate steps flex-
ibly in both steps (Section 4.1). Finally, we fuse
the information from both steps to rectify MLM’s
prediction (Section 4.4).

4.1 Convertible Slot in Template
In Section 3, the traditional template contains two
types of slots ([T] and [A]) for injecting texts
and generating predictions, respectively. However,
this template cannot flexibly introduce intermedi-
ate steps in natural language form. To overcome
this problem, we propose a new type of slot — con-
vertible slot [C], which can be converted between
injecting and generating intermediate steps based
on scenarios.

Specifically, we can incorporate the convertible
slot [C] at the appropriate position of the tem-
plate based on semantics. Here, we notate I as
the intermediate step set and prepare a verbalizer
ϕI : I → VI to establish a connection between I
and intermediate step word set VI . When the inter-
mediate step is unknown, MLM needs to generate
the intermediate step. In this case, we simply fill
in [C] with <M>, allowing MLM to make a cloze-
style prediction about VI to get the intermediate
step. [C] is analogous to [A]. When a specific in-
termediate step I ∈ I is given, MLM needs to be
provided with such information through the prompt.
In this case, we can directly fill the intermediate
step word vI = ϕI(I) into [C] to inject the ap-
propriate information. [C] is analogous to [T]. In
brief, the flexibility of convertible slot [C] to con-
vert between [T] and [A] allows MLM to combine
intermediate steps to make predictions.

4.2 Step I: Generate Intermediate Step
The purpose of step I is to generate the intermediate
step by MLM. Specifically, as shown in Fig. 2(a),
we fill the text x into [T] and fill an additional <M>
into [C] to get the prompt. We still notate such
prompt as Tx. Then, the probability of I can be
obtained by feeding Tx to MLMM as:

p(I|x) = pM([C] = ϕI(I)|Tx). (2)

Eq. 2 implements the first step of CoT: generate the
intermediate step based on the text (x→ I). Here,
we denote MLM’s prediction of the intermediate
step in Eq. 2 as Î .

Predict Label in Parallel
Due to the introduction of the convertible slot, the
generation of intermediate steps and labels can be

14776



𝑇 [T]

x

[C]

<M>

[A]

I y

x

𝐼!
𝐼"
…
𝐼#

𝑝(𝐼|𝑥)

𝑦!
𝑦"
…
𝑦$

𝑝(𝑦|𝑥)

<M>

MLM MLM

ℎ ℎ!

(a) Step I

𝑇 [T]

x 𝐼#∗

[C]

𝐼#

[A]

I y

x

𝑦!
𝑦"
…
𝑦#

𝑝(𝑦|𝑥, 𝐼() contrast learning

𝑝𝑢𝑙𝑙

𝑝𝑢𝑠ℎℎ$

ℎ$,&

ℎ$,&∗

<M>

MLM

ℎ!,# ℎ!,#∗

(b) Step II

𝑝! 𝑦|𝑥 =&𝑝 𝐼|𝑥 · 𝑝(𝑦|𝑥, 𝐼)
!∈ℐ

𝑦!
𝑦"
…
𝑦#

𝑝(𝑦|𝑥)

≈ 𝑝 𝐼-|𝑥 · + 1 − 𝑝(𝐼-|𝑥)	 ·
𝑦!
𝑦"
…
𝑦#

𝑝(𝑦|𝑥, 𝐼-)

I y

x

I y

x

(Total Probability Theorem)

(c) Probability Rectification

Figure 2: Overview of Chain-of-Thought Tuning (CoTT). CoTT is a two-step reasoning framework: generate the
intermediate step (step I) and use the intermediate step (step II). Then, probability rectification is proposed to rectify
MLM’s prediction based on the information from both steps. Here, T denotes the prompt, available information is
drawn in blue, and generated information is drawn in orange.

simultaneous (multiple <M>s in prompt). Therefore,
using the same prompt Tx, MLM can predict the
label in parallel as:

p(y|x) = pM([A] = ϕY(y)|Tx). (3)

We denote MLM’s label prediction in Eq. 3 as ŷx,
which is independent of Î . It is worth noting that
Eq. 3 does not follow the generation process of
CoT: MLM predicts the label in one step without
any intermediate steps (x→ y). Due to the lack of
a step-by-step reasoning process, we consider ŷx
to be an intuitive prediction.

4.3 Step II: Use Intermediate Step
In step II, since the intermediate step Î is available,
MLM can predict the label using both the text and
the intermediate step, which is consistent with the
second step of CoT (x→ y ← I).

As shown in Fig. 2(b), we inject x and Î into the
proper slots of the template to obtain the prompt,
and we notate such prompt as Tx,I . Similar to Eq.
1, the label probability with the intermediate step
can be expressed as:

p(y|x, Î) = pM([A] = ϕY(y)|Tx,I). (4)

We denote MLM’s label prediction in Eq. 4 as ŷx,I .
Compared to Eq. 3, MLM can perceive and com-
bine the text and the intermediate step in Eq. 4,
which makes sophisticated reasoning process pos-
sible. Therefore, ŷx,I is considered to be a rational
prediction.

Counterfactual-based Contrastive Learning
The core of Step II is that MLM needs to inte-
grate the information from both the text x and the

intermediate step Î to perform logical reasoning.
However, this process of information integration
lacks explicit guidance. Therefore, we propose
counterfactual-based contrastive learning in step II,
to guide MLM’s information integration by con-
trasting the hidden vectors obtained from the fac-
tual/counterfactual intermediate step.

In most cases, contrastive learning (Gao et al.,
2021b) requires an anchor as well as positive and
negative samples for each instance. In CoTT, it is
natural to consider the hidden vector hx of [A] in
step I as the anchor, and the hidden vector hx,I of
[A] in step II as the positive sample. To construct
a negative sample, we sample the counterfactual
intermediate step Î∗ based on the probability distri-
bution of intermediate steps in Eq. 2 as:

Î∗ ∼ p/∈Î(I|x) =
{

p(I|x)
1−p(Î|x) I ̸= Î ,

0 I = Î ,
(5)

where p/∈Î(I|x) refers to the normalized probabil-
ity after masking the prediction of the intermediate
step Î . Then, similar to step II, we inject counter-
factual intermediate step Î∗ as well as the text x
to the template to obtain the counterfactual prompt
Tx,I∗ , and feed Tx,I∗ to MLM to get the hidden
vector hx,I∗ of [A] as the negative sample.

Following (Chen et al., 2020a), we design a
small neural network projection head g(·) that
maps each hidden vector into the projection space.
In this study, we employ a MLP with one hidden
layer to obtain the projection vector z as:

z = g(h) = W (2) · σ(W (1) · h), (6)
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where σ is a ReLU nonlinearity, W (1) and W (2)

are the learnable parameters. We take the cosine
similarity of projection vectors as the similarity
function because it implicitly normalizes each vec-
tor. The similarity between two projection vectors
zi and zj can be described as:

sim(zi, zj) =
z⊤i · zj
∥zi∥ · ∥zj∥

. (7)

Then, the counterfactual-based contrastive loss Lc
is defined as:

Lc = − log
esim(zx,zx,I)/τ

esim(zx,zx,I)/τ + esim(zx,zx,I∗ )/τ
, (8)

where τ denotes the temperature parameter.
By contrasting the similarity of hx and
{hx,I , hx,I∗} in the projection space, MLM learns
to distinguish whether x and I match: when they
do, the hidden vectors of two steps are similar,
and vice versa. Overall, counterfactual-based con-
trastive learning forces MLM to perceive the rela-
tionship between texts and intermediate steps more
fine-grained, and integrates the perceived informa-
tion into the hidden vector of [A].

4.4 Probability Rectification

In the two-step process mentioned in Section 4.2
& 4.3, we combine x and Î to obtain the label
probability p(y|x, Î). However, this is actually an
estimation of the label probability. From the per-
spective of the total probability theorem, with the
consideration of intermediate steps, the exact label
probability should be expressed as:

pI(y|x) =
∑

I∈I
p(I|x) · p(y|x, I). (9)

In step II, pI(y|x) in Eq. 9 is estimated to be equal
to p(y|x, Î) in Eq. 4. The meaning of this estima-
tion is that even if I ̸= Î , p(y|x, I) = p(y|x, Î)
still holds true. There is a drawback to this estima-
tion: large estimation errors will occur when MLM
is ambiguous about intermediate steps (p(Î|x) is
relatively low), which is known as exposure bias
(Yang et al., 2018).

However, it is computationally costly to strictly
follow Eq. 9 to calculate the exact label probabil-
ity, as it requires MLM to repeat |I| times for step
II. Therefore, our proposed probability rectifica-
tion method aims to simplify Eq. 9 by efficiently

estimating the label probability utilizing the infor-
mation from two steps. Specifically, we assume
that when I ̸= Î , we have:

DKL(p(y|x, I)||p(y|x)) < DKL(p(y|x, I)||p(y|x, Î)),
(10)

where DKL refers to the Kullback-Leibler Diver-
gence. The assumption implies that, compared to
using an inconsistent intermediate step, the estima-
tion without using intermediate steps is relatively
more accurate. This is consistent with the human
perception of intermediate steps. Therefore, we
replace p(y|x, I) in Eq. 9 with p(y|x) for all cases
satisfying I ̸= Î , then the label probability can be
estimated more exactly as:

pI(y|x) = p(Î|x) · p(y|x, Î) +
∑

I ̸=Î

p(I|x) · p(y|x, I)

≈ p(Î|x) · p(y|x, Î) + (1− p(Î|x)) · p(y|x).
(11)

Eq. 11 is the rectified label probability. Essentially,
the probability rectification is an adaptive weighted
probability based on the probability of the inter-
mediate step p(Î|x), as shown in Fig. 2(c): when
p(Î|x) is high, we consider that Î is more trustwor-
thy, so pI(y|x) is closer to the prediction in step II
p(y|x, Î), and vice versa, pI(y|x) is closer to the
prediction in step I p(y|x). Probability rectifica-
tion is efficient and does not introduce additional
computational complexity, but rather judiciously
integrates known information from both steps.

4.5 Training Details
During the training process, each prediction made
in two steps should be optimized, therefore, the
loss of CoTT consists of three prediction losses
as well as a contrastive loss Lc. We employ the
Cross-Entropy loss to calculate the prediction loss.
The loss of CoTT L is denoted as:

L =
1

|X |
∑

x∈X
−α · log p(I|x)− log p(y|x)︸ ︷︷ ︸

Step I

+β · Lc − log p(y|x, Î)︸ ︷︷ ︸
Step II

,
(12)

where α, β are the weights to balance each loss
respectively, and |X | represents the number of in-
stances in the dataset.

5 Experiments

5.1 Datasets and Evaluation Metrics
To verify the effectiveness of CoTT, we conducted
extensive experiments on two traditional NLU
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Dataset # train # dev # test # label

WOS 30070 7518 9397 141
TACRED 68124 22631 15509 42
TACREV 68124 22631 15509 42
ReTACRED 58465 19584 13418 40

Table 1: The statistic details of the four datasets, where
# represents the number of instances in each set.

tasks: Hierarchical Classification (HC) and Rela-
tion Extraction (RE). For HC task, we conducted
our experiments on Web-of-Science (WOS) dataset
(Kowsari et al., 2017). WOS contains abstracts
of published papers from Web of Science, and the
labels of WOS have two hierarchies: 7 domains
and 134 areas. We treated the domain label as the
intermediate step of the reasoning process. We
measured the results with Micro-F1 and Macro-
F1. For RE task, we experimented on three rela-
tion classification datasets: TACRED (Zhang et al.,
2017), TACREV (Alt et al., 2020), ReTACRED
(Stoica et al., 2021). TACRED was a large-scale
sentence-level relation extraction dataset, which
was obtained via crowd-sourcing. TACREV cor-
rected the errors in TACRED, and ReTACRED
addressed some shortcomings of TACRED, refac-
toring its training set, development set and test set.
ReTACRED also modified a few relation types. For
all these datasets, we considered the NER types of
subject and object as the intermediate step (refer
to Han et al. (2021)), and we adopted F1 score as
the metric for evaluation. The statistic details of
datasets are illustrated in Table 1.

5.2 Baselines
For comparison with LLMs in NLU tasks, we em-
ployed two state-of-the-art LLMs in both tasks:
davinci-text-003 and gpt-3.5-turbo via the
OpenAI API. For HC task, the focus of the re-
cent methods is to exploit label semantics: HiAGM
(Devlin et al., 2019) introduced hierarchy-aware
structure encoders for modeling label dependen-
cies; HTCInfoMax (Deng et al., 2021) improved
HiAGM by text-label mutual information maxi-
mization and label prior matching; HiMatch (Chen
et al., 2021) matched the text semantics and the la-
bel semantics in a joint embedding space; HGCLR
(Wang et al., 2022a) directly embedded the hierar-
chy into a text encoder; HPT (Wang et al., 2022b)
handled this task from a multi-label MLM perspec-
tive based on prompt tuning. To better compare
the performance of CoTT, we also compared our

method with two vanilla prompt tuning methods:
HardPrompt and SoftPrompt1. For RE task, as fine
tuning of MLMs achieved promising results, we
fine tuned two traditional MLMs: BERT (Devlin
et al., 2019) and Roberta (Liu et al., 2019), as well
as two knowledge-enhanced MLMs: SpanBERT
(Joshi et al., 2020) and KnowBERT (Peters et al.,
2019) as baselines. Since CoTT is based on prompt
tuning, we also employed two prompt tuning meth-
ods HardPrompt and PTR (Han et al., 2021) as
baselines. Experimental details of LLMs can be
found in Appendix A.

5.3 Implementation Details

Following the setting of the previous study, we
adopted bert-base-uncased and roberta-base
in Hugging Face library (Wolf et al., 2019) as the
base architecture for HC task and RE task, respec-
tively. We set the batch size to 8, and used Adam
(Kingma and Ba, 2015) as the optimizer, the learn-
ing rate was initially 1e-5 and decayed by 0.5 every
2 epochs. The weight decay was set to 1e-2. After
training models for 10 epochs, we selected the best
checkpoint on the training set for evaluation. For
weighting coefficients, we set α = 0.1, β = 0.1. We
set τ = 1.0. The manual templates we designed for
HC task and RE task are as follows:

HC: [T], the domain is [C], the area is [A].

RE: [T], the SUBJ [C] is [A] of the OBJ [C].

where SUBJ and OBJ refer to the subject and the
object of each instance, respectively. Since it was
a challenge to design appropriate label words to
distinguish different labels in the verbalizer (Han
et al., 2021), following (Chen et al., 2022a; Wang
et al., 2022b), we created the learnable virtual label
word vy for each label y ∈ Y .

6 Results and Analysis

6.1 Main Results

Table 2 & 3 exhibit the experimental results of
CoTT as well as other compared baselines on HC
and RE. It can be observed that our proposed CoTT
achieved state-of-the-art results on all datasets.
This reflected the superiority of CoTT in NLU
tasks. In addition, we found that the performance
of LLMs was much worse than MLMs on both
tasks, which demonstrated that LLMs still cannot
master some NLU tasks well.

1The concepts of HardPrompt and SoftPrompt originate
from Wang et al. (2022b).
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Methods Micro-F1 Macro-F1

with LLMs

text-003 40.50 22.25
ChatGPT 48.50 31.83

Fine tuning MLMs

Vanilla Fine Tuning 85.63 79.07
HiAGM 86.04 80.19
HTCInfoMax 86.30 79.97
HiMatch 86.70 81.06
HGCLR 87.11 81.20

Prompt tuning MLMs

HardPrompt 86.39 80.43
SoftPrompt 86.57 80.75
HPT 87.16 81.93
CoTT 87.46 82.49

Table 2: Experiment results of different methods
on WOS dataset. text-003 and ChatGPT refer to
davinci-text-003 and gpt-3.5-turbo, respectively.
The best performance would be bold.

Results on HC
As shown in Table 2, CoTT outperformed all base-
lines on WOS in both metrics. Compared with
vanilla fine tuning, CoTT achieved 1.83% and
3.42% improvement on Micro-F1 and Macro–F1,
respectively. Besides, vanilla HardPrompt and Soft-
Prompt can exceed many fine tuning baselines,
which revealed that the superiority of prompt tun-
ing remains even in small-scale MLMs. On the
basis of prompt tuning, CoTT further improved the
performance of MLM, which shows the effective-
ness of introducing intermediate steps.

Results on RE
Table 3 shows that our CoTT continued to perform
better than other baselines on three RE datasets.
Specifically, CoTT exceeded fine tuning Roberta
by 2.9%, 3.6% and 2.7% on F1 score on TA-
CRED, TACREV and ReTACRED, respectively.
Note that although no extra data were introduced,
CoTT could achieve better performance than those
knowledge-enhanced MLMs with fine tuning. This
demonstrated that even if task-specific informa-
tion was already contained in knowledge-enhanced
MLMs, fine tuning struggled to take full use of it
(Wang et al., 2022b).

6.2 Ablation Study

We conducted an ablation study to investigate the
independent effect of each module in CoTT, and
the experimental results are illustrated in Table 4.

Methods E.D. TACRED TACREV ReTACRED

with LLMs

text-003 w/o 48.1 51.0 55.3
ChatGPT w/o 44.9 43.9 52.1

Fine tuning MLMs

BERT w/o 68.4 77.2 87.7
Roberta w/o 68.9 77.0 87.3
SpanBERT w/ 70.8 78.0 85.3
KnowBERT w/ 71.5 79.3 89.1

Prompt tuning MLMs

HardPrompt w/o 70.1 79.5 89.0
PTR w/o 70.8 80.2 89.1
CoTT w/o 71.8 80.6 90.0

Table 3: Experiment results of different methods on
TACRED, TACREV and ReTACRED. ‘E.D.’ refers to
‘Extra Data’, ‘w/o’ means that no additional data is used
for pre-training and fine-tuning, and ‘w/’ means that
extra data are used for data augmentation.

Models Micro-F1 Macro-F1

Vanilla Prompt Tuning 86.39 80.43

CoTT 87.46 82.49
\ PR 87.37 82.24
\ CCL 87.30 82.28
\ PR&CCL 87.17 82.08

Table 4: Ablation results of CoTT on WOS dataset.
PR and CCL refer to Probability Rectification and
Counterfactual-based Contrastive Learning. \ denotes
the removing operation.

The basis of CoTT is the introduction of inter-
mediate steps. On this basis, we also proposed
Probability Rectification (PR) and Counterfactual-
based Contrastive Learning (CCL) to improve the
performance of MLM. When we introduced only
intermediate steps (\PR&CCL), the performance
of MLM clearly improved. Micro-F1 and Macro-
F1 were improved by 0.78% and 1.65%, respec-
tively, compared to vanilla prompt tuning. This
implied the importance of intermediate steps in the
reasoning process. As we added PR and CCL, the
performance of MLM continued to improve, which
demonstrated the effectiveness of both modules.

6.3 Case Study

To concretely demonstrate the performance of
CoTT using intermediate steps, we selected sev-
eral cases from WOS dataset for evaluation, as
shown in Table 5. Here, we recorded only the top
three labels by probability in each prediction. The
complete texts and the full names of labels can be
found in Appendix B.
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Text Domain Area

p(I|x) p(y|x) p(y|x, Î) pI(y|x)
... a native european rodent spe-
cies, suffered a significant con-
traction in its geographical ...

Bio. (0.87) Gene. (0.83) Gene. (0.86) Gene. (0.85)
Civ. (0.06) RS (0.02) MB (0.03) MB (0.03)
Psy. (0.03) PCR (0.02) PCR (0.02) PCR (0.02)

tuberculosis is one of the most
common infectious diseases in
china, while delayed patient ...

Med. (0.52) PCR (0.64) H/A (0.30) PCR (0.33)
Bio. (0.43) Gene. (0.07) FI (0.12) H/A (0.17)
CS (0.03) H/A (0.04) PCR (0.04) FI (0.08)

... inhabits mangroves and estua-
rine shores in the west pacific. ...
ribosomal RNA (12s) genes ...

Bio. (0.53) PCR (0.25) Gene. (0.54) Gene. (0.37)
MAE (0.24) Gene. (0.19) PCR (0.19) PCR (0.22)
Civ. (0.17) MB (0.06) MB (0.15) MB (0.11)

Table 5: Three cases of CoTT on WOS dataset. The
prediction probability of each result is in parentheses,
and the ground truth in each case is drawn in orange.

In Table 5, the first row shows how CoTT would
behave under ideal conditions: in step I, MLM’s
prediction of intermediate steps Bio. (0.87) was
correct with high confidence, which implied that
MLM clearly understood this case, so the label
prediction Gene. (0.86) in step II was more trust-
worthy. In this case, probability rectification can
be disregarded. However, MLM was sometimes
ambiguous about intermediate steps. In the second
row, the probabilities of Med. (0.52) and Bio. (0.43)
were close, according to the analysis in Section 4.4,
label prediction H/A (0.30) can be significantly
biased. Therefore, probability rectification is nec-
essary here. In this case, the label prediction was
rectified to PCR (0.33). The situation in the third
row was akin to that in the second row, with the
main difference being that the rectified label predic-
tion Gene. (0.37) remained unchanged. Essentially,
p(I|x), p(y|x), and p(y|x, Î) contain abundant in-
formation, while probability rectification can adap-
tively integrate the information embedded in these
probabilities.

6.4 Reasoning Process Monitoring

Because of the introduction of intermediate steps,
CoTT is no longer an end-to-end method, but can
additionally monitor the reasoning process (the dis-
tribution of the reasoning process can be found in
Appendix C). Therefore, we can detect anomalies
from the reasoning process, thus further improving
the performance of CoTT.

Monitor 1: Self-Consistency of Predictions
In step I and step II of CoTT, MLM should make
the label prediction with/without the intermedi-
ate step Î , respectively. Ideally, the two predic-
tions (intuitive prediction ŷx and rational prediction
ŷx,I ) should be self-consistent. Therefore, we con-
sider the inconsistency of label predictions as an
anomaly: if the two predictions are contradictory, it

Figure 3: Performance of CoTT in monitoring the rea-
soning process. M refers to the Monitor.

indicates that MLM may have a misunderstanding
of the intermediate step Î , making the predictions
relatively less reliable.

Monitor 2: Correctness of Intermediate Steps
When the true intermediate step is provided, it be-
comes an option to monitor whether the prediction
of intermediate steps in step I is correct. Reason-
ably, we consider the incorrect prediction of in-
termediate steps as an anomaly: If MLM cannot
predict the correct intermediate step, then the sub-
sequent label prediction is less credible.

Following these two monitors, we evaluated
the performance of CoTT in monitoring the rea-
soning process on WOS dataset. Hamming loss
(Tsoumakas and Katakis, 2007) was introduced as
an additional metric. As shown in Fig. 3, these
monitors (M1 & M2) can determine a more reason-
able decision scope for CoTT, which can signifi-
cantly improve the performance of CoTT. In prac-
tice, this ability to monitor the reasoning process
can be of great use when faced with risk-sensitive
tasks (e.g., medical (Quinn et al., 2020), judicial
(Laptev, 2021)), since reliability is even more im-
portant in these scenarios.

7 Conclusion

In this study, we propose Chain-of-Thought Tun-
ing (CoTT), a two-step reasoning framework based
on prompt tuning to implement step-by-step think-
ing for MLMs on NLU tasks. Specifically, the
two-step framework of CoTT enables MLM to im-
plement task decomposition; and CoTT based on
prompt tuning, which allows intermediate steps to
be used in natural language form. Experiments
demonstrated that CoTT achieved state-of-the-art
performance on two NLU tasks. In the future, we
aim to scale up MLMs to fundamentally improve
their language ability. In addition, using LLMs to
implement multi-step reasoning in NLU tasks is
also a possible research direction.
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Limitations

There are two main limitations in CoTT. Firstly, the
application of CoTT is relatively narrow, as CoTT
can only handle NLU tasks with intermediate steps.
Secondly, compared to LLMs, CoTT struggles to
implement interaction and cooperation between
intermediate steps and to handle reasoning tasks
with more steps.
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A Experimental Details of LLMs

We tested LLMs in the 4-shot scenario due to text
length limitations, and we sampled 500 texts in
each dataset for evaluation. To enable LLMs to im-
plement NLU tasks, we added the task description
and label set to the prompt as:
Based on the abstract of the paper, choose the do-
main and area of the paper. The optional domains
are: {domain1, domain2, . . . , domainD}. The
optional areas are: {area1, area2, . . . , areaA}.
The abstract of the paper is “x1”, the domain is

“domain1”, the area is “area1”.
. . .
The abstract of the paper is “x4”, the domain is

“domain4”, the area is “area4”.
The abstract of the paper is “x”,

B Supplementary Information in Case
Study

To demonstrate the performance of CoTT, we se-
lected several cases from WOS dataset2 to evaluate
in case study section. We display the full names of
labels, along with the complete texts of the selected
cases in Tables 6 & 7.

C Decision Distribution of CoTT

With the introduction of intermediate steps, CoTT
is no longer an end-to-end approach, so it is feasible
to monitor the reasoning process. We counted the
reasoning process of CoTT on WOS dataset, and
calculated the decision distribution, as shown in
Fig. 4.
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Figure 4: Decision distribution of CoTT

The statistical results show that the decision de-
tails provided by the two-phase reasoning frame-
work can help CoTT adaptively adjust the decision
scope and thus improve performance. This cannot
be achieved by end-to-end methods.

2It is available at https://huggingface.co/datasets/
web_of_science.

# Text

1 the garden dormouse eliomys quercinus, a native european rodent species,
suffered a significant contraction in its geographical range in the last few
decades. the species has disappeared from large parts of central and eastern
europe and is considered extinct in some countries. i reviewed the infor-
mation available on the occurrence and distribution of the species in 26
countries where it was previously reported. present and past introductions
outside its native range were also summarised. the garden dormouse is
considered extinct in lithuania, finland, and slovakia, probably extinct in
belarus, and present with single populations in the netherlands, poland, and
slovenia; in slovakia, however, monitoring is necessary to verify recent
records. the species is rare and localised in austria, ukraine, romania, and
croatia and is in regression in germany, flanders (belgium), czech republic,
latvia, and estonia. in 2015, the garden dormouse occupied 49% of its 1978
geographical range and 67% of its 2008 range. south-western europe is
the stronghold of the species; it is still common in large parts of portugal,
spain, france, and italy. however, there are indications that also in these
countries, the species is locally declining. present knowledge cannot ex-
plain the extensive regression of the garden dormouse ’s range in central
and eastern europe. probably, it is the result of the interaction of different
factors, acting locally and at a large scale, and related to specific ecological
requirements of the species. there is a strong need for research to determine
the reasons for the dramatic population and geographical range contraction
of the garden dormouse. meanwhile, it is important to monitor this species
and to identify appropriate conservation measures.

2 tuberculosis is one of the most common infectious diseases in china, while
delayed patient finding obstructed disease control, especially for smear-
negative patients. the current study was undertaken to evaluate the diagnos-
tic accuracy of genexpert mtb/rif compared with conventional methods in
the detection of pulmonary tuberculosis patients. a total of 295 spot sputum
samples from confirmed pulmonary tuberculosis patients were evaluated
from september 2014 to june 2015. each sample was examined by acid-
fast bacillus smear microscopy, culture and genexpert mtb/rif. the sputum
culture onlowenstein-jensen (l-j)was considered as the gold-standard. after
testing by smear, 68.81% (203/ 295) was negative and 31.19% (92/295)
was positive. as thegold-standard,l-j culture detected 37.97% (112/295)
positive of all specimens, while the positivity for genexpert mtb/rif was
46.44% (137/295). compared with l-j culture, the combined sensitivity,
specificity, positive predictive value (ppv) and negative predictive value
(npv) for genexpert mtb/rif were 94.64%, 82.97%, 77.37% and 96.18%
respectively. for smear-negative specimens, the sensitivity, specificity, ppv
and npv for genexpert mtb/ rif were 96.00%, 83.05%, 44.44% and 99.32%;
while for smear-positive specimens, the corresponding accuracy values
were 94.25%, 80.00%, 98.80% and 44.44%. the findings of study indicated
that genexpert mtb/rif assay demonstrated a high sensitivity in detecting
mycobacterium tuberculosis compared to smear method and a high npv
among smear negative patients. (c) 2017 elsevier ltd. all rights reserved.

3 this study examined the phylogeography of the barnacle fistulobalanus
albicostatus, which inhabits mangroves and estuarine shores in the west
pacific. differentiation in the mitochondrial cytochrome c oxidase subunit i
(coi) and 12s ribosomal rna (12s) genes of 401 specimens of f.albicostatus
was examined in samples from 16 locations in the west pacific, ranging
from honshu to southern china. our results revealed that f.albicostatus
comprises two major clades exhibiting a coi divergence ranging from
1.25% to 2.8%. clade a demonstrated the widest distribution, ranging from
japan to china, and was divided into three subclades occurring in the south
china sea (a1), okinawa (a2), and honshu, korea and qingdao (a3). clade
b was determined to be endemic to okinawa; i.e. two endemic lineages
occur in this island. thus, f.albicostatus resembles several inter-tidal species
in having clades that are endemic to okinawan waters. nevertheless, in
contrast to the rocky inter-tidal barnacles tetraclita spp. and chthamalus
malayensis, f.albicostatus was not found to be separated into continental
and oceanic populations, but instead is divided into northern and southern
clades, probably because of the yangtze river discharge, which limits gene
flow between the northern and southern populations.

Table 6: The complete texts of the cases in case study.

Full Name Abbreviation

Biochemistry Bio.
Genetics Gene.
Civil Civ.
Remote Sensing RS
Molecular Biology MB
Psychology Psy.
Polymerase Chain Reaction PCR
HIV/AIDS H/A
Fungal Infection FI
Computer Science CS
MAE MAE

Table 7: The full names of labels in case study.
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