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Abstract

The recent success of general-domain large
language models (LLMs) has significantly
changed the natural language processing
paradigm towards a unified foundation model
across domains and applications. In this
paper, we focus on assessing the perfor-
mance of GPT-4, the most capable LLM so
far, on the text-based applications for radiol-
ogy reports, comparing against state-of-the-
art (SOTA) radiology-specific models. Explor-
ing various prompting strategies, we evaluated
GPT-4 on a diverse range of common radiology
tasks and we found GPT-4 either outperforms
or is on par with current SOTA radiology mod-
els. With zero-shot prompting, GPT-4 already
obtains substantial gains (≈ 10% absolute im-
provement) over radiology models in tempo-
ral sentence similarity classification (accuracy)
and natural language inference (F1). For tasks
that require learning dataset-specific style or
schema (e.g. findings summarisation), GPT-4
improves with example-based prompting and
matches supervised SOTA. Our extensive er-
ror analysis with a board-certified radiologist
shows GPT-4 has a sufficient level of radiol-
ogy knowledge with only occasional errors in
complex context that require nuanced domain
knowledge. For findings summarisation, GPT-
4 outputs are found to be overall comparable
with existing manually-written impressions.

1 Introduction

Recently, the emergence of large language mod-
els (LLMs) has pushed forward AI performance in
many domains; with many GPT-4 (OpenAI, 2023)
powered applications achieving and even surpass-
ing human performance in many tasks (Bubeck
et al., 2023; Nori et al., 2023). There is a shift in
paradigm towards using a unified general-domain
foundation LLM to replace domain- and task-
specific models. General-domain LLMs enable
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a wider range of customised tasks without the need
to extensively collect human labels or to perform
specialised domain training. Also, with off-the-
shelf prompting, applying LLMs is easier than the
traditional training pipeline for supervised models.

While contemporary studies (Nori et al., 2023;
Ranjit et al., 2023; Bhayana et al., 2023a) have
started to explore the use of GPT-4 in the clinical
domain, the readiness of GPT-4 in the radiology
workflow remains to be rigorously and systemati-
cally tested. In this study, we set out the following
research questions: (1) How can we evaluate GPT-
4 on its ability to process and understand radiology
reports? (2) How can we apply common prompt-
ing strategies for GPT-4 across different radiology
tasks? (3) How does GPT-4 compare against SOTA
radiology-specific models?

To answer these questions, we established a rig-
orous evaluation framework to evaluate GPT-4 on a
diverse range of common radiology tasks including
both language understanding and generation. The
evaluation covers sentence-level semantics (natural
language inference, sentence similarity classifica-
tion), structured information extraction (including
entity extraction, disease classification and disease
progression classification), and a direct application
of findings summarisation. We explored various
prompting strategies including zero-shot, few-shot,
chain-of-thought (CoT)(Wei et al., 2022), example
selection (Liu et al., 2022), and iterative refinement
(Ma et al., 2023), and we further experimented
with adding self-consistency (Wang et al., 2023)
and asking GPT-4 to defer handling uncertain cases
to improve the reliability of GPT-4. For each task,
we benchmarked GPT-4 with prior GPT-3.5 mod-
els (text-davinci-003 and ChatGPT) and the re-
spective state-of-the-art (SOTA) radiology models.
Apart from reporting metric scores, we performed
extensive qualitative analysis with a board-certified
radiologist to understand the model errors by cat-
egorising them as ambiguous, label noise, or gen-
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uine model mistakes. We highlight the particular
importance of qualitative analysis for open-ended
generation tasks such as findings summariastion
where GPT-4 may provide alternative solutions.

To sum up, our key contributions and findings
(in italics) are:

1. Evaluation Framework: We proposed an
evaluation and error analysis framework to
benchmark GPT-4 in radiology. Collaborat-
ing with a board-certified radiologist, we pin-
pointed the limitations of GPT-4 and the cur-
rent task paradigms, directing future evalua-
tion pursuits to tackle more intricate and chal-
lenging real-world cases and to move beyond
mere metric scores.

GPT-4 shows a significant level of radiology
knowledge. The majority of detected errors
are either ambiguous or label noise, with a
few model mistakes requiring nuanced domain
knowledge. For findings summarisation, GPT-
4 outputs are often comparable to existing
manually-written impressions.

2. Prompting Strategies: We explored and es-
tablished good practices for prompting GPT-4
across different radiology tasks.

GPT-4 requires minimal prompting (zero-shot)
for tasks with clear instructions (e.g. sentence
similarity). However, for tasks needing com-
prehension of dataset-specific schema or style
(e.g. findings summarisation), which are chal-
lenging to articulate in instructions, GPT-4
demands advanced example-based prompting.

3. GPT-4 vs. SOTA: We compared GPT-4 per-
formance with task-specific SOTA radiology
models for understanding and validating the
paradigm shift towards a unified foundation
model in the specialised domains.

GPT-4 outperforms or matches performance
of task-specific radiology SOTA.

2 Related Work

There have been extensive efforts to benchmark and
analyse LLMs in the general-domain. Liang et al.
(2023) benchmarks LLMs across broad NLP sce-
narios with diverse metrics. Hendrycks et al. (2021)
measures LLMs’ multitask accuracy across disci-
plines. Zheng et al. (2023) explores using LLMs
as judge for open-ended questions. Bubeck et al.

(2023) further tests GPT-4’s capabilities beyond
language processing towards general intelligence
(AGI), exploring tasks such as mathematical prob-
lem solving and game playing. Many other studies
focus on testing specific capabilities such as rea-
soning from LLMs (Liu et al., 2023b; Espejel et al.,
2023).

The evaluation of GPT-4 has also begun to gar-
ner interest in the medical field. For example, Lee
et al. (2023) discusses the potential advantages and
drawbacks of using GPT-4 as an AI chatbot in the
medical field. Cheng et al. (2023) investigates pos-
sible applications of GPT-4 in biomedical engineer-
ing. Nori et al. (2023) evaluates GPT-4 for medical
competency examinations and shows GPT-4 perfor-
mance is well above the passing score. There have
also been a few recent studies that evaluate GPT-4
in the radiology domain: Bhayana et al. (2023a,b)
show that GPT-4 significantly outperforms GPT-3.5
and exceeds the passing scores on radiology board
exams. Other studies have shown great potential
from GPT-4 in various radiology applications such
as simplifying clinical reports for clinical education
(Lyu et al., 2023), extracting structures from radiol-
ogy reports (Adams et al., 2023), natural language
inference (NLI) (Wu et al., 2023b), and generating
reports (Ranjit et al., 2023). While most of these
studies focus on a specific application, our study
aims for an extensive evaluation to compare GPT-4
against SOTA radiology models, covering diverse
tasks and various prompting techniques.

Beyond prompting GPT-4, continued efforts are
being made to adapt LLMs to the medical domain
via fine-tuning. Med-PaLM and Med-PaLM-2
(Singhal et al., 2022, 2023) improve over PaLM
(Chowdhery et al., 2022) and PaLM-2 (Anil et al.,
2023) with medical-domain fine-tuning. Yunxiang
et al. (2023) and Wu et al. (2023a) further fine-tune
the open-source LLaMA model (Touvron et al.,
2023) with medical-domain data. Van Veen et al.
(2023) adapts LLMs to radiology data with param-
eter efficient fine-tuning. While these models offer
lightweight alternatives, our study focuses on GPT-
4 as it is still by far the best-performing model
across many domains and represents the frontier of
artificial intelligence (Bubeck et al., 2023).
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3 Evaluation Framework

3.1 Task selection1

We benchmark GPT-4 on seven common text-only
radiology tasks (Table 1) covering both understand-
ing and generation tasks. The two sentence sim-
ilarity classification tasks and NLI both require
the understanding of sentence-level semantics in
a radiology context, with NLI additionally requir-
ing reasoning and logical inference. Structured
information extraction tasks (disease classification,
disease progression classification, and entity ex-
traction) require both superficial entity extraction
and inference from cues with radiology knowledge
(e.g. ‘enlarged heart’ implies ‘cardiomegaly’). For
entity extraction, the model must further follow the
schema-specific categorisation of entities. Finally,
we evaluate GPT-4 on an important part of the
radiology workflow: findings summarisation, i.e.
condensing detailed descriptions of findings into a
clinically actionable impression. These tasks cover
different levels of text granularity (sentence-level,
word-level, and paragraph-level) and different as-
pects of report processing, and hence give us a
holistic view of how GPT-4 performs in processing
radiology reports.

3.2 Prompting strategies

Alongside GPT-4 (gpt-4-32k), we evaluated two
earlier GPT-3.5 models: text-davinci-003 and
ChatGPT (gpt-35-turbo). Model and API details
are in Appendix A. For each task, we started with
zero-shot prompting and progressively increased
prompt complexity to include random few-shot (a
fixed set of random examples), and then similarity-
based example selection (Liu et al., 2022). For ex-
ample selection, we use OpenAI’s general-domain
text-embedding-ada-002 model to encode the
training examples as the candidate pool to select
n nearest neighbours for each test instance. For
NLI, we also explored CoT, as it was shown to
benefit reasoning tasks (Wei et al., 2022). For find-
ings summarisation, we replicated ImpressionGPT
(Ma et al., 2023), which adopts dynamic example
selection and iterative refinement.

To test the stability of GPT-4 output, we applied
self-consistency (Wang et al., 2023) for sentence
similarity, NLI, and disease classification. We re-
port mean and standard deviation across five runs of

1The majority of our test set comes from data with re-
stricted access (e.g., MIMIC (Johnson et al., 2019)).

GPT-4 with temperature zero2 and self-consistency
results with majority voting (indicated by ‘SC’).
All prompts are presented in Appendix C.

3.3 Error analysis with radiologist
The authors did a first pass of the error cases to
review easy instances requiring only general syn-
tactic and linguistic knowledge (e.g. ‘increased
pleural effusion’ versus ‘decreased pleural effu-
sion’). We then surfaced the cases where radiology
expertise is required to a board-certified radiolo-
gist for a second-round review and feedback. For
interpretability, we prompted GPT-4 to give an ex-
planation after its answer. Reviewing both model
answer and reasoning, we categorise each error
into: ambiguous3, label noise4, or genuine mistake.

4 Experiments

4.1 Sentence similarity classification
Task and model setup In this task, the model
receives as input a sentence pair and must clas-
sify the sentences as having the same, or differ-
ent meanings. We evaluate the models on two
sub-tasks: temporal sentence similarity classifi-
cation (MS-CXR-T (Bannur et al., 2023b)) and
RadNLI-derived sentence similarity classification.
Temporal sentence similarity focuses on temporal
changes of diseases. For RadNLI, we follow Ban-
nur et al. (2023a) to use the subset of bidirectional
‘entailment’ and ‘contradiction’ pairs and discard
the ‘neutral’ pairs to convert RadNLI (Miura et al.,
2021) to a binary classification task.

The radiology SOTA for this task is BioViL-T
(Bannur et al., 2023a) (a radiology-specific vision-
language model trained with temporal multi-modal
contrastive learning). The GPT performance is
obtained from zero-shot prompting.

Results As shown in Table 2, all the GPT models
outperform BioViL-T, achieving new SOTA. In
particular, GPT-4 significantly outperforms both
text-davinci-003 and ChatGPT on MS-CXR-T,
indicating an advanced understanding of disease
progression. Error analysis revealed the majority
of the GPT-4 (SC) errors are either ambiguous or

2The OpenAI API for GPT-4 is non-deterministic even
with temperature 0. We also explored varying the temperature
parameter and found no improvement.

3An ambiguous case is when both GPT-4 error output and
gold label can arguably be correct under different interpreta-
tions of the labels. For an example, an uncertain pathology
could be labelled as ‘presence’ or ‘absence’.

4the label is wrong and model is correct
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Table 1: Results overview. GPT-4 either outperforms or is on par with previous SOTA. New SOTA is established by
GPT-4 on sentence similarity and NLI (absolute improvement for accuracy and F1 are reported). GPT-4 achieves
near-ceiling performance in many tasks with < 1% mistake rate (shaded). ImpressionGPT (Ma et al., 2023) requires
example selection and iterative example refinement.

Task Test samples Prompting GPT-4 GPT-4 performance Mistake rate

Temporal sentence similarity 361 Zero-shot New SOTA (↑10% acc.) 0.0%
Sentence similarity (RadNLI) 145 Zero-shot New SOTA (↑3% acc.) 0.7%
Natural language inference (RadNLI) 480 Zero-shot + CoT New SOTA (↑10% F1) 5.8%
Disease progression 1326 Zero-shot On par with SOTA 0.4%
Disease classification 1955 10-shot* On par with SOTA 0.3%
Entity extraction 100 200-shot* On par with SOTA –
Findings summarisation 1606 / 576† ImpressionGPT On par with SOTA –

n-shot*: similarity-based example selection with n examples; Mistake rate5 = [# genuine mistakes] / [# test samples];
†: [MIMIC] / [Open-i]

label noise with only 1 model mistake in RadNLI
(see Appendix B.1), indicating GPT-4 is achieving
near-ceiling performance in these tasks.

Table 2: Zero-shot GPT-4 and GPT-3.5 achieve new
SOTA (accuracy) on sentence similarity tasks. To test
the consistency of GPT-4, we report mean and std.
across five runs, and the self-consistency results (‘SC’).

Model MS-CXR-T RadNLI

text-davinci-003 90.3 91.0
ChatGPT 92.0 95.2
GPT-4 97.3 ± 0.2 94.1 ± 0.4
GPT-4 (SC) 97.2 93.8

BioViL-T (Bannur et al., 2023a) 87.8 90.5

4.2 Natural language inference (NLI)

Task and model setup We assess GPT on the
original RadNLI classification dataset (Miura et al.,
2021). The model receives input ‘premise’ and ‘hy-
pothesis’ sentences, and determines their relation:
one of ‘entailment’, ‘contradiction’, or ‘neutral’.

We present GPT performance with zero-shot
prompting and CoT. We compare GPT models
against the current SOTA, a radiology-adapted T5
model (DoT5) which was trained on radiology text
and general-domain NLI data (Liu et al., 2023a).

Results Table 3 shows that GPT-4 with CoT
achieves a new SOTA on RadNLI, outperforming
DoT5 by 10% in macro F1. Whereas NLI has tra-
ditionally been a challenging task for earlier GPT
models, GPT-4 displays a striking improvement.
We also observe that CoT greatly helps in this task
especially for GPT-3.5.

We further investigate how GPT-4 performs in
cases that require different levels of radiology ex-

pertise6, and we show that GPT-4 reaches the best
performance in both generic and radiology-specific
logical inference. CoT seems to help GPT models
particularly to understand the radiology-specific
cases. This is because CoT pushes the model to
elaborate more on the radiology knowledge rele-
vant to the input sentences, therefore giving suf-
ficient context for a correct reasoning assessment
(see Table B.4). Finally, we highlight that, even
for GPT-4, there is still a gap in performance: the
cases that specifically require radiology knowledge
are more challenging than the other cases.

Table 3: GPT performance (macro F1) on RadNLI with
domain analysis. GPT-4 + CoT achieves new SOTA.
Mean, std., and self-consistency (‘SC’) results are re-
ported for GPT-4 + CoT across five runs.

All need domain expertise?
Yes No

text-davinci-003 55.9 42.8 60.7
+ CoT 64.9 54.1 68.4

ChatGPT 45.4 31.5 52.3
+ CoT 70.5 65.6 70.2

GPT-4 87.8 74.0 93.1
+ CoT 89.3 ± 0.4 78.9 ± 1.4 93.5 ± 0.4
+ CoT (SC) 89.2 78.8 93.6

DoT5
(Liu et al., 2023a) 79.8 70.1 86.4

4.3 Disease classification
Task and model setup The evaluation dataset is
extracted from Chest ImaGenome (Wu et al., 2021)
gold attributes on the sentence level. To fairly com-
pare with the SOTA CheXbert (Smit et al., 2020)
model, we focus on pleural effusion, atelectasis,
pneumonia, and pneumothorax, which are common

6Our categorisation is based on Liu et al. (2023a)’s domain
expertise annotations.
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pathology names between CheXbert findings and
Chest ImaGenome attributes. The output labels are
‘presence’ and ‘absence’ (binary classification) for
each pathology. Detailed description of the label
mapping is in Appendix D.

Besides the CheXbert baseline, we also include
the silver annotations from Chest ImaGenome, pro-
duced by an ontology-based NLP tool with filtering
rules (the Chest ImaGenome gold datasets are in
fact human-verified silver annotations). To prompt
GPT models, we started with zero-shot prompting,
and then added 10 in-context examples with both
random selection and similarity-based example se-
lection. The example candidates are from the Chest
ImaGenome silver data.

Results As shown in Table 4, there is progressive
improvement from text-davinci-003 to Chat-
GPT and then to GPT-4. All the GPT models’
zero-shot results outperform CheXbert. We are
able to improve GPT-4 zero-shot performance with
10-shot random in-context examples. We achieve
a further slight improvement with similarity-based
example selection, approaching the performance of
silver annotations.

We manually analysed the errors from the GPT-4
(*10) experiment and found that most (20 out of
30) are ambiguous, with the pathology cast as po-
tentially present, rather than being easily labelled
as present or not. This is particularly the case for
pneumonia whose presence is typically only sug-
gested by findings in the chest X-ray (See examples
of such uncertain cases in Table B.6). The rest of
the model errors are 5 cases of label noise and 5
model mistakes. With <1% mistake rate, GPT-4 is
approaching ceiling performance in this task.

Defer from uncertain cases Given the large
amount of uncertain and ambiguous cases in the
dataset, we experimented with asking the model to
output ‘uncertain’ alongside the presence and ab-
sence labels, and defer from these uncertain cases.7

Table 5 shows that GPT-4 achieves very strong
performance on those cases for which it is not
uncertain. Note that pneumonia classification is
dramatically improved and many positive cases of
pneumonia are deferred. This aligns with our ob-
servation from the dataset that pneumonia is often
reported as a possibility rather than a certain pres-
ence. We further test the robustness of GPT-4 in

7This can be seen as an alternative way to allow for uncer-
tainties compared with using the class logits (Nori et al., 2023)
as the class logits are not available via the API endpoints.

this setup and report mean, standard deviation and
majority vote results in Table E.1.

Table 4: GPT performance on Chest ImaGenome dis-
ease classification.

Model Micro F1 Macro F1

text-davinci-003 79.2 79.9
ChatGPT 89.7 85.0
GPT-4 93.0 91.5
GPT-4 (10) 96.6 96.6
GPT-4 (*10) 97.9 97.5

CheXbert 73.6 73.1
Silver 97.8 98.9

(n): number of random shots; *: similarity-based example
selection; Silver: Chest ImaGenome silver annotations.

Table 5: Zero-shot GPT-4 performance after deferring
from uncertain cases on Chest ImaGenome dataset:
GPT-4 (defer). Its performance is significantly improved
from zero-shot GPT-4 (with binary output).

GPT-4 (defer) GPT-4

Macro F1 97.4 93.0
Micro F1 98.6 91.5

Pleural effusion 98.5 [103] 95.3 [176]
Atelectasis 99.0 [154] 97.8 [233]
Pneumonia 92.3 [16] 75.7 [111]
Pneumothorax 100.0 [17] 97.3 [18]

[n]: number of positive instances for each pathology.

4.4 RadGraph entity extraction
Task and model setup This task requires a
model to extract observation and anatomy entities
from radiology reports and determine their pres-
ence (present, absent, or uncertain) following the
RadGraph schema (Jain et al., 2021). To evaluate
the extraction, we report micro F1 score counting
a true positive when both the extracted entity text
and the label are correct. RadGraph provides two
datasets: MIMIC (Johnson et al., 2019) with both
train and test data, and CheXpert (Irvin et al., 2019)
(with only test data).

We compare with the SOTA RadGraph Bench-
mark model reported in Jain et al. (2021), which is
based on DyGIE++ (Wadden et al., 2019) with Pub-
MedBERT initializations (Gu et al., 2021). Regard-
ing prompting strategy, we started with a randomly
selected 1-shot example,8 and then increased the
number of random shots to 10. To push the perfor-
mance, we leveraged the maximum context window

8We first experimented with zero-shot prompting, which re-
sulted in many output formatting errors. Adding one example
resolved the formatting issue.
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Table 6: GPT performance (micro F1) on RadGraph
entity extraction.

Model MIMIC CheXpert

text-davinci-003 (1) 56.2 49.2
text-davinci-003 (10) 83.2 79.5

ChatGPT (1) 47.1 42.2
ChatGPT (10) 70.6 67.5

GPT-4 (1) 36.6 25.3
GPT-4 (10) 88.3 84.7
GPT-4 (200) 91.5 88.4
GPT-4 (*200) 92.8 90.0

RadGraph Benchmark 94.3 89.5

(n): number of random shots; *: similarity-based example
selection

of GPT-4, incorporating 200-shot examples with
both random selection and similarity-based selec-
tion. Additionally, we found it is helpful to perform
GPT inference on individual sentences before com-
bining them for report-level output. The in-context
examples are also on the sentence level (200-shot
sentences roughly corresponds to 40 reports) from
the train set.

Results As shown in Table 6, examples are cru-
cial for GPT to learn this task. We observe a mas-
sive jump in performance when increasing the num-
ber of examples in the context. GPT-4 with 200
selected examples achieves overall on-par perfor-
mance with RadGraph benchmark: while GPT-4
(*200) underperforms the RadGraph model on the
in-domain MIMIC test set, GPT-4 surpasses Rad-
Graph Benchmark on the out-of-domain CheXpert
dataset. This indicates GPT-4 could be a more ro-
bust choice to generalise to out-of-domain datasets.
Our error analysis reveals the errors are mostly due
to GPT-4 failing to learn the schema specifics (Ap-
pendix B.5). For example, GPT-4 may extract the
whole compound word (‘mild-to-moderate’) as the
observation term, while the gold annotations break
the word down (‘mild’ and ‘moderate’).

4.5 Disease progression classification

Task and model setup We evaluate on the tem-
poral classification task from MS-CXR-T (Bannur
et al., 2023b), which provides progression labels
for five pathologies (consolidation, edema, pleural
effusion, pneumonia, and pneumothorax) across
three progression classes (‘improving’, ‘stable’,
and ‘worsening’). In this experiment, the input is
the radiology report and the outputs are disease pro-
gression labels. We report macro accuracy for each

pathology due to class imbalance. As MS-CXR-T
labels were originally extracted from Chest Im-
aGenome, we can also use Chest ImaGenome sil-
ver annotations as our baseline. We report GPT
performance with zero-shot prompting.

Results Table 7 shows that there is again a large
jump of performance from GPT-4 compared with
the earlier GPT-3.5 models. Zero-shot GPT-4
achieves >95% across all pathologies and is com-
parable with Chest ImaGenome silver annotation.
Our error analysis reveals that the majority of
model errors are either label noise or ambiguous
and the small mistake rate (0.4%) reflects the task
is nearly solved.

Table 7: GPT performance on MS-CXR-T disease pro-
gression (macro accuracy).

Model Pl. eff. Cons. PNA PTX Edema

text-davinci-003 92.1 91.8 90.0 96.1 93.6
ChatGPT 91.0 84.8 84.5 93.0 89.8
GPT-4 98.7 95.7 96.4 99.4 96.8

Silver 98.1 91.8 96.6 100.0 97.6

PNA: pneumonia; PTX: pneumothorax; Pl. eff.: pleural
effusion; Cons.: consolidation; Silver: Chest ImaGenome
silver annotations.

4.6 Findings summarisation
Task and model setup The findings summarisa-
tion task requires the model to summarise the input
findings into a concise and clinically actionable im-
pression section. We evaluate on the MIMIC (John-
son et al., 2019) and Open-i (Demner-Fushman
et al., 2016) datasets and follow Ma et al. (2023)
to report results on the official MIMIC test set and
a random split (2400:576 for train:test) for Open-i.
For metrics, we report RougeL (Lin, 2004) and the
CheXbert score (Smit et al., 2020) (a radiology-
specific factuality metric). We further conduct a
qualitative comparison study on GPT-4 outputs.

For prompting strategies, we started with zero-
shot and increased the number of random in-
context examples to 10-shot. For GPT-4, we
tried adding 100 examples with random selec-
tion and similarity-based selection. Examples are
drawn from the respective train set for each dataset.
We also replicated ImpressionGPT (Ma et al.,
2023) with ChatGPT and GPT-4. ImpressionGPT
performs dynamic example selection based on
CheXbert labels and iteratively selects good and
bad examples as in-context examples (The imple-
mentation details are found in Appendix G).
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We compare with the previous supervised SOTA
for this task (Hu et al., 2022) (which adopts a graph
encoder to model entity relations from findings),
as well as with DoT5 (Liu et al., 2023a), a strong
zero-shot summarisation baseline.

Results While zero-shot GPT models all outper-
form DoT5, we observe that providing examples is
crucial for this task: there is consistent and substan-
tial improvement when increasing the number of
in-context examples for all GPT models. A further
boost can be achieved when we enable example
selection for GPT-4 (*100). The more advanced
ImpressionGPT brings the best performance out of
GPT-4 and achieves performance comparable with
the supervised SOTA.

Qualitative comparison To understand the dif-
ferences between GPT-4 output and the manually-
written impressions, we chose a random sample of
reports and asked a radiologist to compare existing
manually-written impressions with GPT-4 (Impres-
sionGPT) output. Table 9 demonstrates that for the
majority of the cases (≈ 70%), GPT-4 output is
either preferred or comparable with the manually-
written impression. Tables B.8 and B.9 show exam-
ples where GPT-4 outputs are more faithful to the
findings than the manually-written impressions.

Table 8: GPT performance on findings summarisation.
ImpressionGPT iteratively refines good and bad exam-
ples as in-context examples.

MIMIC Open-i

Model R. CB. R. CB.

text-davinci-003 22.9 41.8 14.5 41.9
text-davinci-003 (10) 29.1 43.0 40.5 42.0

ChatGPT 20.0 40.5 14.8 39.6
ChatGPT (10) 31.0 42.5 40.6 41.0

GPT-4 22.5 39.2 18.0 39.3
GPT-4 (10) 28.5 44.2 42.5 44.9
GPT-4 (100) 30.9 44.7 44.2 45.0
GPT-4 (*100) 38.4 47.4 59.8 47.3

ChatGPT (ImpressionGPT) 44.7 63.9 58.8 44.8
GPT-4 (ImpressionGPT) 46.0 64.9 64.6 46.5

Hu et al. (2022) 47.1 54.5 64.5 –
DoT5 (Liu et al., 2023a) – – 11.7 25.8

(n): number of random shots; *: similarity-based example
selection; R.: RougeL; CB.: CheXbert.

Table 9: Percentage (%) with which the GPT-4 (Im-
pressionGPT) generated impression is equivalent or pre-
ferred compared with an existing manually-written one
according to a radiologist.

Sample (n) Manual Imp.
preferred Equiv. GPT-4

preferred Ambig.

Open-i (80) 28.8 43.8 26.3 1.3
MIMIC (40) 25.0 10.0 57.5 7.5

Equiv.: equivalent; Ambig.: ambiguous;
Manual Imp.: Existing manual impression

5 Discussion

5.1 Error analysis and GPT-4 consistency

Moving beyond quantitative scores, we manually
reviewed all GPT-4 errors in all the tasks (A de-
tailed analysis is shown in Appendix B). We further
analysed the consistency of the errors for a selec-
tion of tasks and reported the error breakdown in
Table 10. We found the majority of the errors are
either ambiguous or label noise. As an example of
ambiguity, GPT-4 is extremely strict in identifying
paraphrases and argues that one sentence contains
minor additional information or slightly different
emphasis. In fact, for sentence similarity, disease
progression, and disease classification tasks, the
model mistakes are < 1% of the test set (Table 1).
We believe GPT-4 is achieving near-ceiling perfor-
mance on these tasks. For entity extraction and
findings summarisation, we found that GPT-4 out-
put for many of the error cases is not necessarily
wrong, but is offering an alternative to the schema
or style in the dataset. This is verified by our quali-
tative analysis from Appendix B.5 and Section 4.6).

It is important to note that GPT-4 in our current
study still makes occasional mistakes. Some mis-
takes are unstable across runs and can be corrected
by self-consistency. Table 10 shows that GPT-4 is
mostly consistent, and, for the few cases of incon-
sistent output, self-consistency can correct most of
the model mistakes that occur in minority runs.9

Another helpful strategy is to ask GPT-4 to defer
when it is uncertain, as demonstrated by the disease
classification experiments (Appendix B.3).

The remaining model mistakes are mostly cases
where nuanced domain knowledge is required. For
example, GPT-4 mistakenly equates ‘lungs are hy-
perinflated but clear’ with ‘lungs are well-expanded

9Note that the overall scores from self-consistency experi-
ments (Tables 2, 3 and E.1) do not reflect this quantitatively
due to the noise from the many ambiguous cases.
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Table 10: Self-consistency error analysis for GPT-4. Errors are categorised by whether they are consistent, occurring
in minority runs (SC correct) or occurring in majority runs (SC incorrect). We further categorise errors into model
mistakes and others (ambiguous or label noise). We observe the majority of the errors are consistent and many
errors are not model mistakes. Within the cases of inconsistent output, self-consistency can correct most of the
model mistakes. GPT-4 zero-shot performance is reported in this table (disease classification results are after we
defer from the uncertain cases). Error breakdown for other single run experiments are in Table F.1.

Consistent SC correct SC incorrect

Task Mistake Other Corrected mistake Other Mistake Other Total

Temporal sentence similarity 0% 72% 10% 0% 0% 18% 11
Sentence similarity (RadNLI) 11% 78% 0% 0% 0% 11% 9
RadNLI 55% 31% 6% 0% 2% 6% 49
Disease classification 22% 67% 11% 0% 0% 0% 9

All 38% 46% 6% 0% 1% 8% 78

and clear’ in MS-CXR-T. The former indicates
an abnormality while the latter is describing nor-
mal lungs. We should point out that this mistake
does not mean GPT-4 is fundamentally lacking the
knowledge. In fact, when asked explicitly about it
in isolation (e.g., difference between ‘hyperinflated’
and ‘well-expanded lungs’), or when we reduce the
complexity of the two sentences to ‘lungs are hy-
perinflated’ and ‘lungs are well-expanded’, GPT-4
is able to differentiate the two terms (Table B.3).
We interpret it as nuanced radiology knowledge not
being guaranteed to always surface for all contexts
with all various prompts. While future prompting
strategies might help with these cases, we must
acknowledge that potential model mistakes cannot
be fully ruled out. Therefore, a human in the loop
is still required for safety-critical applications.

5.2 GPT-4 vs SOTA radiology models

Throughout the experiments, we first observed a
significant jump of performance of GPT-4 com-
pared with the prior GPT-3.5 (text-davinci-003
and ChatGPT), confirming the findings from previ-
ous studies (Nori et al., 2023). We then summarised
the overall GPT-4 performance compared with ra-
diology SOTA in Table 1. The key finding is that
GPT-4 outperforms or is on par with SOTA radiol-
ogy models in the broad range of tasks considered.
We further notice that different tasks require dif-
ferent prompting efforts and strategies. For tasks
such as sentence similarity, RadNLI, and disease
progression, the task requirements can be clearly
defined in the instruction. (For example, there
is clear logical definition for ‘entailment’, ‘neu-
tral’, and ‘contradiction’ in NLI). For such ‘learn-
by-instruction’ tasks, a simple zero-shot prompt-
ing strategy for GPT-4 can yield significant gains

over task-specific baselines or nearly ceiling per-
formance. Disease classification does not fall into
this category due to the ambiguity in how to as-
sign labels for the uncertain cases. Here, GPT-4
requires 10 examples to achieve comparable near-
ceiling performance with previous SOTA. We show
that zero-shot GPT-4 can also achieve near-ceiling
performance if we defer from uncertain cases (Ta-
ble 5) in this task. Another key point to note is that
GPT-4 is a better choice than the previous SOTA
Chest ImaGenome silver annotations for disease
and disease progression classification, as the silver
annotations are from rule-based systems that are
not available to be re-used for other datasets.

Different from the above-mentioned tasks, it is
not straightforward to articulate requirements in
the instruction for entity extraction and findings
summarisation. For entity extraction, the exact
definition of observation and anatomy is schema-
specific and in many cases can only be inferred
from training examples. For findings summarisa-
tion, while there are general rule-of-thumb princi-
ples for writing a good impression, it is not possible
to write down detailed instructions regarding the
exact phrasing and style of the impressions in a
particular dataset. We call these ‘learn-by-example’
tasks. Task-specific supervised models perform
competitively on such tasks, as they can explicitly
learn an in-domain distribution from all training
examples. We found significant improvement of
GPT models with increased number of examples
compared with zero-shot, and GPT-4 with example
selection can match supervised baselines. Future
research can explore ways to combine GPT-4 and
supervised models (e.g. treating the latter as plug-
ins Shen et al. 2023; Xu et al. 2023).
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6 Conclusion

This study evaluates GPT-4 on a diverse range of
common radiology text-based tasks. We found
GPT-4 either outperforms or is on par with task-
specific radiology models. GPT-4 requires the least
prompting effort for the ‘learn-by-instruction’ tasks
where requirements can be clearly defined in the
instruction. Our extensive error analysis shows that
although it occasionally fails to surface domain
knowledge, GPT-4 has substantial capability in the
processing and analysis of radiology text, achieving
near-ceiling performance in many tasks.

7 Limitations

In this paper, we focused on GPT-4 as it is the most
capable and the best-performing LLM now across
many domains and we would like to establish what
best we can do with LLM in radiology. We leave it
for future research to test and compare GPT-4 per-
formance with other LLMs. In addition, as GPT-4
with the current prompting strategies in the study
already achieves near-ceiling performance in many
tasks, we leave an exhaustive experimentation of
all existing prompting strategies for future research.
For example, we have not explored the more re-
cently proposed advanced prompting techniques
including tree of thought (Yao et al., 2023) and
self-critique (Shinn et al., 2023) and we encourage
future research to apply techniques to help improve
the reliability of GPT-4. Also, due to resource con-
straint, we did not perform self-consistency exhaus-
tively for all tasks and for all GPT models. That
being said, we believe the findings from this paper
should already represent what an average user can
get out of using GPT models on these tasks. The
insights and learnings will be useful for design-
ing future prompting strategies for radiology tasks,
where particular tasks or error cases will require
more prompting efforts.

Our error analysis shows that many of the ex-
isting radiology tasks contain intrinsic ambiguities
and label noise and we call for more quality con-
trol when creating evaluation benchmarks in the
future. Finally, our qualitative evaluation of the
findings summarisation task is limited to a single
radiologist. This is a subjective assessment that
will be influenced by radiologist’s own style and
preference. The ideal scenario would be to ask ra-
diologists who participated in the creation of the
MIMIC or Open-i dataset to perform the assess-
ment so that they have the same styling preference
as the dataset. We are also planning to conduct
more nuanced qualitative evaluation addressing dif-
ferent aspects of the summary in the future.

8 Ethical Considerations

we would like to assure the readers that the
experiments in this study were conducted using
Azure Open AI services which have all the
compliance requirements as any other Azure
Services. Azure Open AI is HIPAA compliant
and preserves data privacy and compliance of the
medical data (e.g., The data are not available to
OpenAI). More details can be found in https:
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//azure.microsoft.com/en-gb/resources/
microsoft-azure-compliance-offerings,
https://learn.microsoft.com/en-us/legal/
cognitive-services/openai/data-privacy
and https://learn.microsoft.com/
en-us/answers/questions/1245418/
hipaa-compliance. All the public datasets
used in this paper were also reviewed by MSR (Mi-
crosoft Research) IRB (OHRP parent organization
number IORG #0008066, IRB #IRB00009672)
under reference numbers RCT4053 and ERP10284.
IRB Decision: approved – Not Human Subjects Re-
search (per 45§46.102(e)(1)(ii), 45§46.102(e)(5))
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A GPT model and API details

We evaluated GPT-4 (gpt-4-32k, ver. 0314), and
two earlier GPT-3.5 models: text-davinci-003
and ChatGPT (gpt-35-turbo, ver. 0301). We
use Azure Cognitive Services API with the ver-
sion ‘2023-03-15-preview’. Model names corre-
spond to https://platform.openai.com/docs/
models/overview. Regarding to GPT-4 pricing,
at the time of conducting this study, it costs 0.06
USD per 1,000 tokens for prompt and 0.12 USD
per 1,000 tokens. The actual cost depends on the
task. For RadNLI with 361 samples, the cost is
around 5 USD. The total cost of the evaluation
conducted in this paper is around 5000 USD. We
acknowledge that the cost of GPT-4 is high at the
moment. As such, the findings from our paper can
save the costs from future researchers who want to
investigate similar research questions.

B GPT-4 detailed error analysis

B.1 Sentence similarity

We manually reviewed all GPT-4 errors and found
that the errors are mostly ambiguous or label noise
and these two tasks can be seen as nearly solved by
GPT-4. For MS-CXR-T, the majority of the errors
required identifying that ‘improvement’ was syn-
onymous with ‘decrease’ for cases such as edema
and lung opacity (all were ground truth paraphrase
pairs) (See Table B.1). Among these cases, GPT-4
does recognise ‘improvement’ and ‘decrease’ de-
scribe positive change, but argues that ‘improve-
ment’ and ‘decrease’ describe different aspects of
the change. Confirmed with our radiologist, GPT-4
reasoning here is pedantic but is understandable.

In one error however, GPT-4 reasons that ‘im-
proved’ and ‘decrease’ indicate opposite direc-
tion of change, which is a clear error showing
the radiology-specific knowledge does not surface
from GPT-4 in this case. Fortunately, this error
case is only the minority across all runs (2 out of 5
cases) and is corrected by SC.

The finding is similar for the RadNLI sentence
similarity task where the majority of the errors are
ambiguous cases where GPT-4 flagged that one sen-
tence contained slightly more information than the
other, hence were not strict paraphrases. There is
one genuine error where GPT-4 mistakenly equates
‘lungs are hyperinflated but clear’ with ‘lungs are
well-expanded and clear’ (See Table B.2). The
former indicates an abnormality while the latter is

normal. We should point out that this behaviour
does not mean GPT-4 is fundamentally lacking the
knowledge. In fact, if we reduce the complexity
of the two sentences to ‘lungs are hyperinflated’
and ‘lungs are well-expanded’, GPT-4 is able to
differentiate between the two terms. Therefore, we
interpret the error as the domain knowledge has not
being surfaced in a complex context.

Self-consistency does not improve the overall
results and most errors are consistent across runs.
For MS-CXR-T, 8 out of the 11 error cases are con-
sistent. For RadNLI sentence similarity, 8 out of 9
error cases are consistent across runs. For the in-
consistent cases, apart from one genuine error from
MS-CXR-T which is corrected by self-consistency,
all inconsistent cases are ambiguous.
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Sentence 1 interval improvement in mild pulmonary edema

Sentence 2 interval decrease in mild pulmonary edema

GPT-4 reasoning The first sentence describes an improvement in the mild pulmonary edema,
which means the condition has gotten better. The second sentence describes a
decrease in the mild pulmonary edema, which means the amount or severity
of the edema has reduced. Although both sentences indicate a positive change,
they describe different aspects of the change in the pulmonary edema.

Error category ambiguous

Sentence 1 opacities in the left base have minimally improved.

Sentence 2 opacities in the left base have minimally decreased.

GPT-4 reasoning The first sentence states that the opacities have improved, which means they
have become less severe or less noticeable. The second sentence states that the
opacities have decreased, which means they have reduced in size or number.
Although both sentences describe a positive change, they convey different
aspects of the change in opacities.

Error category ambiguous

Sentence 1 left basal consolidation has slightly improved.

Sentence 2 left basal consolidation has slightly decreased.

GPT-4 reasoning The first sentence states that the left basal consolidation has slightly improved,
meaning the condition has gotten better. The second sentence states that the left
basal consolidation has slightly decreased, which implies that the size or extent
of the consolidation has reduced. Although both sentences indicate a positive
change, they describe different aspects of the change.

Error category ambiguous

Sentence 1 mild improvement in right upper lung opacity, possibly a hematoma, status post
right upper lobe resection.

Sentence 2 mild decrease in right upper lung opacity, possibly a hematoma, status post
right upper lobe resection.

GPT-4 reasoning The two sentences describe different changes in the right upper lung opacity.
Sentence 1 mentions a "mild improvement," while Sentence 2 mentions a "mild
decrease." These changes are opposite in nature, with improvement suggesting
a positive change and decrease suggesting a reduction in opacity.

Error category genuine mistake

Table B.1: Examples of GPT-4 errors on the MS-CXR-T temporal sentence similarity dataset. Note that all pairs
are labelled (ground truth) as paraphrases, but were classified as different by GPT-4. In the first three examples,
GPT-4 gives sound reasoning. The last example shows erroneous reasoning where the model thinks improvement
and decrease indicate opposite directions of change, but fortunately the last example comes from 2 out of 5 runs and
can be corrected by self-consistency.
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Sentence 1 Osseous structures are without an acute abnormality.

Sentence 2 The osseous structures are grossly unremarkable, although evaluation is limited
secondary to body habitus.

GPT-4 output and
reasoning

different. While both sentences describe the osseous structures as not having
any significant issues, Sentence1 states that there are no acute abnormalities,
while Sentence2 mentions that the evaluation is limited due to the patient’s
body habitus, implying that there might be some limitations in the assessment.

True label paraphrase

Error category ambiguous

Sentence 1 Lungs are hyperinflated but clear.

Sentence 2 Lungs are well-expanded and clear without focal consolidation concerning for
pneumonia.

GPT-4 output and
reasoning

paraphrase. Both sentences describe lungs that are clear and without any signs
of pneumonia. The first sentence uses the term "hyperinflated" while the second
uses "well-expanded," but both essentially convey the same meaning of lungs
being expanded and clear.

True label different

Error category genuine mistake

Table B.2: Examples of GPT-4 errors on the RadNLI-derived sentence similarity dataset. In the first example, the
label is ambiguous and GPT-4 highlights the additional information in the second sentence. In the second example,
GPT-4 erroneously equates hyperinflated (a pathological state) with ‘well-expanded’ lungs.

Sentence 1 Lungs are hyperinflated but clear.

Sentence 2 Lungs are well-expanded and clear without focal consolidation concerning for
pneumonia.

GPT-4 output and
reasoning

paraphrase. Both sentences describe lungs that are clear and without any signs
of pneumonia. The first sentence uses the term "hyperinflated" while the second
uses "well-expanded," but both essentially convey the same meaning of lungs
being expanded and clear.

True label different

Sentence 1 Lungs are hyperinflated.

Sentence 2 Lungs are well-expanded.

GPT-4 output and
reasoning

different. Although both sentences describe the state of the lungs, they convey
different meanings. "Hyperinflated" implies that the lungs are excessively
inflated, which could indicate a medical issue. On the other hand, "well-
expanded" suggests that the lungs are in a healthy state, functioning properly
with adequate inflation.

True label different

Table B.3: An example to show that domain knowledge is surfaced from GPT-4 when we reduce the complexity of
the context as in the second example.
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B.2 RadNLI

We observe a higher error rate in NLI compared to
sentence similarity. This can be explained by the
subtle nature of the task that requires precise logi-
cal reasoning in order to correctly recognise textual
entailment from neutral examples and contradic-
tions. Out of the 45 model “errors” from GPT-4
+ CoT (SC), we identified 13 logical errors where
the model’s reasoning indicated a lack of under-
standing of entailment as it appeared to look for
paraphrases ‘the hypothesis does not provide all
information in the premise’ or it confused the direc-
tionality of entailment ‘the premise is part of the
hypothesis’. Additionally, we found 18 label-noise
examples for which GPT-4 was arguably right. An
extra set of 14 errors were domain specific such
as ‘unchanged’ does not imply ‘normal’ and ‘en-
larged’ suggests ‘not top normal’ in a radiology
context (See Table B.5). While most of the errors
are consistent across run, there are 7 cases of incon-
sistent output across runs. For 4 cases, majority run
does not align with the gold label but these cases
are mostly label noise. For 3 cases, majority cor-
rects inconsistent output and all 3 cases are genuine
errors from minority runs.

We also show in Table B.4 the examples where
CoT improves GPT-4 performance on RadNLI.

B.3 Disease Classification

We analyse the errors for the GPT-4 (defer) setup
after we defer from uncertain cases. We collect
a total of 8 error cases for all pathologies from
a single run: there are two cases of label noise,
while the other errors are largely ambiguous and
uncertain cases where GPT-4 should output ‘uncer-
tain’ but outputs ‘absence’ instead. For example,
in ‘alternatively, could be due to infection, a toxic
or allergic drug reaction or hemorrhage.’, GPT-4
should output uncertain for pneumonia rather than
absence. There are two genuine errors where GPT-
4 fails to identify ‘pleural effusion’ from ‘fluid did
not accumulate acutely’, and mistakenly assigns
the absence label for pleural effusion in the sen-
tence ‘pleural effusion is nearly resolved’. When
we compare the outupt before and after we add
the ‘uncertain’ option to the model, we observe an
overall improvement in F1, many of the ambigu-
ous errors from binary setup are now assigned with
‘uncertain’ label. In addition, some of the genuine
errors from binary setup (e.g., not understanding
‘linear opacities’ indicates atelectasis) are assigned

with ‘uncertain’ as well as GPT-4 reasons that ‘lin-
ear opacities’ can possibly reflect atelectasis. This
indicates that the model is able to defer in the case
of an obvious erroneous output.

We test self-consistency for the GPT-4 (defer)
set up across five runs, the 8 identified errors are
consistent. There is an extra error from 1 out of
5 runs where the model makes a genuine mistake:
GPT-4 thinks pleural effusion is present based on
“there is no pneumothorax, large effusion, or con-
gestion.” Fortunately, this obvious error can be
corrected by majority voting from self-consistency.

B.4 Disease Progression
The error analysis reveals that GPT-4 is achieving
ceiling performance on this task. We manually re-
viewed a total of 34 errors from all the pathologies
and found most of the model mismatches are either
due to label noise (7) or the case being ambiguous
(21). Many of the ambiguous cases appeared where
the pathologies mentioned are uncertain in the first
place and therefore harder to assess for change. The
genuine errors are either because the model fails
to recognise pathologies (e.g. ‘hemorrhage’ will
indicate consolidation) or failed to associate the
change word with the pathology due to unfamiliar-
ity with radiology-specific phrasing (e.g., not able
to recognise edema is worsening from ‘increased
opacities consistent with mild pulmonary edema’).

Table B.7 shows the example errors from GPT-4
on disease progression.

B.5 RadGraph
We examine the GPT-4 (*200) output on MIMIC
and collect in total 137 error cases. We categorise
these errors into 31 cases where gold entities are
not identified from predictions, and 73 cases where
predicted entities are not found in gold, and 33
cases where the entity tokens are extracted but the
labels are not correct. For the missing gold enti-
ties, we found that most of the cases (22 out of
33) are due to GPT breaking up the word differ-
ently than the gold annotations: e.g., While GPT-4
extracts the whole phrase ‘mild-to-moderate’ as
one observation entity, the gold annotation extracts
‘mild’ and ‘moderate’ separately. For the 73 over-
predicted entities, we found that the majority of
the mismatch is due to inconsistency in the annota-
tion. For example, in the sentence ‘an esophageal
drainage tube passes into the stomach and out of
view’ GPT extracts ‘out of view’ as the observa-
tion but the gold annotation does not. However, in
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Premise Mediastinal and hilar contours are grossly unremarkable.

Hypothesis Bony structures are unremarkable.

GPT-4 + CoT REASON: The premise talks about the mediastinal and hilar contours being
unremarkable, which refers to the structures in the chest area. The hypothesis
talks about bony structures being unremarkable, which refers to the bones.
These two statements are not directly related to each other, as one talks about
chest structures and the other talks about bones. Therefore, there is no clear
evidence to support or contradict the hypothesis based on the premise. Hence,
the relation between the premise and hypothesis is neutral.
ANSWER: neutral

GPT-4 ANSWER: entailment

True label neutral

Premise The lungs are clear.

Hypothesis The lungs are well expanded.

GPT-4 + CoT Both the premise and hypothesis are related to the lungs, but they express
different information. The premise states that the lungs are clear, which means
that there are no signs of disease or infection. On the other hand, the hypothesis
states that the lungs are well expanded, which means that they are functioning
properly and have good air flow. These two statements are not contradictory,
but they do not necessarily entail each other either. It is possible for the lungs
to be clear but not well expanded, or for the lungs to be well expanded but not
necessarily clear. Therefore, the relation between the premise and hypothesis is
neutral.
ANSWER: neutral

GPT-4 ANSWER: entailment

True label neutral

Table B.4: Examples where CoT improves GPT-4 performance on RadNLI.
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Premise The heart is mildly enlarged, unchanged.

Hypothesis The heart is top normal in size, which is exaggerated by the low lung volumes.

GPT-4 output and
reasoning

REASON: The premise states that the heart is mildly enlarged and unchanged,
while the hypothesis suggests that the heart is top normal in size and appears
larger due to low lung volumes. These two statements provide different infor-
mation about the heart size and do not support or contradict each other directly.
ANSWER: neutral

True label contradiction

Premise The pulmonary vasculature is normal.

Hypothesis There is no pulmonary edema.

GPT-4 output and
reasoning

REASON: The premise states that the pulmonary vasculature is normal, which
implies that there are no abnormalities in the blood vessels of the lungs. The
hypothesis states that there is no pulmonary edema, which is a condition where
fluid accumulates in the lungs due to issues with the blood vessels or heart.
Since a normal pulmonary vasculature would not typically result in pulmonary
edema, the hypothesis can be inferred from the premise.
ANSWER: entailment

Error category genuine mistake

True label neutral

Error category genuine mistake

Premise Opacities involving the right middle lobe and left lower lobe are again demon-
strated and may represent atelectasis or infection in the appropriate setting.

Hypothesis Minimal left basilar opacity suggests minor atelectasis.

GPT-4 output and
reasoning

REASON: The premise mentions opacities in the right middle lobe and left
lower lobe, which could represent atelectasis or infection. The hypothesis,
on the other hand, talks about minimal left basilar opacity suggesting minor
atelectasis. While both sentences discuss opacities and atelectasis, they refer
to different parts of the lungs. Therefore, the relation between the premise and
hypothesis is undetermined.
ANSWER: neutral

True label entailment

Error category genuine mistake

Table B.5: GPT-4 errors on RadNLI. In the first example, GPT-3 misses that ’enlarged’ entails ’not top-normal’ for
hear size. In the second example, GPT-4 fails to understand that normal pulmonary vasculature does not necessarily
always indicates no normal pulmonary edema. In the last example, GPT-4 fails to understand left basilar opacity
and opacities in the left lower lobe refer to the same location.
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Text scattered vague opacities bilaterally are consistent with clinical history of septic
emboli, unknown whether active or scar.

Gold (pneumonia, absent)

GPT-4 answer and
reasoning

(pneumonia, present). The text mentions "scattered vague opacities bilaterally"
which are consistent with the clinical history of septic emboli. This suggests
the presence of pneumonia.

Error category ambiguous

Text no large pleural effusions are seen, although trace effusions will be difficult to
exclude.

Gold (pleural effusion, absent)

GPT-4 answer and
reasoning

(pleural effusion, present). The text mentions that no large pleural effusions
are seen, but trace effusions are difficult to exclude, which implies that small
pleural effusions might be present.

Error category ambiguous

Table B.6: Examples of ambiguous GPT-4 errors on the disease classification binary classification task from Chest
ImaGenome Gold dataset.

Text ... Small focus of hemorrhage or atelectasis at the base of the postoperative
right lung has cleared...

Gold (consolidation, improving)

GPT-4 answer and
reasoning

(consolidation, stable). Consolidation is not mentioned in the input text. The
findings discussed include persistent moderate right pneumothorax, small bi-
lateral pleural effusions, small focus of hemorrhage or atelectasis, and mild
generalized pulmonary edema.

Error category genuine mistake

Text Increased interstitial opacity with mediastinal vascular fullness and Kerley B
lines is consistent with mild to moderate pulmonary edema

Gold (edema, worsening)

GPT-4 answer and
reasoning

(edema, stable). The text does not provide any information about the change
in the edema’s condition compared to a previous state. Therefore, we cannot
determine if it is improving or worsening, and we assume it is stable.

Error category genuine mistake

Table B.7: Examples of GPT-4 genuine mistakes on the disease progression classification task. In the first example,
GPT-4 fails to identify that hemorrhage is a type of consolidation. In the second example, GPT-4 fails to understand
the radiology-specific phrasing that the change ’consistent with edema will also apply to the edema.
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another gold example in the training data: ‘right
internal jugular line ends in the right atrium and
an upper enteric drain passes into a non-distended
stomach and out of view .’, ‘out of view’ was anno-
tated as the observation. This reflects the intrinsic
ambiguity of annotating what counts as observa-
tion and anatomies in the schema. In another 25
cases of over-predicted entities, GPT over-extracts
words such as ‘probable’, ‘definite’ as observa-
tions. Finally, we found 33 cases where GPT-4
extracts the correct entities but assigns the wrong
label, and they are mostly due to the confusion of
uncertain labels. Many of these are ambiguous, for
example, for the sentence ‘No definite focal con-
solidation identified’, the gold annotation assigns
an ‘observation-uncertain’ label for ‘consolidation’
but GPT assigns ‘observation-absent’.

This error analysis reveals the intrinsic challenge
of learning schema-specific annotations in this task,
as there may not be a single clear-cut standard in
some cases. GPT output often is not wrong but is
offering an alternative solution.

B.6 Findings summarisation
Table B.9 and Table B.8 show examples where
GPT-4 (ImpressionGPT) outputs are favoured than
existing manually-written impressions.
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Findings There is mild cardiomegaly. Mediastinal contours appear within normal limits.
There are small bilateral pleural effusions, left greater than right with left basilar
opacities. No pneumothorax. Mild degenerative changes of the thoracic spine.

Existing impression Cardiomegaly with small bilateral pleural effusions and left basilar atelectasis.

GPT-4 impression Mild cardiomegaly and small bilateral pleural effusions with left basilar opaci-
ties.

Findings Cardiomegaly is noted. No pleural effusions. No pneumothorax. There is
perihilar prominence and interstitial opacification.

Existing impression Cardiomegaly and mild interstitial pulmonary edema.

GPT-4 impression Stable cardiomegaly with prominent perihilar opacities which may represent
scarring or edema.

Table B.8: Examples where GPT-4 (ImpressionGPT) impressions are favoured over the existing manually-written
impressions on Open-i dataset. In both examples, GPT-4 outputs have more faithful and more complete details to
the findings.
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Findings Single AP upright portable view of the chest was obtained. The patient’s
overlying chin obscures the medial bilateral upper lobes. The cardiac silhouette
remains enlarged. Prominence of the pulmonary arteries is partially imaged
and again seen. Evidence of diaphragmatic/pleural plaques is seen bilaterally
suggesting prior asbestos exposure.

Existing impression The patient’s chin overlies the bilateral medial upper lobes, obscuring the
view. Given this, the cardiac silhouette is persistently enlarged. There is again
prominence of the pulmonary arteries. Pulmonary vascular congestion appears
improved.

GPT-4 impression Cardiomegaly and prominence of pulmonary arteries. Bilateral diaphrag-
matic/pleural plaques suggestive of prior asbestos exposure.

Findings AP upright and lateral views of the chest provided. Vascular stent is seen in
the region of the right brachiocephalic vein. The heart is moderately enlarged.
There is mild interstitial pulmonary edema. Previously noted ET and NG tubes
have been removed. No large pleural effusion. Mediastinal contour is stable.
Bony structures are sclerotic which could reflect renal osteodystrophy.

Existing impression Mild cardiomegaly with mild interstitial pulmonary edema.

GPT-4 impression Moderate cardiomegaly with mild interstitial pulmonary edema.

Table B.9: Examples where GPT-4 (ImpressionGPT) impressions are favoured over the existing manually-written
impressions on MIMIC dataset The first example shows that the existing manually-written impressions written by
radiologist are not always perfect and may contain irrelevant information (in orange). In the second example GPT-4
gives the correct detail (‘Moderate cardiomegaly’) based on the findings whereas the existing impression incorrectly
concludes with ‘mild cardiomegaly’.
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C Prompts

For each task, We write the prompt to describe the
task requirements with the input and output format,
and we assign GPT the role of a radiologist in the
system message. The prompts are written in one
go without tweaking and tuning wording for each
task.

C.1 Sentence Similarity
The chat prompt for zero-shot sentence similarity
classification is shown in Fig. C.1.

C.2 RadNLI
Figure C.2 presents the zero-shot chat prompt for
RadNLI.

C.3 Disease Classification
Figure C.3 presents the zero-shot chat prompt for
disease classification.

C.4 RadGraph Entity Extraction
Figure C.4 shows the zero-shot chat prompt for
RadGraph Entity Extraction.

C.5 Disease Progression Prompt
Figure C.3 presents the zero-shot chat prompt for
disease progression classification.

C.6 Summarisation Prompt
Figure C.6 presents the zero-shot chat prompt for
findings summarisation.
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System You are a radiologist. Assess whether two sentences are describing the same
meaning (paraphrase) or different meaning (different) regarding the change
information. Reply with ’paraphrase’ or ’different’ first and then explain.

User - - INPUT
Sentence1: Left lower lobe collapse stable.
Sentence2: Persistent left lower lobe collapse.<|endofprompt|>
ANSWER:

Figure C.1: Zero-shot Chat Prompt for Sentence Similarity

System You are a radiologist performing natural language inference on 2 sentences:
premise and hypothesis. You need to judge which following three relations
hold for the premise and hypothesis:

entailment: The hypothesis can be inferred from the premise.
contradiction: The hypothesis can NOT be inferred from the premise.
neutral: The inference relation of the premise and the hypothesis is
undetermined.

Given the input, compare premise and hypothesis and reply with the following
structure:

REASON: <Text explaining the decision step by step>
ANSWER: <entailment | neutral | contradiction>

User - - INPUT
Premise: There is no pleural effusion pneumothorax.
Hypothesis: No focal consolidation, pleural effusion, pneumothorax, or
pulmonary edema.
What is the relation between premise and hypothesis? Explain your reason
first and then answer entailment, neutral or contradiction.<|endofprompt|>
REASON:

Figure C.2: Zero-shot Chat Prompt for RadNLI
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System You are a radiologist that identifies findings from radiology reports on
chest X-rays. Given a piece of radiology text in the following input format:

<INPUT>
<text>
</INPUT>

Assess the following findings from the input text: "Pleural Effusion",
"Atelectasis", "Pneumonia", "Pneumothorax". Answer "present" if the finding
is present; Answer "absent" if the finding is absent. Answer "not mentioned"
if the finding is not mentioned from text. Reply with a list of tuples and
then briefly explain following the format:

<OUTPUT>
ANSWER:
[
("Pleural Effusion", "present"|"absent"|"not mentioned"),
("Atelectasis", "present"|"absent"|"not mentioned"),
("Pneumonia", "present"|"absent"|"not mentioned"),
("Pneumothorax", "present"|"absent"|"not mentioned"),
]
EXPLANATION: <explanation>
</OUTPUT>

User <INPUT>
cardiomediastinal and hilar contours are unremarkable.
</INPUT>
Assess the requested findings from the above input text. Answer "present",
"absent" or "not mentioned" for each finding. Reply with a list of tuples
first and then briefly explain.<|endofprompt|>
<OUTPUT>
ANSWER:

Figure C.3: Zero-shot Chat Prompt for Disease Classification
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System You are a radiologist performing clinical term extraction from the
FINDINGS and IMPRESSION sections in the radiology report. Here a
clinical term can be either anatomy or observation that is related
to a finding or an impression. The anatomy term refers to an
anatomical body part such as a ’lung’. The observation terms refer to
observations made when referring to the associated radiology image.
Observations are associated with visual features, identifiable
pathophysiologic processes, or diagnostic disease classifications.
For example, an observation could be ’effusion’ or description
phrases like ’increased’. You also need to assign a label to indicate
whether the clinical term is present, absent or uncertain. Given a
piece of radiology text input in the format:

<INPUT>
<text>
</INPUT>

reply with the following structure:

<OUTPUT>
ANSWER: tuples separated by newlines. Each tuple has the
format: (<clinical term text>, <label: observation-present
|observation-absent|observation-uncertain|anatomy-present>). If
there are no extraction related to findings or impression, return
()
</OUTPUT>

Example user <INPUT>
No convincing evidence of pneumothorax or pneumomediastinum .
</INPUT>

What are the clinical terms and their labels in this text? Discard
sections other than FINDINGS and IMPRESSION: eg. INDICATION, HISTORY,
TECHNIQUE, COMPARISON sections. If there is no extraction from
findings and impression, return ().

<OUTPUT>
ANSWER:

Example assistant (’pneumothorax’, ’observation-absent’)
(’pneumomediastinum’, ’observation-absent’)
</OUTPUT>

Figure C.4: 1-shot Chat Prompt for RadGraph Entity Extraction
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System You are a radiologist that identifies the progression of pathologies from
radiology text. Given a radiology report in the following input format:

<INPUT>
<text>
</INPUT>

Assess the following findings from the input text: "Edema". Answer "improving"
if the finding is improving. Answer "worsened" if the finding is worsened.
Answer "stable" if the finding is stable.Reply with a prediction and then
briefly explain in the following format:

<OUTPUT>
ANSWER:
[
("Edema", "worsened"|"improving"|"stable"),
]
EXPLANATION: <explanation>
</OUTPUT>

User <INPUT>
FINAL REPORT
INDICATION: Chest pain and bradycardia. Evaluate for pneumonia.
COMPARISONS: Chest radiograph from ___.
TECHNIQUE: A single AP upright view of the chest was obtained.
FINDINGS: Since prior exam, there are new interstitial opacities and vascular
congestion, most consistent with moderate pulmonary edema. There is no focal
airspace opacity, pleural effusion, or pneumothorax. The mediastinal contours
are normal. The heart size is mildly enlarged.
IMPRESSION: New moderate pulmonary edema.
</INPUT>

Assess the above input text. Answer "improving" if the finding is improving.
Answer "worsened" if the finding is worsened. Answer "stable" if the finding
is stable. Reply with a prediction and then briefly explain:<|endofprompt|>

<OUTPUT>
ANSWER:

Figure C.5: Zero-shot Chat Prompt for Disease Progression Classification
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System You are a radiologist that can write an impression section in a radiology
report. Given the findings section of the report as the input:

<INPUT>
<findings>
</INPUT>

generate impression section:

<OUTPUT>
IMPRESSION:<impression>
</OUTPUT>

User <INPUT>
Left PICC tip is seen terminating in the region of the distal left
brachiocephalic vein. Tracheostomy tube is in unchanged standard position.
The heart is moderately enlarged. Marked calcification of the aortic knob
is again present. Mild pulmonary vascular congestion is similar. Bibasilar
streaky airspace opacities are minimally improved. Previously noted left
pleural effusion appears to have resolved. No pneumothorax is identified.
Percutaneous gastrostomy tube is seen in the left upper quadrant.
</INPUT>
Generate the impression section based on the input findings:<|endofprompt|>
<OUTPUT>
IMPRESSION:

Figure C.6: Zero-shot Chat Prompt for Findings Summarisation
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D Label mapping details for disease
classification

The attributes in Chest ImaGenome are labelled
as ‘yes’ or ‘no’. When there are no such labels,
we assign the CheXbert ‘missing’ class. When
calculating the scores, we collapse ‘missing’ and
‘no’ labels into the negative class, and the ‘yes’
label is treated as the positive class. CheXbert
predicts four labels for each pathology: ‘present’,
‘absent’, ‘not mentioned/missing’, and ‘uncertain’.
To conform with the Chest ImaGenome dataset, we
combine ‘present’ and ‘uncertain’ into the positive
class, and ‘absent’ and ‘missing’ into the negative
class.

E Self-consistency Results for Disease
Classification

Table E.1 shows the self-consistency results for
disease classification after deferring from uncertain
cases.
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GPT-4 (SC) GPT-4 (mean)

Macro F1 97.44 97.46 ± 0.12
Micro F1 98.56 98.56 ± 0.12
Pleural Effusion 98.47 98.38 ± 0.21
Atelectasis 98.99 98.38 ± 0.21
Pneumonia 92.30 92.42 ± 0.25
Pneumothorax (18) 100.0 100.0

Table E.1: mean, standard deviation and the self-
consistency results for Zero-shot GPT-4 after deferring
from uncertain cases
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F Error breakdown for single-run
experiments

Table F.1 shows the error breakdown for single-run
experiments.

G Implementation details for
ImpressionGPT

We replicated the latest ImpressionGPT (Ma
et al., 2023) framework using both Chat-
GPT(as proposed in the original work)
and GPT-4. We reproduced this work
based on the publicly available code https:
//github.com/MoMarky/ImpressionGPT. We
set the hyperparameter values to match the optimal
settings reported in the ablation study from the
paper (Ma et al., 2023) which are different from
the default values hard-coded in the repository. We
therefore select Ns = 15 most similar in-context
examples in the dynamic prompt. Additionally, we
iteratively inject as many bad examples Bd = n
and update the single good example Gd = 1 with
highest Rouge-1 score using Rouge-1 threshold
T = 0.7. Finally, the iterative process is run for
I = 17 iterations. We evaluate on the same test
split shared in https://github.com/MoMarky/
radiology-report-extraction for Open-i
dataset and the official test split for MIMIC-CXR.
We note a performance drop for ChatGPT (Im-
pressionGPT) baseline (Rouge-L=44.7 vs 47.93
for MIMIC-CXR and Rouge-L=58.8 vs 65.47
for Open-i) compared to the results reported in
(Ma et al., 2023). The default hyperparameters in
the repository also did not produce the expected
results.
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Task Mistake Other Total Mistake Rate

Disease Classification 17% 83% 30 5 / 1955 (0.3%)
Disease Progression Classification 18% 82% 34 13 / 1326 (0.4%)

Table F.1: GPT-4 Error breakdown for single-run classification experiments: disease classification (*10) and disease
progression (zero-shot). Errors are categories into mistakes and other (ambiguous or label noise).
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